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Abstract: Lyophilization is widely used in the preservation of thermolabile products. The main short-
coming is the long processing time. Lyophilization processes are mostly based on a recipe that is not
changed, but, with the Quality by Design (QbD) approach and use of Process Analytical Technology
(PAT), the process duration can be optimized for maximum productivity while ensuring product
safety. In this work, an advanced PAT approach is used for the endpoint determination of primary
drying. Manometric temperature measurement (MTM) and comparative pressure measurement are
used to determine the endpoint of the batch while a modeling approach is outlined that is able to
calculate the endpoint of every vial in the batch. This approach can be used for process development,
control and optimization.

Keywords: lyophilization; biologics; process design and optimization; Process Analytical Technology
(PAT); Quality by Design (QbD)

1. Introduction

Lyophilization, or freeze-drying, is widely used in the manufacturing of biologics
because it comprises gentle drying conditions that keep temperature-sensitive product
safe [1–3]. Freeze-drying consists of three steps. In the freezing step, the water of the
product solution is transformed to ice. During the primary drying phase, the pressure
in the drying chamber is reduced and the shelf temperature can be increased. In this
phase, frozen water is removed by sublimation from the product. The last phase, the so-
called secondary drying, removes the water by desorption. Here, the shelf temperature is
increased and the pressure may be decreased. The main advantages of this drying method
are [4–6]:

- High storage stability;
- Gentle removal of water;
- Short reconstitution time;
- Accurate dosing;
- Aseptic handling.

Long processing times, expensive equipment and maintenance are some shortcom-
ings [4–6].

The demand for lyophilization technology will rise because of the increasing number
of biological products that are in development [7–9]. This increased demand triggers a
change in process development from trial-and-error to a quality-by-design-based approach
using mathematical models and Process Analytical Technology in order to deepen process
understanding and accelerate process development [10,11].
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In 2004, the US Food and Drug Administration (FDA) presented the guidance for
Industry PAT [12] in order to initiate a shift in process development from rigorous testing
to a risk-based approach. Crucial elements of the Quality by Design (QbD) approach are
the detection, insight and control of critical product and process parameter [12,13]. QbD
assists process development and ensures manufacturing efficiency.

In this work, an advanced PAT method for endpoint determination of primary drying
is outlined. Manometric temperature measurement (MTM) and comparative pressure
measurement are used to determine the endpoint of the whole batch. Furthermore, a
pseudo-stationary process model is validated with an experimental Design of Experiments
on a pilot scale freeze dryer. The simulated results are in good agreement with the exper-
iments. The process model is useful for process development, control and optimization,
while MTM and comparative pressure measurement can be used together as the forwarding
condition of primary drying.

2. Quality by Design in Lyophilization

QbD is a concept that establishes continuous data-driven and risk-based process
improvement. An exemplary QbD workflow is shown in Figure 1. First, the Critical
Quality Attributes (CQA) of the final product have to be decided.
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Figure 1. QbD process development strategy [14].

A lyophilized product has to meet the following CQAs:

- Product integrity and stability;
- Drug potency;
- Reconstitution time;
- Cake appearance.

The CQA are a result of the sum of different process parameters. Process parameters
that effect the CQA are Critical Process Parameters (CPP). In lyophilization, the main CPP
in each stage are the shelf temperature, chamber pressure and phase duration:

- Freezing: temperature, rate;
- Annealing: temperature, time;
- Primary drying: temperature, pressure, duration;
- Secondary drying: temperature, pressure, duration.

The CPP have to be identified by risk assessment and are measured by the imple-
mented PAT [12]. In the risk assessment, the Ishikawa diagram presents possible impact
factors by category while the Occurrence Impact diagram makes a quantitative assessment
for the severeness and frequency of different scenarios. Both are shown in Figure 2.
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Figure 2. Risk assessment: (a) Ishikawa diagram; (b) Occurrence Impact diagram.

The failure mode effects analysis (FMEA) is based on prior experience. The derived
scoring for the Occurrence Impact diagram is shown in Table 1.

Validated pyhsico-chemical process models deepen process knowledge because they
describe the separated physical effects by a coupled mass and energy balance. For
Lyophilization, a broad range of models has been developed [15–34]. In combination,
PAT and modeling can result in advanced autonomous process control, and real-time
release testing can be the final benefit.

Another important aspect of QbD is the Design Space. It describes the effects of
material and process parameter on the CQA. Inside the chosen Design Space, the necessary
product quality has been assured. Therefore, manufacturing inside the Design Space does
not need regulatory post approval [13].

For lyophilization, different quality by design-based process development strategies
have been exemplified [18,35–38].
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Table 1. QbD risk assessment: FMEA.

Risk Impact Occurrence Comment

Shelf temperature variation 8 2
Shelf temperature affects drying rate in both phases, too high
value could cause collapse but a low value leads to long drying
times, once freeze drying recipe is set, temperature easy to control

Chamber pressure rise 3 10 High pressure could lead to melt back, during MTM pressure is
increased in an interval that is safe for the product

Freezing step variation 7 4
Freezing step sets the foundation for drying phases, once freezing
recipe is set the temperature can be controlled easily but stochastic
nature of nucleation still leads to small deviations in ice crystal size

Equipment not up to date 9 1 Uncalibrated measurement units lead deviation from recipe,
prevention through maintenance intervals

Excipient variation 7 1 Formulation has high impact because it sets the failure mode,
once formulation is set, composition can be good controlled

Fill level 3 1 Increased height can lead to collapse if the process is rigorously
optimized, but fill level can be controlled easily

3. Steady State Modeling of Primary Drying Phase

The benefits of modeling in lyophilization are:

- Allows process design;
- Deepens process understanding;
- Failure analysis;
- Accelerated process development;
- Technology transfer and Scale up.

Modeling is, furthermore, a key part of the QbD approach because the definition of
the Design Space requires a multi-parameter optimization that would result in a significant
experimental effort. Physico-chemical models are able to reduce the experimental workload
by model-assisted process design (s. Figure 3). Validated process models are able to assist
process development in combination with a few experiments on a laboratory scale.
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Figure 3. Physico-chemical process model in process development adopted from [39].

Here, a pseudo-stationary model of the heat and mass transfer of the primary drying
phase is used to establish a design space in which the lyophilized product can be considered
safe. An exact derivation can be found in study [24]. In this model, pseudo-stationary
conditions are assumed for the heat and mass transfer. This is reasonable due to the slow
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kinetic of the sublimation process; therefore, all heat supplied from the shelf is used for
sublimation and the heat accumulation in both phases is neglected. Furthermore, the inert
gas is neglected and a mono-dimensional model can describe the heat and mass transfer.

The coupled heat and mass transfer is described by:

Kv·(TS − TP)·Av =
∆Hsubl

RP
(pi − pc)·Ap (1)

where Kv is the heat transfer coefficient, TS is the inlet shelf temperature, TP is the product
temperature on the vial bottom, ∆Hsubl is the sublimation enthalpy, Rp is the dry layer
resistance, pi is the partial vapor pressure on the sublimation interface and pc is the chamber
pressure. The left-hand side of the equation describes the effective heat supplied from the
bottom, while the right-hand side describes the heat used for the sublimation of ice. Since
heat accumulation is neglected, the heat transfer in the frozen layer can be described by:

Kv·(TS − TP) =

(
1

Kv
+

L f rozen

λ f rozen

)−1

(TS − Ti) (2)

where Lfrozen is the length of the frozen area, λ f rozen is the heat conductivity of the frozen
product and Ti is the product temperature on the sublimation interface. The partial vapor
pressure of water on the sublimation interface is calculated with the new sublimation-
pressure equation with the sublimation interface temperature [40].

The vial heat transfer coefficient Kv and the dry layer resistance RP are the model
parameters and need to be determined. Experimental aspects and a discussion of the
different determination methods can be found in literature [41,42].

Kv describes the heat transfer from the shelf into the vial and is described by:

Kv =
∆Q/∆t

Av·
(
TS − Tp

) (3)

∆Q stands for the necessary heat to provide for sublimation and is the product of
sublimed mass and the sublimation enthalpy. ∆t describes the duration of primary drying
of the experiment beginning from the point of pressure drop to experiment completion. Av
is the cross-sectional outside area of the vial. Furthermore, Kv can be split in the different
contributions of the heat transfer.

Kv = kcond + kr + kgc (4)

kcond describes the direct conduction of the shelf to the vial, while kr and kgc quantify
the heat transfer by radiation or gas conduction. The radiative heat transfer is more
dominant in the edge vials.

Therefore, Kv is dependent on the vial type and position, the used freeze dryer and the
process conditions [42]. The chamber pressure in the primary drying has a direct influence
on the product temperature since it alters the heat transfer. An increase in chamber pressure
decreases the driving force of sublimation but the higher heat transfer results in higher
product temperature on the sublimation interface. This in turn increases the vapor pressure
and results in an increase in the driving force. The pressure dependence of Kv can be
described by:

Kv = C1 +
C2·pc

1 + C3·pc
(5)

Different procedures are used to obtain Kv:

- Gravimetric vial sublimation tests [33,42];
- Tunable Diode Laser Adsorption Spectroscopy (TDLAS) [42–44];
- Pressure rise test [45–47].

RP describes the resistance of the dried layer to vapor flow from the sublimation
interface and is defined as:

Rp = Ap·
pi − pc

.
m

(6)
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Ap is the internal cross-sectional area of the vial, pi and pc are the pressure at the
sublimation front and in the chamber, respectively, and

.
m is the sublimation rate. Rp

has a direct influence on the product temperature. A high resistance leads to higher
product temperatures and vice versa. Therefore, products with low RP can be subjected
to aggressive drying cycles. The resistance of the dried phase increases during the freeze-
drying process due to an increase in the dry layer height. This can be described by:

Rp = R1 +
R2·Ldry

1 + R3·Ldry
(7)

The dry layer resistance depends on: the freezing protocol, the formulation, the
manufacturing environment and the freeze dryer. Amorphous substances can also show a
dependence on process conditions if microcollapse occurs.

For the determination of RP, different procedures are available:

- TDLAS [48];
- Pressure rise test [45–47,49];
- Equation using specific surface area [50];
- Model parameter fitting to experimental product temperature profiles [51,52];
- Special weighing device, microbalance [53];
- Gravimetric method by sequential stoppering of the vials.

4. Construction of the Design Space

The Design Space is a multidimensional room that describes the effects of material
and process parameters on the final product [13].

In lyophilization, two constraints are dominant. First, the product temperature must
not exceed the critical temperature of the formulation. For crystalline excipients, it is the
eutectic temperature and for amorphous formulations it is the collapse temperature. An
exceeding of this temperature would result in a loss of structure and cake elegance. This
could lead to a whole batch rejection. Second, the used equipment has maximum capacities
to ensure pressure control. Therefore, the sublimation flux has to be kept under a certain
limit. This limit is related to choked flow, refrigeration capacities and possible transport of
particles. A loss in pressure control must be prevented because it can result in a critical
increase in product temperature.

The product temperature is not set directly but is a result of shelf temperature and
chamber pressure. Therefore, a different set of shelf temperatures and chamber pressures
can result in the same product temperature. The Design Space that can be constructed by the
stationary heat and mass transfer equation describes this interplay. The exact procedure to
build the Design Space is described elsewhere [54]. In Figure 4, an exemplified Design Space
is shown. The product temperature isotherms have a linear dependence on the chamber
pressure while the shelf temperature isotherms are not linear. The critical temperature in
this design space is marked in red. Every combination of shelf temperature and chamber
pressure that results in a product temperature under the critical product temperature line
can be considered safe. Furthermore, the Design Space considers the equipment constraint.
The pressure-dependent line describes the choked flow regime, while the horizontal line
exemplifies the equipment failure if the refrigeration capacity is exceeded or if parts of the
formulation are transported.
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It has to be noted that the Design Space alters during the drying because of the
increase in the dry layer height. Therefore, a process that is considered safe at first can
result in a collapsed product if the process conditions are not adapted. Furthermore, an
intra-batch variance of product temperature profiles is seen in a freeze dryer caused by
higher radiative heat transfer for the edge vials. The difference in product temperatures is
shown in Figure 5.
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Edge vials are the temperature-limiting vials, while center vials define the shortest
drying time. An optimization for edge vials could lead to insufficient drying of center
vials, while an optimization solely for center vials could lead to an exceeding of the critical
temperature in the edge vials. Both modes would cause quality loss. Therefore, in process
development and optimization, both vial classes, edge and center, have to be considered
for an optimal process design. The Design Space further depends on the used equipment,
and with this approach a technology transfer is possible [33,34].
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5. Process Analytical Technology for Lyophilization

A wide variety of PAT approaches are available to measure different properties of the
lyophilization process. They can be classified in different categories, e.g., single vial vs.
batch or invasive vs. non-invasive.

Most commonly, thermocouples or resistance thermal detectors are used to measure
the product temperature of selected vials during the drying process. The measurement is
sensitive to the location of the sensing device, and it has to be kept in mind that the probed
vials dry differently since the invasive probe leads to a lower supercooling. Newer technolo-
gies that measure the product temperature wireless have been presented, e.g., TEMPRIS,
WTMplus. The big advantages are the passive operation of the probes and the usage in
automatic loading systems that allows for a higher flexibility in the positioning [55,56].

The predominant measurement techniques for the chamber pressure are the Pirani
gauge and the capacitance manometer. The Pirani reading is highly dependent on the
gas composition since the gas atmosphere cools a heated wire and the chamber pressure
is obtained from the wire resistance. In contrast, the capacitance manometer measures
the chamber pressure independent of the gas composition. It corresponds the chamber
pressure to the deflection of a membrane and the so resulting voltage. Together, Pirani
and capacitance measurements can be used as comparative pressure measurements to
determine the endpoint of primary drying [56]. At the end of primary drying, the gas
composition shifts from water to nitrogen and the pressure readings are approaching
each other.

Emerging PAT to observe different properties of the lyophilized product and the
progress of drying are:

- TDLAS;
- Mass spectrometry (MS);
- Near-infrared spectroscopy (NIR);
- Raman spectroscopy;
- MTM.

TDLAS allows for the measurement of the gas component by the absorption of electro-
magnetic energy at specific wavelengths [55,56]. In lyophilization, the beam wavelength
is tuned to the water vapor adsorption spectra. It only needs optical access to the duct
for continuous online monitoring of the freeze-drying process, but the duct needs to be of
sufficient length to allow for the measurement. This technology enables the measurement
of gas velocity, water vapor flow and endpoint determination.

The quadrupole MS allows for the identification of residual gas based on the mass
charge ratio. The drying time determined by MS is essentially the same as the Pirani
gauge but the MS can also detect extractables from stoppers, silica oil, leaks and other gas
components [56]. It allows for primary and secondary drying endpoint determination. The
main drawbacks are the high cost, the complex installation since the device is not steam
sterilizable and the device has to be calibrated for every formulation.

NIR and Raman show high potential as inline PAT in the manufacturing of biologics
and can be used in lyophilization [57–63]. Raman and NIR are single vial measurement
methods that allow for the measurement of different critical product and process charac-
teristics. For the Raman measurement, the probe is placed on top of the vial while NIR
probes are placed at the vial bottom. The combination of Raman and NIR enables the
drying endpoint detection. Additionally, Raman and NIR supply valuable data for process
development and optimization [63]. The introduction into manufacturing scale is limited
due to the complex installation.

MTM uses data from the pressure rise test to estimate product temperature at the sub-
limation interface, the dry layer resistance and the vial heat transfer coefficient [46,49,64].
Different algorithms can analyze the pressure rise data. They are exemplified in litera-
ture [65]. The pressure rise experiments are conducted at defined time intervals. The valve
between the drying and condenser chamber is closed and the pressure rise is recorded
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during the test interval. Then, the MTM equation is fitted to the data by an algorithm and
yields the product resistance and the vapor pressure of ice at the sublimation front [55]:

p(t) = pi − (pi − p0)·exp
[
−
(

3.461·N·Ap ·Ts

V·(Rp+Rs)

)
·t
]

+0.465·pi·∆T·
[
1 − 0.811·exp

(
− 0.114

L f rozen
·t
)]

+ X·t
(8)

p(t) describes the increase in chamber pressure during the pressure rise test, p0 is the
chamber pressure before the test, N is the number of dried vials, V is the drying chamber
volume, ∆T is the product temperature difference at the sublimation interface and the
ground and X is a variable for the linear pressure increase.

It has to be kept in mind that the increase in the pressure during the measurement
only rises to the vapor pressure of the coldest vial and that the MTM data are accurate until
2/3 of primary drying because the number of vials still drying alters [46,55]. However, the
pi value can still be used to determine the endpoint of primary drying [55]. During the
pressure rise test, an increase in product temperature is possible, which can lead to the
collapse of the product if the process is near the edge of failure. MTM is a useful tool for
process monitoring and model parameter determination.

6. Materials and Methods
6.1. Product Mixture and Instruments

The 50 g/L mannitol solution was prepared by dissolving d-mannitol (≥98%, Sigma-
Aldrich, St. Louis, MO, USA) in purified water (arium™pro, Sartorius AG, Göttingen,
Germany). A laboratory-scale LC 1200 S (Sartorius AG, Göttingen, Germany) is used to
measure the weights.

6.2. Freeze-Drying Equipment

All freeze-drying experiments were carried out in an Epsilon 2-6D LSCplus pilot freeze
dryer (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany), see
Figure 6a. A total of 2 mL of the product solution was filled into 6R injection vials (Martin
Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) with an eppendorf
Research® plus 0.5–5 mL pipette (Eppendorf AG, Hamburg, Germany). In total, 135 vials
were used and loaded on the middle shelf of the freeze dryer. “Wireless Temperature
Measurement plus” (WTMplus) sensors (Martin Christ Gefriertrocknungsanlagen GmbH,
Osterode am Harz, Germany) measured the product temperature during the whole freeze-
drying process, see Figure 6b. The sensors were placed centrally on the vial bottom and the
LPCplus process visualization software (Martin Christ Gefriertrocknungsanlagen GmbH,
Osterode am Harz, Germany) recorded the data.

6.3. Experimental Runs

The freeze-drying cycle of the product mixture was adopted from literature [66]. At
first, the shelf temperature was lowered to −45 ◦C at a temperature ramp of 0.2 ◦C/min
and afterwards this temperature was held for 6 h. Next, the drying steps were executed.
The shelf temperature and the chamber pressure for the primary drying phase vary as
depicted in the Design of Experiments (DoE) (Table 2). The forwarding condition was
implemented with comparative pressure measurement and set to 15%. The temperature
ramp to increase the shelf temperature is 1 ◦C/min. The chamber pressure has been varied
between 20% and 90% of ice pressure at the lowest shelf temperature in order to evaluate a
system with high and low driving force and the shelf temperature has been chosen inside a
range suitable for the drying of mannitol without collapse.
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Table 2. Experimental design of experiments.

#
Primary Drying

Shelf Temperature (◦C) Chamber Pressure (mbar)

1 +− −15 0.133
2 ++ −15 0.57
3 −− −25 0.133
4 +− −15 0.133
5 ++ −15 0.57
6 −− −25 0.133
7 −+ −25 0.57
8 −+ −25 0.57
9 CP −20 0.352
10 CP −20 0.352
11 CP −20 0.352

6.4. Software

The DoE was generated by JMP (JMP Inc., SAS Institute, Cary, NC, USA). During
freeze-drying, all data are collected by LPCplus and the MTM data were analyzed by MTM-
plus Analyse (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany).

6.5. Overall Vial Heat Transfer Coefficient

In this study, KV is determined by the gravimetric method. This procedure is more
labour intensive but results in individual values for KV and has been used in different
studies before. The 6R vials were filled with 2 mL water and loaded onto the shelf. A
selection of vials are weighed before the freeze-drying procedure is started. For scheduling
ease, the vials have been frozen overnight and then primary drying began. The shelf
temperature and chamber pressure of the primary drying phase are the same as in the
DoE depicted above. Primary drying is aborted as soon as the first measured product
temperature reaches the shelf temperature within 1 ◦C difference. The vacuum is broken
and the vials are unloaded and then weighed again after thawing. The product temperature
of the closest probed vial is taken as the product temperature of the weighed vial. The
necessary temperature data are collected by LPCplus.
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6.6. Dry Layer Resistance

Different procedures can be used to determine the product resistance. In this study,
the value is determined by MTM. During primary drying, the valve in the connecting duct
is closed and the pressure rise data inside the drying chamber is collected. An optimized
periodic MTM is used. The time interval is 10 min and the measurement duration can
be up to 30 s depending on the pressure rise. If no significant increase in pressure rise is
detected for 3 s, the MTM is finished and the valve opens. The MTM equation is fitted to the
pressure rise data by a Levenberg–Marquardt algorithm implemented into the MTMplus
Analyse software. During MTM, the increase in chamber pressure leads to an increased
heat transfer and could possibly damage the product. The optimized measurement has
the advantage that the temperature increase in the product is low. The MTM duration is
only kept to the length required to reach equilibrium vapor pressure; thus, the product is
exposed to the increased heat transfer for a shorter time compared to the classical method
where the duration is a fixed time.

7. Results

First, the results of the model parameter determination concept are shown. Therefore,
the same primary drying setpoints are used as depicted in Table 2. The experiments have
been conducted twice. The model parameter determination concept is summarized in
Figure 7. During the experiments, the pressure has always been controllable; therefore, no
ice slab testing has been used. The eutectic temperature of mannitol has been identified to
be around −1.5 ◦C [66].
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Figure 7. Model parameter determination concept.

7.1. Vial Heat Transfer Coefficient

The vial heat transfer coefficient has been determined by ice sublimation tests. A
selection of edge and center vials have been used to quantify the impact of the vial position
on the vial heat transfer coefficient. For ease of presentation, the vials are grouped into
edge and center vials. The heat transfer coefficient of each vial has been determined and
the results are shown in Figure A1. Positions and category of the weighed vials and the
WTMplus sensors are shown in Figure 8b. The resulting vial heat transfer coefficients
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are shown in Figure 8a. The error is shown as the standard deviation of the heat transfer
coefficient of the vials in the group.
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In all experiments, the edge vials showed a significantly higher heat transfer coefficient.
They receive a higher energy input during primary drying because of an increased radiative
contribution, the so-called edge effect. The center vials show a more uniform coefficient.
Here, the heat input is mainly caused by conduction from the shelf. An increase in chamber
pressure leads to an increased heat transfer coefficient regardless of the vial position caused
by an improved gas. An increase in shelf temperature leads to a decrease in the edge effect.
The edge vials still show a higher heat transfer coefficient, but the deviation is decreased.
Inside the investigated shelf temperatures, no significant increase in vial heat transfer
coefficient in the center vials is seen.

7.2. Dry Layer Resistance

The dry layer resistance is determined by MTM. This measurement is able to calculate
the dry layer resistance of the coldest vial. The parameters of Equation (7) are determined
by the minimization of the sum of square errors. The parameters are summarized in
Table 3.

Table 3. Parameters of dry layer resistance.

Parameter Value

R1 (m/s) 50,555.24 ± 5895.69
R2 (1/s) 2.06 × 107 ± 1.14 × 107

R3 (1/m) 147.41 ± 214.03

The dry layer resistance showed no dependence on the process parameter of the
primary drying phase.

7.3. Endpoint Determination

The endpoint of primary drying is a critical process parameter. If the secondary drying
started too early, the loss of elegance of the freeze-dried cake can be the result. An increase
in the primary drying time above the endpoint of the slowest vial does not cause product
loss, but it unnecessarily lengthens the process duration. Therefore, the detection of the
primary drying endpoint is necessary to ensure product safety, while maintaining the
highest productivity and efficiency of the process.
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In this study, the endpoint of primary drying is detected by different PATs (sum-
marized in Table 4). The WTMplus sensors can determine the primary drying endpoint
for individual vials but the invasive nature of the sensor reduces the representativity for
similar vials. MTM and comparative pressure detect the endpoint of the slowest-drying
vials. The proposed modeling approach is able to close the gap between this PAT because
it can predict the endpoint of primary drying for each vial given that the model parameters
are distinctly determined.

Table 4. Endpoint determination for different PATs.

PAT Endpoint Determination

MTM Partial pressure of ice equals chamber pressure [56,64]
Comparative pressure Onset of capacitance manometer [33,67]
WTMplus Sharp increase in product temperature [56]
Model Complete sublimation of water

In this chapter, the experimental error is calculated by reproducibility for 95% security,
while the simulation error has been evaluated by 100 Monte-Carlo-Simulations, where the
model parameters have been randomly varied.

First, the batch methods MTM and comparative pressure measurement are compared.
Both PATs are non-invasive and able to determine the primary drying endpoint of the
slowest-drying vial. The comparison for the different experiments is shown in Figure 9.
The MTM criteria is shown together with the comparative pressure measurement in a parity
plot. The onset of comparative pressure measurement is in good agreement with the MTM
endpoint. Both measurements show the fastest primary drying in the experiment with the
high shelf temperature and chamber pressure. MTM detects the endpoint at 17.45 h and
comparative pressure at 17.75 h. A low shelf temperature and chamber pressure result in
the slowest drying. Here, the endpoint lays at 33.55 h for both measurement techniques.
The MTM endpoint for the experiment with the low shelf temperature and high chamber
pressure could not be detected since the pressure increase has been too low. This setpoint
has been the most inefficient with a primary drying time of 43.8 h.
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Figure 9. Comparison of primary drying endpoint of MTM and comparative pressure measurement
onset (red: +−, yellow: ++, blue: CP, green: −−).

Furthermore, the applied forwarding condition lays between the onset and midset
of comparative pressure measurement (s. Figure A2). The implementation of the for-
warding condition alone reduced the primary drying time compared to the original freeze
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drying recipe (experiment−−) by around 30% from 48 to 34 h. All experiments yielded
elegant cakes without detectable collapse or shrinkage. That concludes that the forwarding
condition establishes a safe window for primary drying.

In Figure 10, the experimental primary drying endpoint is compared with the sim-
ulated endpoint. Since Vial 2.9 is an edge vial, the simulated endpoint is compared to
the experimental endpoint determined by the nearest WTMplus sensor. The simulated
results show good agreement with the experiments. The experiment with the high shelf
temperature and low chamber pressure led to the shortest primary drying duration of
12.9 h in the experiments and 12.99 h in the simulation, while the experiment with the
low shelf temperature and chamber pressure showed the slowest primary drying with
19 h in the experiments and 19.12 h in the simulations. An increase in shelf temperature
leads to a higher energy input for sublimation; therefore, the sublimation flux increases
and the necessary primary drying time decreases. A further improvement of the heat
transfer by a rise in chamber pressure leads to slower primary drying based on the decrease
in driving force. Here, the increase in heat transfer by improved gas conduction is not
able to overcome the decreased pressure difference between the sublimation front and the
chamber pressure.
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Figure 10. (a) Parity plot between the simulated and experimental primary drying endpoints for vial 2.9 (red: +−, yellow:
++, blue: CP, green: −−). (b) Vial position.

Figure 11 shows the simulated and experimental primary drying endpoints for vial
12.9. The closest WTMplus sensor has determined the experimental drying endpoint.
Compared to vial 2.9, vial 12.6 finishes drying later. This difference is caused by the edge
effect. Vial 2.9 receives a higher radiative heat transfer compared to vial 12.6 and therefore
dries faster.

The simulated and experimental drying endpoints for vial 12.6 show good agreement.
The fastest drying process is seen in the experiment with the high shelf temperature and
low pressure. Here, the experimental endpoint lays at 16.95 h and the simulation endpoint
at 16.33 h, while the experiments with the low shelf temperature and chamber pressure
showed the longest durations, with 33.1 and 27.1 h, respectively.
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Figure 11. (a) Parity plot between the simulated and experimental primary drying endpoints for vial 12.6 (red: +−, yellow:
++, blue: CP, green: −−). (b) Vial position.

The design space model is able to calculate the primary drying endpoint of each
vial once the model parameters are determined. MTM is able to determine the dry layer
resistance of the lyophilized cake. Together with known product and shelf temperature, the
vial heat transfer coefficient can be determined. MTM determines the slowest-drying vial;
therefore, the simulated endpoints are compared to the comparative pressure onset results
(s. Figure 12). The experimental and simulated drying endpoint are in good agreement.
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Figure 12. Parity plot between the simulated and experimental primary drying endpoints for the
slowest-drying vial (red: +−, yellow: ++, blue: CP, green: −−).

The highest deviation can be detected in the experiment with the high shelf temper-
ature and chamber pressure. In this experiment, the difference between the pressure on
the sublimation front and the chamber pressure is smaller and leads to a smaller pressure
rise during MTM. Therefore, the deviations in the fitted values are higher and the vial heat
transfer is underestimated. MTM-determined values for the vial heat transfer are more
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precisely determined in experiments with the high shelf temperature and low chamber
pressure. Here, the sublimation rate is high, and the high driving force leads to a more
significant pressure increase. This results in a more precise determination of the model
parameter. The simulated drying endpoint for the setpoint with the high shelf temperature
and low chamber pressure is 18.9 h, while the experimentally determined endpoint is
20.75 h.

Lastly, pareto plots are used to determine the significant process parameter. The
fractional factoriell DoE allows for the consideration of interactions. The plots are shown
in Figure 13. In the experiment and simulation, the shelf temperature and the interaction
between shelf temperature and chamber pressure are significant. An increase in shelf
temperature shortens the primary drying endpoint because it provides the necessary heat
for sublimation. The heat transfer can additionally be improved by a rise in chamber
pressure. The interaction between shelf temperature and chamber pressure is significant
and can decrease the drying duration.
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In the experiments, the chamber pressure shows no significance while in the simulation
it is significant. This is due to the fact that the dry layer resistance for the experiment with
the low shelf temperature and high chamber pressure could not be determined because
of a low pressure increase. These experiments are considered in the experimental pareto
chart. Simulation and experiments show similar significant process parameters. The
increased shelf temperature provides the necessary energy for sublimation, while the
chamber pressure provides the necessary driving force for sublimation.
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8. Discussion and Conclusions

This paper proposes a distinct method for the endpoint determination by different PAT
and a modeling approach. This is the first step towards offline process optimization and
can be further developed for online process control. Mannitol has been used as an excipient
because it is a widely used bulking agent to create elegant cakes. A design space model
has been developed. Necessary model parameters have been determined. Ice sublimation
tests have been used to determine the vial heat transfer coefficient and MTM to determine
the dry layer height. The vial heat transfer depends on the chamber pressure and the edge
vials show a stronger dependence on the shelf temperature. The dry layer height showed
no dependence on the process conditions of the primary drying.

The endpoint of primary drying is a CPP. The primary drying step has to be optimized
in order to gain the highest productivity while maintaining product safety. Different PAT
can be used for endpoint determination. In this study, WTMplus sensors, comparative
pressure measurement and MTM have been used. WTMplus sensors are able to determine
the endpoint for individual vials while MTM and the comparative pressure measurement
determine the endpoint of the whole batch. An experimental fractional factorial DoE has
been used for experiments.

At first, MTM was compared to the comparative pressure measurement. The MTM
endpoint is in good agreement with the comparative pressure measurement endpoint
and is therefore capable of reliably determining the endpoint. MTM has been shown to
be a useful tool for endpoint and model parameter determination, but it has to be kept
in mind that the pressure increase during the measurement could lead to collapse. In
our experiments, the optimized MTM algorithm reduces the measurement time and no
significant increase in product temperature could be detected.

To validate the endpoint results of the model, simulated results have been compared to
experimental WTM. The simulated endpoints are in good agreement with the experiments.
The design space model is able to predict the drying endpoint for different vial positions
with good precision and accuracy.

Therefore, the modeling approach is able to calculate the primary drying endpoint
of the vials depending on the position. It closes the gap between the batch methods that
are able to determine the slowest-drying vial and the individual temperature sensors that
determine individual drying endpoints but lead to deviations because of their invasive
nature. It can be used for process development to optimize the freeze drying cycle in early
process development and to further on reduce the experimental workload to determine the
design space.

The presented, data-driven approach for endpoint determination has been shown to
be successful. A deeper understanding of the interaction of critical process parameters in
primary drying was gained. This approach will be tested for amorphous substances and
should further on be used for on- and offline endpoint determination and freeze-drying
recipe development and optimization.
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Symbols and Abbreviations

Latin symbols
Ap Inner-cross sectional area m2

Av Outer-cross sectional area m2

Hsubl Sublimationenthalpy J/kg
Kv Vial heat transfer coefficient J/(m2·K·s)
L Length m
N Number of vials -
p Pressure Pa
Q Heat J
Rp Dry layer resistance m/s
T Temperature K
t Time s
X Variable for linear pressure increase Pa/s
Greek symbols
∆ Difference -
λ Heat conductivity W/m/K
Indices
0 Value at measurement start
c Chamber
dry Dry layer
frozen Frozen layer
i Sublimation interface
p Product
s Shelf
Abbrevations
CPP Critical Process Parameter
CQA Critical Quality Attributes
DoE Design of Experiments
FDA US Food and Drug Administration
FMEA Failure Mode Effect Analysis
MS Mass spectrometry
MTM Manometric temperature measurement
NIR Near-infrared spectroscopy
PAT Process Analytical Technology
QbD Quality by Design
TDLAS Tunable Diode Laser Adsorption Spectroscopy
WTMplus Wireless Temperature Measurment plus

Appendix A
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