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Abstract: Aquila Optimizer (AO) and Harris Hawks Optimizer (HHO) are recently proposed meta-
heuristic optimization algorithms. AO possesses strong global exploration capability but insufficient
local exploitation ability. However, the exploitation phase of HHO is pretty good, while the explo-
ration capability is far from satisfactory. Considering the characteristics of these two algorithms,
an improved hybrid AO and HHO combined with a nonlinear escaping energy parameter and ran-
dom opposition-based learning strategy is proposed, namely IHAOHHO, to improve the searching
performance in this paper. Firstly, combining the salient features of AO and HHO retains valuable
exploration and exploitation capabilities. In the second place, random opposition-based learning
(ROBL) is added in the exploitation phase to improve local optima avoidance. Finally, the nonlinear
escaping energy parameter is utilized better to balance the exploration and exploitation phases of
IHAOHHO. These two strategies effectively enhance the exploration and exploitation of the proposed
algorithm. To verify the optimization performance, IHAOHHO is comprehensively analyzed on
23 standard benchmark functions. Moreover, the practicability of IHAOHHO is also highlighted by
four industrial engineering design problems. Compared with the original AO and HHO and five
state-of-the-art algorithms, the results show that IHAOHHO has strong superior performance and
promising prospects.

Keywords: Aquila Optimizer; Harris Hawks Optimizer; hybrid algorithm; nonlinear escaping energy
parameter; random opposition-based learning

1. Introduction

Meta-heuristic optimization algorithms inspired by nature are becoming more and
more popular in real-world applications [1]. Meta-heuristics usually mimic biological or
physical phenomena and only consider inputs and outputs, making them flexible and
straightforward. Furthermore, meta-heuristics is a kind of stochastic optimization tech-
nique. This property assists them to effectively avoid local optima, which usually occurs
in real problems. Because of the advantages of simplicity, flexibility, and ability to avoid
local optima, meta-heuristic optimization algorithms outperform heuristic optimization
algorithms to solve various complex and tricky optimization problems in the real world [2].

Three dominant categories are divided from meta-heuristic optimization algorithms:
evolutionary, physics-based, and swarm intelligence techniques. Evolutionary algorithms
are inspired by the laws of evolution in nature. The randomly generated population
evolves over subsequent generations as the number of iterations increases. Each gener-
ation of individuals is always formed by the combination of best individuals so that the
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population can be optimized over several generations of evolution. The most popular
evolutionary technique is Genetic Algorithms (GA) [3], which simulates Darwin’s theory
of evolution. There are several other popular evolutionary algorithms, such as Differential
Evolution Algorithm (DE) [4], Genetic Programming (GP) [5], Evolution Strategy (ES) [6],
Biogeography-Based Optimizer (BBO) [7], Evolutionary Deduction Algorithm (ED) [8], and
Probability-Based Incremental Learning (PBIL) [9]. Physics-based methods are inspired by
the physical rules of the universe. The most popular algorithms in this category are Simu-
lated Annealing (SA) [10], Big-Bang Big-Crunch (BBBC) [11], Gravity Search Algorithm
(GSA) [12], Gravitational Local Search (GLSA) [13], Heat Transfer Relation-based Opti-
mization Algorithm (HTOA) [14], Charged System Search (CSS) [15], Artificial Chemical
Reaction Optimization Algorithm (ACROA) [16], Central Force Optimization (CFO) [17],
Ray Optimization (RO) [18] algorithm, Black Hole (BH) [19] algorithm, Small-World Opti-
mization Algorithm (SWOA) [20], Galaxy-based Search Algorithm (GbSA) [21], Curved
Space Optimization (CSO) [22], Multi-Verse Optimizer (MVO) [23], Sine Cosine Algorithm
(SCA) [24], and Arithmetic Optimization Algorithm (AOA) [25].

The third category is swarm intelligence algorithms, which simulate the behaviour
of swarms of creatures in nature. The most well-known swarm intelligence technique is
Particle Swarm Optimization (PSO), first proposed by Kennedy and Eberhart [26]. PSO
mimics the behaviour of bird flocks in navigating and foraging, and the birds achieve
the optimal position through collective cooperation. Particles update positions not only
considering their own best positions but also according to the best position of the swarm ob-
tained so far. Other representative algorithms include Ant Colony Optimization Algorithm
(ACO) [27], Monkey Search [28], Firefly Algorithm [29], Bat Algorithm (BA) [30], Krill Herd
(KH) [31], Grey Wolf Optimizer (GWO) [32], Cuckoo Search (CS) Algorithm [33], Fruit Fly
Optimization (FFO) [34], Dolphin Partner Optimization (DPO) [35], Ant Lion Optimizer
(ALO) [36], Remora Optimization Algorithm (ROA) [37], Whale Optimization Algorithm
(WOA) [38], Salp Swarm Algorithm (SSA) [39], Bald Eagle Search (BES) algorithm [40], and
Slime Mould Algorithm (SMA) [41].

As one of the swarm intelligence algorithms, the Harris Hawks Optimizer (HHO) [42]
was proposed in 2019. HHO simulates several hunting strategies of Harris’s hawk and
attracted several researchers to apply it to solve practical problems [43–47]. The exploitation
phase of HHO includes four strategies, but the exploration phase is insufficient, and the
balance between the exploration and exploitation phases is not good enough. Therefore,
many improved and hybrid researches have been proposed to enhance the performance of
HHO. Yousri et al. [48] proposed an enhanced algorithm based on the fractional calculus
(FOC) memory concept to improve the performance of exploration phase, which is known
as FMHHO. The hawk moves with a fractional-order velocity, and the escaping energy of
the prey is adaptively adjusted based on FOC parameters to avoid local optima stagnation.
Gupta et al. [49] introduced a nonlinear energy parameter, different settings for rapid
dives, opposition-based learning strategy, and a greedy selection mechanism into HHO to
enhance the search efficiency and avoid premature convergence. Hussien and Amin [50]
proposed an improved HHO called IHHO to enhance the performance of HHO. The
proposed IHHO applied opposition-based learning (OBL) in the initialization phase to
diverse the initial population as well as Chaotic Local Search (CLS) strategy and a self-
adaptive technique to improve its performance and speed up the convergence of the
algorithm. Sihwail et al. [51] proposed a new search mechanism and then applied it and elite
opposite-based learning (EOBL) technique to HHO. The improved HHO raised the search
capabilities by mutation, mutation neighborhood search (MNS), and rollback strategy.
It can avoid local optimum entrapment and improve population diversity, convergence
accuracy, and rate. Bao et al. [52] proposed HHO-DE by hybridizing HHO and Differential
Evolution (DE) algorithms. HHO and DE were used to update the positions of two equal
subpopulations respectively. The proposed HHO-DE has high accuracy, ability to avoid
local optima, and remarkable stability. Houssein et al. [53] combined HHO with cuckoo
search (CS) and chaotic maps to propose a hybrid algorithm called CHHO-CS. CS was
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used to control the main position vectors of HHO to achieve a better balance between
exploration and exploitation phases, and chaotic maps were adopted to update the control
energy parameters to avoid premature convergence. Kaveh et al. [54] proposed an effective
algorithm called ICHHO by hybridizing HHO with Imperialist Competitive Algorithm
(ICA). Combination of the exploration strategy of ICA and exploitation technique of HHO
helps to achieve a better search strategy. These improved and hybrid algorithms have
proven that HHO is a valuable algorithm. Aquila Optimizer (AO) [55] is the latest swarm
intelligence algorithm, proposed in 2021. This algorithm simulates different hunting
methods of Aquila for different kinds of prey. The hunting methods for fast-moving prey
reflect the global exploration ability of the algorithm, and the hunting methods for slow-
moving prey reflect the local exploitation ability of the algorithm. AO algorithm possesses
strong global exploration ability, high search efficiency, and fast convergence speed, but
its local exploitation ability is insufficient, so it is easy to fall into local optima. Due to the
short time that has elapsed since the algorithm has been proposed, there is no research on
the improvement of AO yet.

Therefore, we tried a kind of hybridization to improve the performance of HHO
and AO. As far as we know, this kind of hybridization of HHO with AO has not been
used before. We propose a new, improved hybrid Aquila Optimizer and Harris Hawks
Optimization (IHAOHHO) by combining the salient features of AO and HHO. In this
paper, we integrate the exploitation strategy of HHO into the AO algorithm, which is
added random opposition-based learning (ROBL) in the exploitation phase to avoid local
optima stagnation. At the same time, the nonlinear escaping energy parameter balances
the exploration and exploitation phases of the algorithm. The 23 standard benchmark
functions and four engineering design problems were applied to test the exploration and
exploitation capabilities of IHAOHHO. The proposed algorithm is compared with original
AO, HHO, and several well-known algorithms, including SMA, SSA, WOA, GWO, and
PSO. The experimental results show that the proposed IHAOHHO algorithm performs
better than the state-of-the-art meta-heuristic algorithms.

The rest of this paper is organized as follows (Figure 1): Section 2 provides a brief
overview of the related work: original Harris Hawks Optimization algorithm and Aquila
Optimizer, as well as two improvement strategies. Section 3 describes in detail the proposed
hybrid algorithm. Section 4 conducts simulation experiments and results analysis. Finally,
Section 5 concludes the paper.
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Figure 1. The overview sketch of this paper.

2. Preliminaries
2.1. Aquila Optimizer (AO)

AO is a latest novel swarm intelligence algorithm proposed by Abualigah et al. in
2021. There are four hunting behaviors of Aquila for different kinds of prey. Aquila can
switch hunting strategies flexibly for different prey and then uses its fast speed united with
sturdy feet and claws to attack prey. The brief description of mathematical model can be
described as follows.

Step 1: Expanded exploration (X1): high soar with a vertical stoop

In this method, the Aquila flies high over the ground and explores the search space
widely, and then a vertical dive is taken once the Aquila determines the area of the prey.
The mathematical representation of this behaviour is written as:

X1(t + 1) = Xbest(t)× (1− t
T
) + (XM(t)− Xbest(t)× r1) (1)

XM(t) =
1
N

N

∑
i=1

Xi(t) (2)

where Xbest(t) represents the best position obtained so far, and XM(t) denotes the average
position of all Aquilas in current iteration. t and T is the current iteration and the maximum
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number of iterations, respectively. N is the population size, and r1 is a random number
between 0 and 1.

Step 2: Narrowed exploration (X2): contour flight with short glide attack

This is the most commonly used hunting method for Aquila. It uses short gliding to
attack the prey after descending within the selected area and flying around the prey. The
position update formula is represented as:

X2(t + 1) = Xbest(t)× LF(D) + XR(t) + (y− x)× r2 (3)

where XR(t) represents a random position of the Aquila, D is the dimension size, and r2 is
a random number within (0, 1). LF(D) represents Levy flight function, which is presented
as follows:

LF(D) = s× u× σ

|v|
1
β

(4)

σ =

 Γ(1 + β)× sin(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 (5)

where s and β are constant values equal to 0.01 and 1.5, respectively, and u and v are
random numbers between 0 and 1. y and x are used to present the spiral shape in the
search, which are calculated as follows:

x = r× sin(θ)

y = r× cos(θ)

r = r3 + 0.00565× D1

θ = −ω× D1 +
3×π

2

(6)

where r3 means the number of search cycles between 1 and 20, D1 is composed of integer
numbers from 1 to the dimension size (D), and ω is equal to 0.005.

Step 3: Expanded exploitation (X3): low flight with a slow descent attack

In the third method, when the area of prey is roughly determined, the Aquila descends
vertically to do a preliminary attack. AO exploits the selected area to get close and attack
the prey. This behaviour is presented as follows:

X3(t + 1) = (Xbest(t)− XM(t))× α− r4 + ((UB− LB)× r5 + LB)× δ (7)

where Xbest(t) denotes to the best position obtained so far, and XM(t) means the average
value of the current positions. α and δ are the exploitation adjustment parameters fixed to
0.1, UB and LB are the upper and lower bound of the problem, and r4 and r5 are random
numbers within (0, 1).

Step 4: Narrowed exploitation (X4): walking and grabbing prey

In this method, the Aquila chases the prey in the light of its escape trajectory and
then attacks the prey on the ground. The mathematical representation of this behaviour is
as follows: 

X4(t + 1) = QF× Xbest(t)− (G1 × X(t)× r6)

−G2 × LF(D) + r7 × G1

QF(t) = t
2×rand()−1

(1−T)2

G1 = 2 × r8 − 1

G2 = 2 × (1− t
T )

(8)

where X(t) is the current position, and QF(t) represents the quality function value, which
used to balance the search strategy. G1 denotes the movement parameter of Aquila during
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tracking prey, which is a random number between [–1,1]. G2 denotes the flight slope when
chasing prey, which decreases linearly from 2 to 0. r6, r7, and r8 are random numbers
between 0 and 1.

2.2. Harris’s Hawks Optimizer (HHO)

HHO is a new meta-heuristic optimization algorithm proposed by Heidari et al.
in 2019. It is inspired by the unique cooperative foraging activities of Harris’s hawk.
Harris’s hawk can show a variety of chasing patterns according to the dynamic nature
of the environment and the escaping patterns of the prey. These switching activities are
conducive to confuse the running prey, and these cooperative strategies can help Harris’s
hawk chase the detected prey to exhaustion, which increases its vulnerability. The brief
description of mathematical model is as follows.

2.2.1. Exploration Phase

The Harris’s hawks usually perch on some random locations, wait, and monitor the
desert to detect the prey. There are two perching strategies based on the positions of other
family members and the prey or random tall trees, which is selected in accordance with the
random q value.

X(t + 1) =

{
Xr(t)− r1|Xr(t)− 2r2X(t)| q ≥ 0.5

(Xprey(t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5
(9)

Xm(t) =
1
N

N

∑
i=1

Xi(t) (10)

where Xr(t) is the position of a random hawk, Xprey(t) represents the position of the prey,
that is the best position obtained so far, and Xm(t) denotes the average position of the
current population. N is total number of hawks, UB and LB are the upper and lower bound
of the problem, and q, r1, r2, r3, and r4 are random numbers between 0 and 1.

2.2.2. Transition from Exploration to Exploitation Phase

The HHO algorithm has a transition mechanism from exploration to exploitation
phase based on the escaping energy of the prey and then changes the different exploitative
behaviors. The energy of the prey is modelled as follows, which decreases during the
escaping behaviour.

E = 2E0(1−
t
T
) (11)

where E represents the escaping energy of the prey, E0 is the initial state of the energy, and
t and T are the current and maximum number of iterations, respectively. When |E|≥ 1 , the
algorithm performs the exploration stage, and when |E|< 1 , the algorithm performs the
exploitation phase.

2.2.3. Exploitation Phase

In this phase, four different chasing and attacking strategies are proposed on the basis
of the escaping energy of the prey and chasing styles of the Harris’s hawks. Except for the
escaping energy, parameter r is also utilized to choose the chasing strategy, which indicates
the chance of the prey in successfully escaping (r < 0.5) or not (r ≥ 0.5) before attack.

Soft besiege

When r ≥ 0.5 and |E|≥ 0.5 , the prey still has enough energy and tries to escape, so
the Harris’s hawks encircle it softly to make the prey more exhausted and then attack it.
This behaviour is modeled as follows:

X(t + 1) = ∆X(t)− E
∣∣JXprey(t)− X(t)

∣∣ (12)
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∆X(t) = Xprey(t)− X(t) (13)

J = 2(1− r5) (14)

where ∆X(t) indicates the difference between the position of the prey and the current
position, J represents the random jump strength of the prey, Xprey(t) represents the position
of the prey, X(t) is the current position, and r5 is a random number within (0, 1).

Hard besiege

When r ≥ 0.5 and |E|< 0.5 , the prey has a low escaping energy, and the Harris’s
hawks encircle the prey readily and finally attack it. In this situation, the positions are
updated as follows:

X(t + 1) = Xprey(t)− E
∣∣∆X(t)

∣∣ (15)

Soft besiege with progressive rapid dives

When |E|≥ 0.5 and r < 0.5, the prey has enough energy to successfully escape, so the
Harris’s hawks perform soft besiege with several rapid dives around the prey and try to
progressively correct its position and direction. This behaviour is modeled as follows:

Y = Xprey(t)− E
∣∣JXprey(t)− X(t)

∣∣ (16)

Z = Y + S× LF(D) (17)

LF(x) = 0.01× u× σ

|υ|
1
β

(18)

σ =

 Γ(1 + β)× sin(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 1
β

(19)

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(20)

where D is the dimension size of the problem, and S is a random vector. LF is Levy flight
function, which is utilized to mimic the deceptive motions of the prey. u and v are random
values between 0 and 1, and β is a constant number equal to 1.5. Note that only the better
position between Y and Z is selected as the next position.

Hard besiege with progressive rapid dives

When |E|< 0.5 and r < 0.5, the prey does not have enough energy to escape, so the
hawks perform a hard besiege to decrease the distance between their average position
and the prey and finally attack and kill the prey. The mathematical representation of this
behaviour is as follows:

Y = Xprey(t)− E
∣∣JXprey(t)− Xm(t)

∣∣ (21)

Z = Y + S× LF(D) (22)

X(t + 1) =

{
Y i f F(Y) < F(X(t))

Z i f F(Z) < F(X(t))
(23)

Note that only the better position between Y and Z will be the next position for the
new iteration.

2.3. Nonlinear Escaping Energy Parameter

In the original HHO algorithm, the escaping energy E is used to control the transition
from exploration to exploitation phase. The parameter E is linearly reduced from 2 to 0,
that is, only local search is performed in the second half of the iterations, which is easy to
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fall into local optima. In order to overcome this shortcoming of the algorithm, another way
to update the escaping energy E is utilized [56]:

E = E1(2× rand−1) (24)

E1 = 2× (1−
(

t
T

)1/3
)

1/3

(25)

where t and T are the current and maximum number of iterations, respectively. It can be
seen from Figure 2a that E1 decreases rapidly in the early stage of the iterations, which
controls the global search ability of the algorithm and changes slowly in the middle of the
iterations. E1 also balances the global and local search capabilities and decreases rapidly in
the later stage of the iterations to speed up the local search. E can perform global search
and local search in the whole iterative process. It mainly performs global search in the early
stage and retains the possibility of global search while mainly performing local search in
the later stage, as shown in Figure 2b.

Figure 2. (a) E1 curve and (b) E curve.

2.4. Random Opposition-Based Learning (ROBL)

Opposition-based learning (OBL) is a powerful optimization tool proposed by Tizhoosh [57].
The main idea of OBL is simultaneously considering the fitness of an estimate and its correspond-
ing opposite estimate to obtain a better candidate solution. The OBL concept has successfully
been used in varieties of meta-heuristics algorithms [58–62] to improve the convergence speed.
Different from the original OBL, this paper utilizes an improved OBL strategy, called random
opposition-based learning (ROBL) [63], which is defined by:

x̂j = lj + uj − rand× xj, j = 1, 2, . . . , n (26)

where x̂j represents the opposite solution, lj and uj are the lower and upper bound of the
problem in jth dimension, and rand is a random number within (0, 1). The opposite solution
described by Equation (26) is more random than the original OBL and can effectively help
the population jump out of the local optima.

3. The Proposed IHAOHHO Algorithm
3.1. The Detail Design of IHAOHHO

The exploration phase of AO mimics the hunting behaviour for fast-moving prey with
a wide flying area, making AO have a strong global search ability and fast convergence
speed. However, the selected search space is not exhaustively searched during the exploita-
tion phase. The effect of Levy flight is relatively weak, leading to premature convergence.
In a word, the AO algorithm possesses strong randomness and fast convergence speed
in the global exploration phase. However, it is easy to fall into local optima in the local
exploitation stage. For the HHO algorithm, the transition from global to local search is
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realized based on the energy attenuation of the prey. In the early iterations, which reflect
the exploration phase, the diversity of the population is insufficient, and the convergence
speed is slow. As the number of iterations increases, the energy of prey decreases, and
the algorithm enters the stage of local exploitation. Four different hunting strategies are
adopted in the light of the energy and escape probability of the prey. The Levy flight term is
added in the exploitation phase. Whether to use Levy flight to update positions is decided
by fitness values so that the algorithm can jump out of the local optima to a certain extent.

Therefore, we combine the global exploration phase of AO and the local exploitation
phase of HHO to give full play to the advantages of these two algorithms. The global search
capability, faster convergence speed, and the ability to jump out of the local optima of the
algorithm are all retained. Meanwhile, a nonlinear escaping energy mechanism is utilized
to control the transition from exploration to exploitation phase, which retains the possibility
of global search in the later iterations. ROBL strategy is added to the exploitation phase to
enhance further the ability to jump out of the local optima. All these strategies improve
the convergence speed and accuracy of the hybrid algorithm and effectively enhance
the overall optimization performance of the algorithm. This improved hybrid Aquila
Optimizer and Harris Hawks Optimization algorithm is named IHAOHHO. Different
phases of IHAOHHO are shown in Figure 3. The pseudo-code of IHAOHHO is given in
Algorithm 1, and the summarized flowchart is illustrated in Figure 4.

Figure 3. Different phases of IHAOHHO.

3.2. Computational Complexity of IHAOHHO

Computation complexity is a key metric for an algorithm to evaluate its time con-
sumption during operation. The computational complexity of the IHAOHHO algorithm
depends on three processes: initialization, evaluation of fitness, and updating of hawks. In
the initialization stage, the computational complexity of positions generated of N hawks is
O(N × D), where D is dimension size of the problem. Then, the computational complexity
of fitness evaluation for the best solution is O(N) during the iteration process. Considering
the worst condition, the computational complexities of position updating of hawks and
fitness comparison are O(3 × N × D) and O(3 × N), respectively. In a word, the total
computational complexity of the proposed IHAOHHO algorithm is O(N × D + (3 × D + 4)
× N × T).
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Algorithm 1 Pseudo-code of IHAOHHO.

1: Set initial values of the population size N and the maximum number of iterations T
2: Initialize positions of the population X
3: While t < T
4: For i = 1 to N
5: Check if the position goes out of the search space boundary, and bring it back.
6: Calculate the fitness of Xi
7: Update Xbest
8: End for
9: Update x, y, QF, G1, G2, E1
10: For i = 1 to N
11: Update E using Equation (24) % Nonlinear escaping energy parameter
12: If |E| ≥ 1 % Exploration part of AO
13: If rand < 0.5
14: Update the position of Xnewi using Equation (1)
15: If f(Xnewi) < f(Xi)
16: Xi = Xnewi
17: End if
18: Else
19: Update the position of Xnewi using Equation (3)
20: If f(Xnewi) < f(Xi)
21: Xi = Xnewi
22: End if
23: End if
24: Else % Exploitation part of HHO
25: If r ≥ 0.5 and |E| ≥ 0.5
26: Update the position of Xi using Equation (12)
27: End if
28: If r ≥ 0.5 and |E| < 0.5
29: Update the position of Xi using Equation (15)
30: End if
31: If r < 0.5 and |E| ≥ 0.5
32: Update the position of Xnewi using Equation (16)
33: If f(Xnewi) < f(Xi)
34: Xi = Xnewi
35: Else
36: Update the position of Xnewi using Equation (17)
37: If f(Xnewi) < f(Xi)
38: Xi = Xnewi
39: End if
40: End if
41: End if
42: If r < 0.5 and |E| < 0.5
43: Update the position of Xnewi using Equation (21)
44: If f(Xnewi) < f(Xi)
45: Xi = Xnewi
46: Else
47: Update the position of Xnewi using Equation (22)
48: If f(Xnewi) < f(Xi)
49: Xi = Xnewi
50: End if
51: End if
52: End if
53: Update the position of Xnewi using Equation (26) % ROBL
54: If f(Xnewi) < f(Xi)
55: Xi = Xnewi
56: End if
57: End if
58: t = t + 1
59: End for
60: End while
61: Return Xbest



Processes 2021, 9, 1551 11 of 28

Figure 4. IHAOHHO algorithm flowchart.

4. Results and Discussion

In this section, two main experiments were carried out to evaluate the performance
of the IHAOHHO algorithm. The first kind of experiments is benchmark function experi-
ments, which aimed to evaluate the performance of IHAOHHO in solving 23 numerical
optimization problems. The second experiment is industrial engineering design problems,
which aimed to evaluate the performance of IHAOHHO in solving real-world problems.
All experiments are implemented in MATLAB R2016a on a PC with Intel (R) core (TM)
i5-9500 CPU @ 3.00 GHz and RAM 2 GB memory on OS windows 10.

4.1. Benchmark Function Experiments

To investigate the performance of the IHAOHHO algorithm, 23 standard benchmark
functions of three different types were utilized for testing [64]. The main characteristic of the
first type, namely unimodal benchmark functions, is that there is only one global optimum
with no local optima. These test functions can be used to evaluate the exploitation capability
and convergence rate of an algorithm. The second type, namely multimodal benchmark
functions, has a global optimum and multiple local optima, which includes general and
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fixed-dimension multimodal test functions. This type of functions was utilized to evaluate the
exploitation and local optima avoidance capability of the algorithm. The benchmark function
details, including dimensions, ranges, and optima, are listed in Tables 1–3.

Table 1. Unimodal benchmark functions.

Function Dim Range Fmin

F1(x) = ∑n
i=1 x2

i 30 (−100, 100) 0

F2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 (−10, 10) 0

F3(x) = ∑n
i=1 (∑

i
j−1 xj)

2 30 (−100, 100) 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 (−100, 100) 0

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2] 30 (−30,30) 0

F6(x) = ∑n
i=1 (xi + 5)2 30 (−100, 100) 0

F7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 (−1.28, 1.28) 0

Table 2. Multimodal benchmark functions.

Function Dim Range Fmin

F8(x) = ∑n
i=1−xi sin(

√
|xi|) 30 (−500, 500) −418.9829 × 30

F9(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] 30 (−5.12, 5.12) 0

F10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e 30 (−32, 32) 0

F11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos( xi√
i
) + 1 30 (−600, 600) 0

F12(x) = π
n {10 sin(πy1) + ∑n−1

i=1 (yi − 1)
2
[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+∑n
i=1 u(xi, 10, 100, 4), where yi = 1 + xi+1

4 ,

u(xi, a, k, m) =


k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

30 (−50, 50) 0

F13(x) = 0.1(sin2(3πx1) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]) + ∑n
i=1 u(xi, 5, 100, 4)

30 (−50, 50) 0

Table 3. Fixed-dimension multimodal benchmark functions.

Function Dim Range Fmin

F14(x) = ( 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6 )
−1 2 (−65, 65) 1

F15(x) = ∑11
i=1 [ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]
2

4 (−5, 5) 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + x4

2 2 (−5, 5) −1.0316

F17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 (−5, 5) 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2 × (18− 32x2 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 (−2, 2) 3

F19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) 3 (−1, 2) −3.86

F20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) 6 (0, 1) −3.32

F21(x) = −∑5
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 (0, 10) −10.1532

F22(x) = −∑7
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 (0, 10) −10.4028

F23(x) = −∑10
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 (0, 10) −10.5363
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For verification of the results, the IHAOHHO algorithm was compared with the origi-
nal AO and HHO; SMA as one of the recent algorithms; SSA, WOA, and GWO as several
classical meta-heuristic algorithms; and PSO as the most well-known swarm intelligence
algorithm. For all these algorithms, we set the population size N = 30, dimension size
D = 30, maximum number of iterations T = 500, and ran them 30 times independently.
The parameter settings of each algorithm are shown in Table 4. After all, the average and
standard deviation results of these test functions are exhibited in Tables 4–6. Figure 5
shows the convergence curves of 23 test functions. The partial search history, trajectory
and average fitness maps are represented in Figure 6. Wilcoxon signed-rank test results are
also listed in Table 6. The detailed data analysis is given in the following subsections.

Table 4. Parameter settings for the comparative algorithms.

Algorithm Parameters

AO U = 0.00565; r1 = 10;ω = 0.005; α = 0.1; δ = 0.1; G1 ∈ [−1, 1]; G2 = [2, 0]
HHO q ∈ [0, 1]; r ∈ [0, 1]; E0 ∈ [−1, 1]; E1 = [2, 0]; E ∈ [−2, 2];
SMA z = 0.03
SSA c1 = [1, 0]; c2 ∈ [0, 1]; c3 ∈ [0, 1]
WOA a1 = [2, 0]; a2 = [−1, −2]; b = 1
GWO a = [2, 0]
PSO c1 = 2; c2 = 2; vmax = 6

4.1.1. Evaluation of Exploitation Capability (Functions F1–F7)

Functions F1–F7 are used to investigate the exploitation capability of the algorithm
since they have only one global optimum and no local optima. It can be seen from
Table 5 that IHAOHHO can achieve much better results than other meta-heuristic algo-
rithms excluding F6. For F1 and F3, IHAOHHO can find the theoretical optimum. For
all unimodal functions excluding F6, IHAOHHO gets the smallest average values and
standard deviations compared to other algorithms, which indicate the best accuracy and
stability. Hence, the exploitation capability of the proposed IHAOHHO algorithm is
excellent.

4.1.2. Evaluation of Exploration Capability (Functions F8–F23)

Multimodal functions F8–F23 contain plentiful local optima whose number increases
exponentially with the dimension size of the problem. This kind of functions is very useful
to evaluate the exploration ability of the algorithm. From the results shown in Table 5,
IHAOHHO outperforms other algorithms in most of the multimodal and fixed-dimension
multimodal functions. For multimodal functions F8–F13, IHAOHHO almost obtains all
the best average values and standard deviations. Among ten fixed-dimensions multimodal
functions F14–F23, IHAOHHO achieves the best accuracy of eight functions and best
stability of four functions. These results indicate that IHAOHHO also provides robust
exploitation capability.
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Table 5. Results of algorithms on 23 benchmark functions.

F IHAOHHO AO HHO SMA SSA WOA GWO PSO

F1 Avg 0.0000 × 100 2.5120 × 10−128 1.7359 × 10−98 6.7559 × 10−287 2.0918 × 10−7 7.0172 × 10−75 2.7553 × 10−27 1.7920 × 10−4

Std 0.0000 × 100 1.3759 × 10−127 3.8748 × 10−98 0.0000 × 100 2.5521 × 10−7 2.0985 × 10−74 7.4745 × 10−27 2.1473 × 10−4

F2 Avg 3.1773 × 10−283 3.0714 × 10−51 3.6162 × 10−49 1.7722 × 10−136 2.1400 × 100 2.1103 × 10−49 7.2224 × 10−17 2.2676 × 10−1

Std 0.0000 × 100 1.6823 × 10−50 1.9747 × 10−48 9.7069 × 10−136 1.5737 × 100 1.1221 × 10−48 4.3158 × 10−17 2.0215 × 10−2

F3 Avg 0.0000 × 100 2.3884 × 10−101 7.9368 × 10−70 2.7958 × 10−305 1.5707 × 103 4.8346 × 104 1.9688 × 10−5 8.7992 × 101

Std 0.0000 × 100 9.262 × 10−101 4.3417 × 10−69 0.0000 × 100 1.0057 × 103 1.5295 × 104 8.5080 × 10−5 3.7192 × 101

F4 Avg 1.1105 × 10−281 1.0656 × 10−53 1.2768 × 10−49 1.0217 × 10−160 1.1623 × 101 5.4222 × 101 9.2533 × 10−7 1.0783 × 100

Std 0.0000 × 100 5.8309 × 10−53 4.4293 × 10−49 5.5961 × 10−160 3.3373 × 100 2.9852 × 101 9.1688 × 10−7 2.1854 × 10−1

F5 Avg 2.8203 × 10−3 6.4303 × 10−3 1.1390 × 10−2 9.4019 × 100 3.1709 × 102 2.7969 × 101 2.7412 × 101 1.0424 × 102

Std 4.4716 × 10−3 9.1289 × 10−3 1.2058 × 10−2 1.2466 × 101 8.0601 × 102 4.5551 × 10−1 8.8086 × 10−1 9.9130 × 101

F6 Avg 4.2411 × 10−6 1.1861 × 10−4 1.1430 × 10−4 5.2584 × 10−3 3.5188 × 10−7 3.6078 × 10−1 8.0826 × 10−1 1.1828 × 10−4

Std 6.2092 × 10−6 2.1625 × 10−4 1.4084 × 10−4 3.1160 × 10−3 7.3563 × 10−7 1.8848 × 10−1 3.3042 × 10−1 1.3013 × 10−4

F7 Avg 7.1381 × 10−5 9.2969 × 10−5 1.4408 × 10−4 2.2317 × 10−4 1.7310 × 10−1 2.6756 × 10−3 2.2547 × 10−3 1.8040 × 10−1

Std 7.6852 × 10−5 1.1466 × 10−4 1.5482 × 10−4 1.6750 × 10−4 7.8997 × 10−2 2.3949 × 10−3 1.1317 × 10−3 7.5627 × 10−2

F8 Avg −12,447.8654 −7073.9882 −12,568.7811 −12,568.9426 −7591.3246 −10,430.3986 −6049.3246 −5317.3115
Std 4.5359 × 102 3.5511 × 103 1.3999 × 100 4.0261 × 10−1 6.9106 × 102 1.9097 × 103 8.0214 × 102 1.5005 × 103

F9 Avg 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 5.5253 × 101 1.8948 × 10−15 4.8419 × 100 5.6659 × 101

Std 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.9037 × 101 1.0378 × 10−14 6.2042 × 100 1.5111 × 101

F10 Avg 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 2.7561 × 100 3.9672 × 10−15 1.0356 × 10−13 2.0903 × 10−1

Std 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.9773 × 100 2.4210 × 10−15 2.1323 × 10−14 4.4871 × 10−1

F11 Avg 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.7030 × 10−2 5.9385 × 10−3 2.5384 × 10−3 4.9459 × 10−3

Std 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.9430 × 10−2 3.2527 × 10−2 8.7348 × 10−3 9.4682 × 10−3

F12 Avg 5.3164 × 10−7 4.6513 × 10−6 9.2636 × 10−6 5.0331 × 10−3 7.0564 × 100 2.5778 × 10−2 3.7730 × 10−2 6.9126 × 10−3

Std 9.6698 × 10−7 8.9371 × 10−6 1.2911 × 10−5 6.3463 × 10−3 3.0595 × 100 2.0942 × 10−2 1.8369 × 10−2 2.6301 × 10−2

F13 Avg 1.1694 × 10−5 3.3938 × 10−5 1.2604 × 10−4 7.3800 × 10−3 1.7887 × 101 5.8549 × 10−1 6.1135 × 10−1 4.4120 × 10−3

Std 1.7961 × 10−5 3.2363 × 10−5 1.5375 × 10−4 8.9329 × 10−3 1.5307 × 101 2.9719 × 10−1 1.7136 × 10−1 6.6275 × 10−3

F14 Avg 1.7919 × 100 1.5940 × 100 1.1635 × 100 9.9800 × 10−1 1.1637 × 100 5.0748 × 100 5.2681 × 100 3.5906 × 100

Std 9.1746 × 10−1 2.1763 × 100 4.5784 × 10−1 1.1156 × 10−12 3.7678 × 10−1 4.4603 × 100 4.6022 × 100 2.904 × 100

F15 Avg 3.5291 × 10−4 5.5590 × 10−4 4.0350 × 10−4 5.1576 × 10−4 2.8218 × 10−3 6.6118 × 10−4 6.3719 × 10−3 9.3864 × 10−4

Std 4.8766 × 10−5 1.1640 × 10−4 2.3353 × 10−4 3.0066 × 10−4 5.9580 × 10−3 7.1226 × 10−4 1.2424 × 10−2 2.6081 × 10−4

F16 Avg −1.0316 × 100 −1.0311 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100

Std 1.0379 × 10−10 3.7614 × 10−4 2.5745 × 10−9 4.3934 × 10−10 2.0489 × 10−14 6.1164 × 10−10 1.4772 × 10−8 6.4539 × 10−16

F17 Avg 3.9789 × 10−1 3.9812 × 10−1 3.9790 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1

Std 5.4022 × 10−7 2.2378 × 10−4 2.4237 × 10−5 2.4814 × 10−8 1.4663 × 10−14 8.5493 × 10−6 8.9987 × 10−7 0.0000 × 100

F18 Avg 3.0000 × 100 3.0439 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100

Std 2.714 × 10−7 6.4693 × 10−2 1.6198 × 10−7 4.7705 × 10−10 9.5042 × 10−14 2.6269 × 10−4 4.7607 × 10−5 1.639 × 10−15
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Table 5. Cont.

F IHAOHHO AO HHO SMA SSA WOA GWO PSO

F19 Avg −3.8628 × 100 −3.8539 × 100 −3.8616 × 100 −3.8628 × 100 −3.8628 × 100 −3.8597 × 100 −3.8593 × 100 −3.8628 × 100

Std 1.8351 × 10−4 6.0669 × 10−3 1.7013 × 10−3 3.0254 × 10−7 8.1972 × 10−13 3.1652 × 10−3 4.2427 × 10−3 2.6823 × 10−15

F20 Avg −3.1298 × 100 −3.1572 × 100 −3.0533 × 100 −3.2425 × 100 −3.2215 × 100 −3.2391 × 100 −3.2442 × 100 −3.2665 × 100

Std 1.1264 × 10−1 1.0448 × 10−1 1.1671 × 10−1 5.7177 × 10−2 5.1720 × 10−2 1.3596 × 10−1 9.0427 × 10−2 6.0328 × 10−2

F21 Avg −1.0152 × 101 −1.0142 × 101 −5.5370 × 100 −1.0152 × 101 −7.3774 × 100 −9.0891 × 100 −9.1419 × 100 −6.7868 × 100

Std 5.6352 × 10−4 1.8288 × 10−2 1.484 × 100 2.2592 × 10−3 2.9079 × 100 2.0545 × 100 2.3491 × 100 3.2622 × 100

F22 Avg −1.0402 × 101 −1.0388 × 101 −5.2528 × 100 −1.0402 × 101 −8.1232 × 100 −7.5395 × 100 −1.0401 × 101 −8.1542 × 100

Std 6.3272 × 10−4 2.4782 × 10−2 9.3628 × 10−1 7.5981 × 10−4 3.3371 × 100 3.1570 × 100 8.9128 × 10−4 3.2898 × 100

F23 Avg −1.0535 × 101 −1.0525 × 101 −5.2858 × 100 −1.0535 × 101 −7.6861 × 100 −6.6213 × 100 −1.0535 × 101 −1.0087 × 101

Std 9.8617 × 10−4 6.9516 × 10−3 8.8012 × 10−1 1.3006 × 10−3 3.6004 × 100 3.0127 × 100 9.0143 × 10−4 1.7472 × 100

Table 6. p-Values from the Wilcoxon signed-rank test for the results in Table 5.

F IHAOHHO vs. AO IHAOHHO vs. HHO IHAOHHO vs. SMA IHAOHHO vs. SSA IHAOHHO vs. WOA IHAOHHO vs. GWO IHAOHHO vs. PSO

F1 6.1035 × 10−5 6.1035 × 10−5 N/A 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5

F2 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5

F3 6.1035 × 10−5 6.1035 × 10−5 N/A 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5

F4 6.1035 × 10−5 6.1035 × 10−5 1.2207 × 10−4 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5

F5 6.7877 × 10−1 6.3867 × 10−1 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5

F6 1.5076 × 10−2 8.5449 × 10−4 6.1035 × 10−5 8.5449 × 10−4 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5

F7 8.0396 × 10−1 4.2725 × 10−3 3.0518 × 10−4 6.1035 × 10−5 1.2207 × 10−4 6.1035 × 10−5 6.1035 × 10−5

F8 1.0699 × 10−3 5.5359 × 10−3 6.7139 × 10−3 8.5449 × 10−4 7.2998 × 10−2 6.1035 × 10−5 6.1035 × 10−5

F9 N/A N/A N/A 6.1035 × 10−5 N/A 6.1035 × 10−5 6.1035 × 10−5

F10 N/A N/A N/A 6.1035 × 10−5 4.8828 × 10−4 6.1035 × 10−5 6.1035 × 10−5

F11 N/A N/A N/A 6.1035 × 10−5 N/A 6.2500 × 10−2 6.1035 × 10−5

F12 9.7797 × 10−1 2.7686 × 10−1 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 5.2448 × 10−1

F13 8.9038 × 10−1 3.5339 × 10−2 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 6.1035 × 10−5 2.1545 × 10−2

F14 3.5339 × 10−2 3.8940 × 10−2 1.2207 × 10−4 4.7913 × 10−2 6.1035 × 10−4 1.0699 × 10−1 2.1545 × 10−2

F15 3.3569 × 10−3 7.1973 × 10−1 4.7913 × 10−2 6.1035 × 10−5 1.1597 × 10−3 2.1545 × 10−2 6.1035 × 10−5

F16 6.1035 × 10−5 3.0151 × 10−2 8.5449 × 10−4 4.0283 × 10−3 4.2725 × 10−3 6.1035 × 10−5 1.2207 × 10−4

F17 6.1035 × 10−5 3.0280 × 10−1 1.0254 × 10−2 6.1035 × 10−5 6.7139 × 10−3 2.5574 × 10−2 6.1035 × 10−5

F18 6.1035 × 10−5 8.3618 × 10−3 8.3618 × 10−3 3.0518 × 10−4 1.2207 × 10−4 6.1035 × 10−5 6.1035 × 10−5

F19 N/A N/A N/A N/A N/A N/A 6.1035 × 10−5

F20 7.2998 × 10−2 1.8762 × 10−1 7.2998 × 10−2 1.0699 × 10−2 2.7686 × 10−1 1.0254 × 10−2 3.3569 × 10−3

F21 1.8762 × 10−1 6.1035 × 10−5 4.8871 × 10−1 4.2120 × 10−1 8.5449 × 10−4 5.9949 × 10−3 2.5574 × 10−2

F22 4.7913 × 10−2 6.1035 × 10−5 1.8066 × 10−2 8.0396 × 10−1 1.2207 × 10−4 2.0776 × 10−1 8.3618 × 10−3

F23 6.1035 × 10−5 6.1035 × 10−5 5.5359 × 10−2 8.3252 × 10−2 6.1035 × 10−5 8.3252 × 10−2 8.3252 × 10−2
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Figure 5. Cont.
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Figure 5. Convergence curves of 23 benchmark functions.
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Figure 6. Parameter space, search history, trajectory, average fitness, and convergence curve of IHAOHHO.

4.1.3. Analysis of Convergence Behavior

In the light of the mathematical formula of the IHAOHHO algorithm, search agents
tend to investigate promising regions of the search space widely and then exploit it in
detail. Search agents change drastically in early iterations and then converge gradually as
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the number of iterations increases. Convergence curves of the proposed IHAOHHO and
AO, HHO, SMA, SSA, WOA, GWO, and PSO for 23 benchmark functions are provided in
Figure 5, which shows the convergence rate of algorithms. It can be seen that IHAOHHO
shows great superiority compared to other state-of-the-art algorithms. The IHAOHHO
algorithm presents three different convergence behaviors during optimization processes.
Firstly, for F1-F4, IHAOHHO gradually converges to the optimal values at a faster speed
than other algorithms, and the optimal value is better than the others in three of the
functions. The second behaviour is extremely fast convergence speed, as observed in F6,
F8–F11, F14–F19, and F21–F23. For these functions, IHAOHHO can find the optimum at
an extremely fast speed within 20 iterations, and the accurate approximation of the global
optimum is almost the best. The last behaviour is observed in F5, F7, F12, F13, and F20 and
shows the local optimum avoidance capability of IHAOHHO. The proposed algorithm
jumps out of the local optimum after several times of stagnation. This is probably due
to the effect of nonlinear escaping energy parameter. Overall, IHAOHHO can efficiently
achieve great solutions for all these 23 standard benchmark functions.

In addition, the search history, trajectory, and average fitness figures of several func-
tions are given in Figure 6. Search history figures show us how the algorithm explores and
exploits the search space while solving optimization problems. Trajectory figures reveal the
order in which an algorithm explores and exploits the search space. Meanwhile, average
fitness presents if exploration and exploitation are conducive to improve the first random
population, and an accurate approximation of the global optimum can be found in the end.
Inspecting Figure 6, the IHAOHHO algorithm samples the most promising areas observed
from search histories. Because of the fast convergence, the vast majority of search agents
are concentrated near the global optimum. From trajectory and average fitness maps, it can
be noticed that exploration almost spread throughout the iterative process until the last
50 iterations focused on exploitation, and average fitness decreased abruptly and leveled
off accordingly. The average fitness figures also show the great improvement of the first
random population and the acquisition of the final global optimal accurate approximation.

4.1.4. The Wilcoxon Test

Furthermore, the Wilcoxon signed-rank test results are listed in Table 6, which is
used to evaluate the statistical performance differences between the proposed IHAOHHO
algorithm with other algorithms. It is worth noting that a p-value less than 0.05 means that
there is a significant difference between the two compared algorithms. In the light of this
criterion, IHAOHHO outperforms all other algorithms in varying degrees. This superiority
is statistically significant on unimodal functions F1–F7, which indicates that IHAOHHO
benefits from high exploitation. IHAOHHO also shows better results on multimodal
function F8–F23, from which we may conclude that IHAOHHO has a high capability of
exploration to investigate the most promising regions in the search space. To sum up, the
IHAOHHO algorithm can provide better results on almost all benchmark functions than
other comparative algorithms.

4.1.5. Computation Time

The computation time is useful to assess the efficiency for an algorithm in solving
optimization problems. From the computation time results of all algorithms shown in
Table 7, it is obvious that IHAOHHO spent more time in solving these benchmark functions
than other comparative algorithms, especially the earlier classic methods of SSA, WOA,
GWO, and PSO. The computation time of IHAOHHO is also slightly longer than the
basic AO and HHO, which may be ascribed to the ROBL strategy. ROBL produces one
more candidate solution in each iteration, increasing the computation time. However, the
IHAOHHO took less time than SMA on most test functions. In view of the best search
performance of IHAOHHO and the rapid development of the computational machines, it
is acceptable for the proposed algorithm to improve the optimization performance.
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Table 7. Computation time results of algorithms on 23 benchmark functions.

F IHAOHHO AO HHO SMA SSA WOA GWO PSO

F1 2.8539 × 10−1 2.3253 × 10−1 1.3713 × 10−1 8.8997 × 10−1 8.5420 × 10−2 7.5875 × 10−2 1.1491 × 10−1 6.5132 × 10−2

F2 2.8946 × 10−1 2.5214 × 10−1 1.4672 × 10−1 9.1203 × 10−1 1.0346 × 10−1 1.1982 × 10−1 1.2761 × 10−1 7.3814 × 10−2

F3 1.6030 × 100 9.2890 × 10−1 9.3324 × 10−1 1.2673 × 100 4.6382 × 10−1 3.9400 × 10−1 4.2700 × 10−1 3.9204 × 10−1

F4 2.8070 × 10−1 1.9787 × 10−1 1.5712 × 10−1 9.5399 × 10−1 8.2341 × 10−2 7.3767 × 10−2 1.1442 × 10−1 6.4915 × 10−2

F5 3.3725 × 10−1 2.2214 × 10−1 2.2123 × 10−1 1.0204 × 100 9.8470 × 10−2 8.7778 × 10−2 1.2667 × 10−1 7.8503 × 10−2

F6 2.7707 × 10−1 2.0399 × 10−1 1.7800 × 10−1 9.0977 × 10−1 8.2725 × 10−2 7.4251 × 10−2 1.1248 × 10−1 6.5708 × 10−2

F7 5.0109 × 10−1 3.0078 × 10−1 2.8662 × 10−1 9.5443 × 10−1 1.3880 × 10−1 1.2862 × 10−1 1.6701 × 10−1 1.1976 × 10−1

F8 3.9395 × 10−1 2.3581 × 10−1 2.3276 × 10−1 9.7695 × 10−1 1.0531 × 10−1 9.7443 × 10−2 1.3674 × 10−1 9.1720 × 10−2

F9 3.2379 × 10−1 1.9907 × 10−1 1.9594 × 10−1 9.5132 × 10−1 9.5204 × 10−2 7.9254 × 10−2 1.1801 × 10−1 7.4441 × 10−2

F10 3.5602 × 10−1 2.3037 × 10−1 2.3125 × 10−1 9.4870 × 10−1 1.0399 × 10−1 9.0064 × 10−2 1.2725 × 10−1 8.3986 × 10−2

F11 4.0659 × 10−1 2.4303 × 10−1 2.4198 × 10−1 9.3026 × 10−1 1.1382 × 10−1 1.0089 × 10−1 1.3566 × 10−1 9.2499 × 10−2

F12 1.0131 × 100 6.0006 × 10−1 6.9400 × 10−1 1.1939 × 100 2.6401 × 10−1 2.5229 × 10−1 3.4237 × 10−1 2.4517 × 10−1

F13 1.0300 × 100 5.6112 × 10−1 6.1205 × 10−1 1.1549 × 100 2.7393 × 10−1 2.7208 × 10−1 3.3915 × 10−1 2.4746 × 10−1

F14 2.3159 × 100 1.2173 × 100 1.5168 × 100 8.9676 × 10−1 5.9818 × 10−1 6.0722 × 10−1 5.9328 × 10−1 5.5450 × 10−1

F15 2.6135 × 10−1 1.7086 × 10−1 1.7031 × 10−1 3.4136 × 10−1 9.9034 × 10−2 7.5482 × 10−2 6.4104 × 10−2 4.2546 × 10−2

F16 2.0719 × 10−1 1.4146 × 10−1 1.3859 × 10−1 2.7170 × 10−1 5.9081 × 10−2 4.9666 × 10−2 6.0033 × 10−2 4.1193 × 10−2

F17 1.8138 × 10−1 1.3529 × 10−1 1.5833 × 10−1 2.7311 × 10−1 5.2979 × 10−2 4.1321 × 10−2 4.1556 × 10−2 2.3066 × 10−2

F18 1.8108 × 10−1 1.3183 × 10−1 1.2693 × 10−1 2.7041 × 10−1 5.4471 × 10−2 4.0487 × 10−2 4.1752 × 10−2 2.2830 × 10−2

F19 3.5119 × 10−1 2.4635 × 10−1 2.4016 × 10−1 3.4125 × 10−1 9.8544 × 10−2 8.5903 × 10−2 9.2049 × 10−2 7.0253 × 10−2

F20 3.7106 × 10−1 2.2549 × 10−1 2.4656 × 10−1 4.0519 × 10−1 1.0270 × 10−1 9.0294 × 10−2 9.8020 × 10−2 7.2095 × 10−2

F21 5.8451 × 10−1 3.2169 × 10−1 3.6385 × 10−1 4.1713 × 10−1 1.4920 × 10−1 1.3664 × 10−1 1.3885 × 10−1 1.2170 × 10−1

F22 7.2861 × 10−1 3.9414 × 10−1 4.3943 × 10−1 4.9071 × 10−1 1.8789 × 10−1 1.7154 × 10−1 1.7638 × 10−1 1.5215 × 10−1

F23 9.4549 × 10−1 4.9412 × 10−1 5.7464 × 10−1 4.9527 × 10−1 2.3551 × 10−1 2.7717 × 10−1 2.2549 × 10−1 2.0513 × 10−1
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4.2. Experiments on Industrial Engineering Design Problems

Most optimization problems have constraints in the real world, so considering equality
and inequality constraints during optimization is a necessary process. In this subsection,
four well-known constrained industrial engineering design problems, which include pres-
sure vessel design problem, speed reducer design problem, tension/compression spring
design problem, and three-bar truss design problem, were solved to further verify the
performance of the proposed IHAOHHO algorithm. The results of IHAOHHO were com-
pared to various classical optimizers proposed in previous studies. The parameter settings
were as same as the previous experiments.

4.2.1. Pressure Vessel Design Problem

The objective of this problem was to minimize the fabrication cost of the cylindrical
pressure vessel to meet the pressure requirements. As shown in Figure 7, four structural
parameters in this problem needed to be minimized, including the thickness of the shell
(Ts), the thickness of the head (Th), inner radius (R), and the length of the cylindrical section
without the head (L). The formulation of four optimization constraints can be described
as follows:

Figure 7. Pressure vessel design problem.

Consider
→
x = [x1 x2 x3 x4] = [Ts Th R L], (27)

Minimize

f (
→
x ) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3, (28)

Subject to
g1(
→
x ) = −x1 + 0.0193x3 ≤ 0,

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0,

g3(
→
x ) = −πx2

3x4 − 4
3 πx3

3 + 1296000 ≤ 0,

g4(
→
x ) = x4 − 240 ≤ 0,

(29)

Variable range
0 ≤ x1 ≤ 99,
0 ≤ x2 ≤ 99,
10 ≤ x3 ≤ 200,
10 ≤ x4 ≤ 200,

(30)
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From the results in Table 8, it is obvious that IHAOHHO can obtain superior optimal
values compared to AO, HHO, SMA, WOA, GWO, MVO, GA, ES, and CPSO [65].

Table 8. Comparison of IHAOHHO results with other competitors for the pressure vessel
design problem.

Algorithm Optimum Variables Optimum
CostTs Th R L

IHAOHHO 0.8363559 0.4127868 45.08462 142.9202 5932.3392
AO [55] 1.0540 0.182806 59.6219 38.8050 5949.2258

HHO [42] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
SMA [41] 0.7931 0.3932 40.6711 196.2178 5994.1857
WOA [38] 0.8125 0.4375 42.0982699 176.638998 6059.7410
GWO [32] 0.8125 0.4345 42.0892 176.7587 6051.5639
MVO [23] 0.8125 0.4375 42.090738 176.73869 6060.8066

GA [3] 0.8125 0.4375 42.097398 176.65405 6059.94634
ES [6] 0.8125 0.4375 42.098087 176.640518 6059.74560

CPSO [65] 0.8125 0.4375 42.091266 176.7465 6061.0777

4.2.2. Speed Reducer Design Problem

This problem aims to optimize seven variables to minimize the speed reducer’s total
weights, which include the face width (x1), module of teeth (x2), a discrete design variable
on behalf of the teeth in the pinion (x3), length of the first shaft between bearings (x4),
length of the second shaft between bearings (x5), diameters of the first shaft (x6), and
diameters of the second shaft (x7). Four constraints—covering stress, bending stress of
the gear teeth, stresses in the shafts, and transverse deflections of the shafts, as shown in
Figure 8—should be satisfied. The mathematical formulation is represented as follows:

Figure 8. Speed reducer design problem.

Minimize

f (
→
x ) = 0.7854x1x2

2(3.3333x2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7),
(31)
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Subject to
g1(
→
x ) = 27

x1x2
2x3
− 1 ≤ 0,

g2(
→
x ) = 397.5

x1x2
2x2

3
− 1 ≤ 0,

g3(
→
x ) = 1.93x3

4
x2x3x4

6
− 1 ≤ 0,

g4(
→
x ) = 1.93x3

5
x2x3x4

7
− 1 ≤ 0,

g5(
→
x ) =

√
(

745x4
x2x3

)
2
+16.9×106

110.0x3
6

− 1 ≤ 0,

g6(
→
x ) =

√
(

745x4
x2x3

)
2
+157.5×106

85.0x3
6

− 1 ≤ 0,

g7(
→
x ) = x2x3

40 − 1 ≤ 0,

g8(
→
x ) = 5x2

x1
− 1 ≤ 0,

g9(
→
x ) = x1

12x2
− 1 ≤ 0,

g10(
→
x ) = 1.5x6+1.9

x4
− 1 ≤ 0,

g11(
→
x ) = 1.1x7+1.9

x5
− 1 ≤ 0,

(32)

Variable range
2.6 ≤ x1 ≤ 3.6,
0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5,

(33)

Compared to AO, PSO, AOA, MFO [66], GA, SCA, HS [67], FA [68], and MDA [69],
IHAOHHO can obviously achieve better results in the speed reducer design problem, as
shown in Table 9.

Table 9. Comparison of IHAOHHO results with other competitors for the speed reducer design problem.

Algorithm
Optimum Variables Optimum

Weightx1 x2 x3 x4 x5 x6 x7

IHAOHHO 3.49924 0.7 17 7.3 7.8191 3.35006 5.28531 2996.0935
AO [55] 3.5021 0.7 17 7.3099 7.7476 3.3641 5.2994 3007.7328
PSO [26] 3.5001 0.7 17.0002 7.5177 7.7832 3.3508 5.2867 3145.922
AOA [25] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157
MFO [66] 3.49745 0.7 17 7.82775 7.71245 3.35178 5.28635 2998.9408

GA [3] 3.51025 0.7 17 8.35 7.8 3.36220 5.28772 3067.561
SCA [24] 3.50875 0.7 17 7.3 7.8 3.46102 5.28921 3030.563
HS [67] 3.52012 0.7 17 8.37 7.8 3.36697 5.28871 3029.002
FA [68] 3.50749 0.7001 17 7.71967 8.08085 3.35151 5.28705 3010.13749

MDA [69] 3.5 0.7 17 7.3 7.67039 3.54242 5.24581 3019.58336

4.2.3. Tension/Compression Spring Design Problem

In this case, the intention is to minimize the weight of the tension/compression spring
shown in Figure 9. Constraints on surge frequency, shear stress, and deflection must be
satisfied during optimum design. There are three parameters that needed to be minimized,
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including the wire diameter (d), mean coil diameter (D), and the number of active coils (N).
The mathematical form of this problem can be written as follows:

Figure 9. Tension/compression spring design problem.

Consider
→
x = [x1 x2 x3 x4] = [d D N], (34)

Minimize
f (
→
x ) = (x3 + 2)x2x2

1, (35)

Subject to

g1(
→
x ) = 1− x3

2x3

71,785x4
1
≤ 0,

g2(
→
x ) = 4x2

2−x1x2
12,566(x2x3

1−x4
1)
+ 1

5108x2
1
≤ 0,

g3(
→
x ) = 1− 140.45x1

x2
2x3

≤ 0,

g4(
→
x ) = x1+x2

1.5 − 1 ≤ 0,

(36)

Variable range
0.05 ≤ x1 ≤ 2.00,
0.25 ≤ x2 ≤ 1.30,
2.00 ≤ x3 ≤ 15.00,

(37)

The proposed IHAOHHO is compared with AO, HHO, SSA, WOA, GWO, PSO, MVO,
GA, and HS algorithms. Results are listed in Table 10 and show that the IHAOHHO can
attain the best weight values compared to all other algorithms. Additionally, it is clear that
the proposed method found a more accurate design with new parameter values.

Table 10. Comparison of IHAOHHO results with other competitors for the tension/compression
spring design problem.

Algorithm
Optimum Variables Optimum

Weightd D N

IHAOHHO 0.055883 0.52784 4.7603 0.011144
AO [55] 0.0502439 0.35262 10.5425 0.011165

HHO [42] 0.051796393 0.359305355 11.138859 0.012665443
SSA [39] 0.051207 0.345215 12.004032 0.0126763

WOA [38] 0.051207 0.345215 12.004032 0.0126763
GWO [32] 0.05169 0.356737 11.28885 0.012666
PSO [26] 0.051728 0.357644 11.244543 0.0126747

MVO [23] 0.05251 0.37602 10.33513 0.012790
GA [3] 0.051480 0.351661 11.632201 0.01270478
HS [67] 0.051154 0.349871 12.076432 0.0126706
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4.2.4. Three-Bar Truss Design Problem

The three-bar truss design problem is a classical optimization application in civil
engineering field. The main intention of this case is to minimize the weight of a truss with
three bars by considering two structural parameters as illustrated in Figure 10. Deflection,
stress, and buckling are the three main constrains. The mathematical formulation of this
problem is given:

Figure 10. Three-bar truss design problem.

Consider
→
x = [x1 x2] = [A1 A2], (38)

Minimize
f (
→
x ) = (2

√
2x1 + x2) ∗ l, (39)

Subject to

g1(
→
x ) =

√
2x1+x2√

2x2
1+2x1x2

P− σ ≤ 0,

g2(
→
x ) = x2√

2x2
1+2x1x2

P− σ ≤ 0,

g3(
→
x ) = 1√

2x2+x1
P− σ ≤ 0,

(40)

Variable range
0 ≤ x1, x2 ≤ 1, (41)

where l = 100cm, P = 2KN/cm2, σ = 2KN/cm2. Results of IHAOHHO for solving three-
bar truss design problem are listed in Table 11, which are compared with AO, HHO, SSA,
AOA, MVO, MFO, and GOA [70]. It can be observed that IHAOHHO outperforms other
optimization algorithms published in the literature.

Table 11. Comparison of IHAOHHO results with other competitors for the three-bar truss
design problem.

Algorithm
Optimum Variables

Optimum Weight
x1 x2

IHAOHHO 0.79002 0.40324 263.8622
AO [55] 0.7926 0.3966 263.8684

HHO [42] 0.788662816 0.408283133832900 263.8958434
SSA [39] 0.78866541 0.408275784 263.89584

AOA [25] 0.79369 0.39426 263.9154
MVO [23] 0.78860276 0.408453070000000 263.8958499
MFO [66] 0.788244771 0.409466905784741 263.8959797
GOA [70] 0.788897555578973 0.407619570115153 263.895881496069

As a summary, this section demonstrates the superiority of the proposed IHAOHHO
algorithms in different characteristics and real case studies. IHAOHHO is able to outper-
form the original AO and HHO and other well-known algorithms with very competitive
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results, which were derived from the robust exploration and exploitation capabilities of
IHAOHHO. Excellent performance in solving industrial engineering design problems
indicates that IHAOHHO can be widely used in real-world optimization problems.

5. Conclusions

This study proposed an improved hybrid Aquila Optimizer and Harris Hawks Op-
timization by combining the exploration part of AO with the exploitation part of HHO
and a nonlinear escaping energy parameter and random opposition-based learning (ROBL)
strategy. The proposed method integrated the mentioned search methods to tackle the
weakness of the traditional search methods. The proposed IHAOHHO algorithm was
tested using 23 mathematical benchmark functions to analyze its exploration, exploitation,
local optima avoidance capabilities, and convergence behaviors. Results show competitive
results compared to other state-of-the-art meta-heuristic algorithms. To further verify the
superiority of IHAOHHO, four industrial engineering design problems were solved. The
results are also competitive with other meta-heuristic algorithms.

As future perspectives, binary and multi-objective versions of IHAOHHO will be
considered. More applications of this algorithm in different fields are valuable works,
including text clustering, scheduling problems, appliances management, parameters esti-
mation, multi-objective engineering problems, feature selection, test classification, image
segmentation problems, network applications, sentiment analysis, etc.
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