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Abstract: This paper proposes a neural network-based process fault diagnosis system with Andrews
plot for information pre-processing to enhance the performance of online process fault diagnosis.
By using features extracted from Andrews plot as the inputs to a neural network, as a classifier, the
diagnosis speed and reliability are improved. A method for determining the important features in
the Andrews function is proposed. The proposed fault diagnosis system is applied to a simulated
continuous stirred tank reactor process and is compared with two conventional neural network-based
fault diagnosis systems: scheme B where the monitored measurements are directly fed to a neural
network after scaling and scheme C where the monitored measurements are converted to qualitative
trend data before feeding to a neural network. Of all the considered faults, the proposed fault
diagnosis system diagnosed the abrupt faults on average 5.45 s and 2.66 s earlier than schemes B
and C, respectively and diagnosed the incipient faults on average 13.82 s and 5.09 s earlier than
schemes B and C, respectively. The results reveal that Andrews plot method utilized in online process
monitoring has a great potential in industrial process monitoring.

Keywords: fault diagnosis; neural networks; Andrews plot

1. Introduction

The breakthroughs and advances in industrial technology have made modern in-
dustrial production processes more automatic and productive with complex operational
functionalities. These improvements have enhanced the product quality and expanded
the production scale during the past decades. The associated risk of potential failures of
various components increases with the complexity and functionality of modern industrial
processes. Any faults hidden in insignificance could potentially lead to colossal damages if
they remain undetected. Faults are hard to be completely eliminated in chemical industry.
Undetected faults in an industrial production process could be accompanied by large
hidden risks, which will cause distressingly serious consequences and the subsequent
indirect impacts. Degradation in product quality, as a quintessentially consequence, can
ruin the brand reputation and corporate identity. Particularly to small-and-medium-sized
enterprises, this perhaps can lead to capital chain rupture and disrupt the development of
the enterprise. Environmental contamination is also a typical effect of chemical process
accidents. Authoritativeness of local authorities may be challenged due to the duty of
environmental conservation and enterprises may also risk heavy penalties. Disastrous con-
sequences, such as casualties, usually bring inestimable lost, which should be completely
avoided. Generally, with the advancement of industrial technology, the improvement of
social environmental awareness and the increased demand for high-quality products, the
importance of industrial process monitoring is becoming increasingly important. This
paper aims to propose a novel fault diagnosis system to achieve a positive promotion in
industrial process monitoring.

The various proposed fault detection and diagnosis approaches can broadly be classi-
fied into the following three main approaches: model-based approaches, knowledge-based
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approaches and data analysis-based approaches [1–4]. Currently, big data analytics and ma-
chine learning are popularly used in developing new fault diagnosis techniques. Previous
works give plenty of diagnosis strategies based on multivariate statistical data analysis [5,6].
Qin [7] gave a detailed survey on data-driven industrial process monitoring and diagno-
sis using multivariate statistical data analysis techniques. Ge [8] reviewed data-driven
modelling and monitoring techniques for plant-wide industrial processes. Wang et al. [9] re-
viewed theoretical research and engineering applications of multivariate statistical process
monitoring algorithms for the period 2008–2017. Multitudinous positive research works
evidenced that various neural networks, as an excellent classifier, can provide helpful fault
diagnosis results in online process monitoring. Zhang and Morris [10] presented a fuzzy
neural network for on-line process fault diagnosis where the on-line measurements are
converted into fuzzy sets in the fuzzification layer of the fuzzy neural network. Zhang [11]
presented using multiple neural networks to improve the fault diagnosis performance
and different approaches for aggregating multiple neural networks were investigated.
Jiang et al. [12] presented using deep learning for the fault diagnosis of rotating machinery.
Li et al. [13] presented an approach for nonlinear industrial process fault diagnosis using
autoencoder embedded dictionary learning. Li et al. [14] integrated wavelet transform with
convolutional neural network for the monitoring of a large-scale fluorochemical process.
The advantage of using neural networks is that the multiple independent and dependent
variables can be handled synchronously by the neural network, without the need of deep
knowledge on the process such as mechanistic models [15,16]. Process modelling and fault
diagnosis using the latest development of neural networks, such as the gated recurrent
neural network [17], deep belief networks [18] and autoencoder gated recurrent neural
network [19], have also been reported recently.

Hybrid diagnosis strategy combining neural network with multivariate statistical
analysis techniques also has positive impacts on process industries [20]. Wen and Xu [21]
integrated ReliefF, principal component analysis and deep neural network for the fault
diagnosis of a wind turbine. Shang et al. [22] presented using slow feature analysis for soft
sensor development from process operation data. Yu and Zhang [23] presented a manifold
regularized stacked autoencoder-based feature learning approach for industrial process fault
diagnosis. Chen et al. [24] presented using one-dimensional convolutional auto-encoder
based feature learning for the fault diagnosis of multivariate processes. Bao et al. [25]
presented a combined deep learning approach for chemical process fault diagnosis.

A neural network-based fault diagnosis system is typically constituted by two sub-
systems. The first is a data pre-processing system to extract relevant features from online
monitoring measurements, via mathematical approaches, mainly the multivariate statistical
data analysis techniques. Another is a process state analysis system to obtain the diagnosis
results via a classifier, generally a neural network, to handle the multi-dimensional data.
Using extracted features as the neural network inputs would help the neural network in
classifying the various faults than directly using the monitored process measurements as
the neural network inputs. This paper intends to explore the effectiveness of Andrews plot
in extracting effective features for enhanced on-line process fault diagnosis.

The proposed data-driven intelligent fault diagnosis strategy in this paper is based on
a neural network as the classifier and integrates Andrews plot to preliminarily process the
monitoring information with the purpose of accelerating the diagnosis speed and enhancing
the reliability of fault diagnosis. Andrews plot is a very useful visualization method for
analyzing multivariate data. It has been applied to many areas including analyzing data
from the 2001 Parliamentary General Election in the United Kingdom [26,27]. Its unique
advantage includes the convenience in setting the dimension of the extracted feature
space. Andrews plot is efficient in dealing with the issues with large number of correlated
variables. A difficulty with Andrews plot is that the proper selection of the number of
features. Nevertheless, Andrews plot has a great potential for improving fault detection
and diagnosis performance through extracting useful features from the original monitored
process measurements. This paper presents a method for determining the important
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features in Andrews function which give good separations between classes. The proposed
fault diagnosis method is applied to a simulated continuous stirred tank reactor (CSTR)
system. In order to demonstrate its superiority, it is compared with two traditional neural
network-based diagnosis schemes.

The paper is organized as follows. Section 2 presents the proposed diagnosis system
and details of parameter selection. Section 3 introduces the case study, a CSTR system
and two traditional neural network-based fault diagnosis schemes. Section 4 presents the
comparison of diagnosis performance. The determination of important features is also
demonstrated. Section 5 concludes the paper.

2. The Proposed Fault Diagnosis System
2.1. Andrews Plot

Andrews plot is a visualization method for high-dimensional data originally proposed
by the statistician David F. Andrews [28]. In this method, each sample of an a-dimensional
data set, X = (x1, x2, x3, · · · , xa), is mapped into a curve using the following function:

fx(t) =
x1√

2
+ x2 sin(t) + x3 cos(t) + x4 sin(2t) + · · · ; (1)

where t is in the range [−π, π]. Through the above function, each data sample is converted
into a curve in the interval [−π, π]. In addition to the above function, Andrews [28] also
suggested other functions as the following to be used in the curves.

fx(t) = x1 sin(n1t) + x2 cos(n2t) + x3 sin(n3t) + · · · ; (2)

fx(t) = x1 sin(2t) + x2 cos(2t) + x3 sin(4t) + · · · ; (3)

where ni are different integers and t is in the range [−π, π].
In prior works, several variations to the functions of Andrews plot were proposed by

some researchers such as the following functions suggested in [27,29,30], respectively:

fx(t) = x1 sin(t) + x2 cos(t) + x3 sin(2t) + · · · ; (4)

fx(t) = x1 sin(ω1t) + x2 cos(ω2t) + x3 sin(ω3t) + · · · ; (5)

fx(t) = 1√
2
{x1 + x2(sin(t) + cos(t)) + x3(sin(t)− cos(t))

+x4(sin(2t) + cos(2t)) + · · · };
(6)

where t is in the range [−π, π] and the values of ωi are mutually irrational and scaled
between 0.5 and 1.

Utilizing the Andrews function to process information, the dimension of data can
be changed to an appropriate dimension, by selecting a number of features in Andrews
function, i.e., the number of t-values. In chemical process monitoring applications, multi-
variable measurements are converted into an information-containing feature matrix via an
Andrews function with a certain number of t-values.

2.2. The Proposed Fault Diagnosis System

In this paper, the proposed fault diagnosis system (referred to as scheme A) includes
two subsystems: data pre-processing subsystem and process state analysis subsystem. In
the data pre-processing subsystem, Andrews function is used to pre-process the online
measurements. The processed features are fed into process state analysis system, which
is a neural network-based classifier. Figure 1 shows the framework of the proposed fault
diagnosis system. Through the data pre-processing system, features are extracted from the
online monitoring information. The dimension of the extracted features is given by the
numbers of t-values in the Andrew function. The system uses the principal components
instead of the original variables to eliminate the effects of variable ordering in the Andrew
function. Then Andrews function given by Equation (1) with the selected t-values is used
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to obtain the information-containing feature dataset. Finally, the pre-processed features are
used to train a neural network as a fault classifier.
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Figure 1. Framework of the proposed fault diagnosis system.

The reason of using principal components in place of the original variables is as
follows. Previous studies have shown that the multi-variable information processed by
Andrews curve is highly sensitive to the ordering of variables in the data set, which can
result in uncertainties [31,32]. In order to subside the effect of variable ordering on the
outputs of Andrews function, principal components of the original data set are used as
the inputs to Andrews function instead of the original variables [31,32]. An example to
illustrate the effect of variable ordering will be given in Section 3.

Figure 2 shows the procedure of Andrews function processing of the original data. In
the proposed diagnosis scheme, an a-dimensional process data set, X = (x1, x2, x3, · · · , xa),
is first scaled to zero mean and unit variance and then principal component analysis (PCA)
is applied to the scaled data. All the principal components are used as the inputs to
Andrews function with n t-values. A method for selection of the t-values (features) will be
discussed later in this section. After Andrews function pre-processing, the dimension of
the data is changed to n, which is the number of t-values used.

Figure 3 shows an example of Andrews plot using Equation (1) with 63 values of t
uniformly distributed in the range [−π, π]. In Figure 3, the red solid curves represent the
normal data, the blue dashed curves represent the data with fault No. 3 and the black
dotted curves represent the data with fault No. 5. Figure 3 contains 50 samples from
each class and each sample is shown as a curve calculated using Equation (1). Noted
that in practice the appropriate number of t-values should properly selected. Here the
63 t-values are just used for clear visualization to observe the separations. It can be seen
from Figure 3 that the monitoring information pre-processed by Andrews function can
have more separations between normal data and fault data in certain values of t. This can
ease the classification task leading to improved fault diagnosis performance.



Processes 2021, 9, 1659 5 of 17

Processes 2021, 9, x FOR PEER REVIEW 5 of 18 
 

 

3 that the monitoring information pre-processed by Andrews function can have more sep-

arations between normal data and fault data in certain values of t. This can ease the clas-

sification task leading to improved fault diagnosis performance.  

 

Figure 2. Data processing using Andrews function. 

 

Figure 3. Andrews plot on a set of data from the CSTR system. 

It can be seen from Figure 3 that some values of t give better separations among the 

classes than other values. A method for determining the t-values is proposed in this paper 

as follows. First, using the Andrews function to process the data with a relatively large 

number (e.g., 100) of t-values, which are uniformly distributed in the range [–π, π]. Note 

here 100 is considered as sufficiently large number of t-values. Second, averaging the re-

sulting Andrew function values at each t-value for each category (i.e., normal, fault No. 1, 

fault No. 2, …). Third, calculate the minimal distance among these Andrew function val-

ues at each t-value. Finally, select the first a few t-values with large minimal distance val-

ues, which indicate good separations among the classes. 

  

Figure 2. Data processing using Andrews function.

Processes 2021, 9, x FOR PEER REVIEW 5 of 18 
 

 

3 that the monitoring information pre-processed by Andrews function can have more sep-

arations between normal data and fault data in certain values of t. This can ease the clas-

sification task leading to improved fault diagnosis performance.  

 

Figure 2. Data processing using Andrews function. 

 

Figure 3. Andrews plot on a set of data from the CSTR system. 

It can be seen from Figure 3 that some values of t give better separations among the 

classes than other values. A method for determining the t-values is proposed in this paper 

as follows. First, using the Andrews function to process the data with a relatively large 

number (e.g., 100) of t-values, which are uniformly distributed in the range [–π, π]. Note 

here 100 is considered as sufficiently large number of t-values. Second, averaging the re-

sulting Andrew function values at each t-value for each category (i.e., normal, fault No. 1, 

fault No. 2, …). Third, calculate the minimal distance among these Andrew function val-

ues at each t-value. Finally, select the first a few t-values with large minimal distance val-

ues, which indicate good separations among the classes. 

  

Figure 3. Andrews plot on a set of data from the CSTR system.

It can be seen from Figure 3 that some values of t give better separations among the
classes than other values. A method for determining the t-values is proposed in this paper
as follows. First, using the Andrews function to process the data with a relatively large
number (e.g., 100) of t-values, which are uniformly distributed in the range [−π, π]. Note
here 100 is considered as sufficiently large number of t-values. Second, averaging the
resulting Andrew function values at each t-value for each category (i.e., normal, fault No. 1,
fault No. 2, . . . ). Third, calculate the minimal distance among these Andrew function
values at each t-value. Finally, select the first a few t-values with large minimal distance
values, which indicate good separations among the classes.

3. A CSTR System
3.1. A Simulated Continuous Stirred Tank Reactor System

In order to demonstrate the advantages of the proposed fault diagnosis strategy, a
simulated CSTR system, which is taken from [33], is used to demonstrate and compare
diagnosis performance. Figure 4 shows the diagram of the CSTR system. An irreversible
heterogeneous catalytic exothermic reaction takes place in the CSTR. The product concen-
tration is indirectly maintained at a desired level by controlling temperature, residence
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time and mixing conditions in the CSTR. Part of the reactor outlet stream is recycled to
the reactor through a heat exchanger to provide temperature control by manipulating the
flow rate of the cold water fed to the heat exchanger via a cascade control system. The
residence time is controlled through the reactor level controller and the mixing condition is
controlled by maintaining the recycle flow rate. Constant physical properties and constant
boundary pressures of all input and output streams are assumed. Perfect mixing in the
reactor is assumed. Under these assumptions, a mechanistic model is developed from mass
balance and energy balance and is used to simulate the process.
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Figure 4. A CSTR system with recycle.

The simulated process measurements are generated under the normal condition
and various abnormal conditions with typical measurement noise. The simulated online
measurements are composed of 10 online measured process variables and 3 controller
outputs. The sampling time of controllers is 4 s. Table 1 shows the 11 considered faults
which are typical faults in industrial processes [33]. Table 2 shows the measurement
noise ranges.

Table 1. List of faults.

Fault No. Fault Descriptions

1 Blockage of pipe 1
2 External feed-reactant flow rate too high
3 Blockage of pipe 2 or 3 or pump fails
4 Blockage of pipe 10 or 11 or control valve 1 fails low
5 External feed-reactant temperature abnormal
6 Control valve 2 stuck high
7 Blockage of pipe 7, 8 or 9 or control valve 2 stuck low
8 Control valve 1 stuck high
9 Blockage of pipe 4, 5 or 6 or control valve 3 stuck low

10 Control valve 3 stuck high
11 External feed-reactant concentration too low

An example is given here to illustrate how the feature extraction is affected by variable
ordering. Figure 5 shows Andrews plots using data under Fault No. 7 with three different
process variable ordering. The 13 online information sources, [x1, x2, . . . , x13], represent
the 10 measured variables in the simulated CSTR system, which are temperature of input
reactant, temperature in reactor, tank level, flow rate of input reactant, flow rate of recycled
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reactant, flow rates of product, flow rates of cold-water entering the heat exchanger,
concentration of product in the reactor, concentration of the reactant in the input stream,
pressure of liquid leaving the pump and 3 controller outputs.

Table 2. Measurement noise.

Measurements Noise Range

Flow −1~1 cm3/s
Temperature −0.25~0.25 ◦C

Level −0.1~0.1 cm
Concentration −0.5%~0.5%
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Variable ordering No. 1 is [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13], vari-
able ordering No. 2 is [x1, x2, x3, x11, x8, x9, x10, x4, x5, x6, x7, x12, x13] and variable
ordering No. 3 is [x1, x2, x12, x13, x9, x10, x11, x3, x4, x5, x6, x7, x8]. The left column of
Figure 5 shows the results using the principal components instead of the scaled original
monitoring information and the right column shows the results using the scaled origi-
nal monitoring information. Note that the original monitoring information is scaled to
zero mean and unit variance before applying PCA and Andrews function. The top plots
(red curves) represent variable ordering No. 1, the middle plots (blue curves) represent
variable ordering No. 2, and the bottom plots (black curves) represent variable ordering
No. 3. The curves are produced using 100 t-values uniformly distributed in the range
[−π, π] and 50 samples of the original data. From Figure 5, it can be seen that Andrews
plots from the original measurements can give different results for different variable order-
ings. However, Andrews plots from the principal components can obviously eliminate the
impacts of variable ordering. Note that the principal components are always arranged in
the order of the data variance that they explained.

3.2. Baseline Fault Diagnosis Scheme in CSTR System

In this paper, a conventional neural network-based fault diagnosis system is developed
as a comparative study. In this baseline diagnosis scheme (referred to as scheme B), the
original measurements are scaled and then directly fed into a neural network. To generate
the data used for neural network training and testing, normal operation data and faulty
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operation data for each fault in the form of abrupt fault are generated from simulation.
Table 3 gives the variable values corresponding to the 11 faults. These values are utilized
in the simulated CSTR system to generate the considered fault dataset for neural network
training. Figure 6 shows the baseline scheme. The scaling equation in this case is given by
the following:

Xi,p =
Xi − Xi,normal

Xstd
(7)

where Xi is the actual value, Xi,p is pre-processed values for the ith on-line measurement,
Xi,normal is the mean value of normal data and Xstd is the standard deviation of normal data.

Table 3. Process parameter values for building the neural network models.

Fault No. Related Variable Relative Magnitudes

1 Flow rate of the input reactant 6.67%
2 Flow rate of the input reactant 6.67%
3 Pressure increase caused by pump 60%
4 Fractional opening of valve 1 77.78%
5 Temperature of input reactant 20%
6 Fractional opening of valve 2 54.54%
7 Fractional opening of valve 2 90.91%
8 Fractional opening of valve 1 11.11%
9 Fractional opening of valve 3 75%

10 Fractional opening of valve 3 25%
11 Concentration of the reactant in the input stream 50%
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In addition to this baseline scheme, another scheme (referred to as scheme C) is
also used to compare with the proposed scheme. In scheme C, the monitored process
information (xi) is converted into qualitative trend values (xi,p): increase (1), steady (0) and
decrease (−1) as follows:

xi,p =


1, xi − xi > 3σi

−1, xi − xi < −3σi

0, otherwise

(8)

where σi is the standard deviation of the ith measurement under a normal operating condition.

3.3. Abrupt Faults and Incipient Faults in the CSTR System

In this paper, both abrupt faults and incipient faults are considered. An abrupt fault
means that the process parameter related to the fault varies suddenly when the fault
occurs. An abrupt fault is simulated as a step change in the associated process parameter.
An incipient fault means that the fault magnitude is gradually growing. At the early
stage of an incipient fault, its effect is hidden in trifle and then it will cumulate sufficient
damages if it remains undetected. The growth of an incipient fault can be described by the
following equation:

M f (t) = Mn(1 + γt) (9)
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where Mn is the normal value of a process parameter, M f (t) represents the faulty value of
the same process parameter at time t, γ is the fault developing speed of an incipient fault
and t is the time from the initiation of the incipient fault. The above equation can be used
to represent common incipient faults in industrial processes [33].

In this study, three groups of abrupt faults and three groups of incipient faults under
different fault conditions were generated as unseen validation data for evaluating the
developed fault diagnosis systems. Table 4 gives three groups of relative fault magnitudes
(Mag. 1, Mag. 2 and Mag. 3) corresponding to the 11 abrupt faults. Table 5 gives three
groups of fault developing speeds (γ1, γ2 and γ3) corresponding to the 11 incipient faults.

Table 4. Relative magnitudes in abrupt faults.

Fault No. Mag. 1 Mag. 2 Mag. 3

1 1.67% 2.33% 3.33%
2 1.67% 2.00% 2.33%
3 6.50% 7.50% 10.00%
4 4.56% 6.78% 11.22%
5 9.09% 14.29% 19.49%
6 38.73% 49.83% 66.48%
7 16.76% 27.86% 33.41%
8 2.10% 3.65% 4.32%
9 2.46% 4.97% 7.47%
10 2.54% 3.79% 5.03%
11 6.25% 8.75% 12.50%

Table 5. Fault developing speeds in incipient faults.

Fault No. γ1 (s−1) γ2 (s−1) γ3 (s−1)

1 −6.67× 10−5 −1.67× 10−4 −3.67× 10−4

2 6.67× 10−5 1.67× 10−4 3.67× 10−4

3 −1.29× 10−4 −6.29× 10−4 −9.29× 10−4

4 −1.67× 10−4 −3.67× 10−4 −6.67× 10−4

5 1.12× 10−4 5.12× 10−4 9.12× 10−4

6 6.67× 10−4 1.67× 10−3 3.67× 10−3

7 −3.12× 10−4 −1.12× 10−3 −3.12× 10−3

8 7.13× 10−5 1.13× 10−4 6.13× 10−4

9 −1.23× 10−4 −5.23× 10−4 −9.23× 10−4

10 6.71× 10−5 1.71× 10−4 6.71× 10−4

11 −6.67× 10−5 −6.67× 10−4 −1.67× 10−4

4. Results
4.1. Fault Diagnosis System Development

The performance of the proposed diagnosis scheme A is compared with the conven-
tional schemes B and C under abrupt faults and incipient faults. In the proposed scheme A,
the selection of t values (the number of features) in Andrews function is important and can
affect the final diagnosis performance. In practical application, since the infinite number
of t-value in Andrews function and large number of variables in a chemical engineering
process, the selection of appropriate t-values may be time consuming.

The method for determining the important features (t-values) presented in Section 2
is used here. Andrew function values for all the data at 100 t-values uniformly distributed
in the range [−π, π] are calculated. The minimum distance between all the classes (normal,
fault No. 1, . . . , fault No. 11) is calculated at each of these t-values. Figure 7 shows the top
30 minimal distance values in descending order. It can be seen that the minimal distance
values drop quickly after about the first 11 t-values. Therefore, the first 11 t-values are
selected, i.e., the final selected values of t are [−3.1414, −0.6846, −0.5586, −0.4956, −0.4326,
−0.3696, 0.2604, 2.9064, 209694, 3.3024, 3.0954].
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The training and testing data were produced using simulation based on the mechanis-
tic model of the process. Simulated process operational data under the normal operation
and the 11 faults with the fault conditions given in Table 3 were generated. For each fault,
80 samples were collected when one or more of the process variables exist 3 times of their
normal standard deviations. The normal operation data also contains 80 samples. For the
80 samples corresponding to each category, 50 samples were randomly selected as training
data while the remaining 30 samples were used as the testing data. Thus, the training
data set contains 600 samples and the testing data sets contains 360 samples. The neural
networks were trained on the training data set and the testing data set was used for net-
work structure determination and implementing the “early stopping” mechanism during
network training [15]. In all the three schemes, the neural networks are single hidden layer
feedforward networks with sigmoid function in the hidden layer and output layer. All
networks have 11 output layer neurons corresponding to the 11 faults. The networks were
trained using the backpropagation training method with the learning rate, momentum
constant and maximum training steps selected as 0.01, 0.9 and 1000, respectively. The
training objective is to minimize the mean squared errors of the network. During network
training, a target output of 1 is assigned to the network output corresponding to the fault
while the targets for other network outputs are 0. During diagnosis, the neural network
outputs should be lower than 0.2 when the samples are under the normal operating condi-
tion. A diagnosis result is issued when the neural network output corresponding to the
fault is higher than 0.8 while other network outputs are below 0.2. An advance warning
is issued when the neural network output corresponding to the fault is higher than 0.4.
Evaluation of fault diagnosis systems is mainly based on accuracy, robustness and speed of
diagnosis. The diagnosis time is measured as the time between a fault being initiated and
being successfully diagnosed. The advance warning time is defined as the time between
the fault being initiated and a correct advance warning being issued.

The number of hidden neurons was determined through cross validation on the testing
data. A number of neural networks with different numbers of hidden neurons were trained
on the training data and tested on the testing data. The network gives the overall best
performance on the testing data is considered as having the appropriate number of hidden
neurons. Tables 6–8 give the accuracy of different numbers of hidden neurons in diagnosis
schemes A, B and C on the testing data, respectively. In Tables 6–8, the best performance is
marked with bold font. It can be seen that the best numbers of hidden neurons for schemes
A, B and C are 15, 17 and 13, respectively. Table 9 summarizes the numbers of neurons in
different layers of the neural networks.

Table 6. Accuracy on testing data in scheme A.

Numbers of HN 12 13 14 15 16 17 18

Accuracy 90.56% 95.27% 93.61% 96.94% 92.22% 90.83% 91.39%



Processes 2021, 9, 1659 11 of 17

Table 7. Accuracy on testing data in scheme B.

Numbers of HN 12 13 15 17 18 19

Accuracy 71.67% 68.33% 75% 76.67% 71.67% 68.33%

Table 8. Accuracy on testing data in scheme C.

Numbers of HN 12 13 14 15 17 18

Accuracy 76.94% 86.38% 81.39% 84.16% 85.28% 83.06%

Table 9. Number of neurons.

Scheme A Scheme B Scheme C

Layer Neuron Layer Neuron Layer Neuron

Input 11 Input 13 Input 13
Hidden 15 Hidden 17 Hidden 13
Output 11 Output 11 Output 11

4.2. Performance under Abrupt Faults

The proposed scheme A and the conventional schemes B and C are tested on three
groups of abrupt faults given by Table 4 to demonstrate the superiorities of the proposed
method. All of the abrupt faults were initiated at 40 s. Table 10 indicates that all diagnosis
systems successfully diagnosed all the considered abrupt faults. In terms of diagnosis
speed, the proposed diagnosis scheme A diagnosed the abrupt faults 5.45 s and 2.66 s
earlier on average than schemes B and C, respectively. Note that as the sampling time is
given, traditional metrics such as the fault detection rate (FDR) and the missed detection
rate (MDR) can be easily obtained from the fault diagnosis times given in Table 10. Table 11
gives the FDR for abrupt faults. In all the considered faults here, there are no incorrect
diagnosis cases and the undetected samples are during the early stages of the faults. Thus,
for all the considered faults here, MDR can be simply obtained as 1-FDR. It can be seen
from Table 11 that the proposed scheme A gives overall higher FDR than schemes B and C.
Table 11 also indicates that the FDR is higher when the fault magnitude is higher as a fault
with higher magnitude is generally easier to detect and diagnosis than the same fault with
lower magnitude. Figures 8 and 9 show two sets of diagnosis outputs in abrupt faults as
examples to show the robustness of the proposed scheme.

Table 10. Fault diagnosis time (s) in abrupt faults.

Fault No.
Scheme A Scheme B Scheme C

Mag. 1 Mag. 2 Mag. 3 Mag. 1 Mag. 2 Mag. 3 Mag. 1 Mag. 2 Mag. 3

1 24 12 4 48 24 12 16 12 4
2 20 8 4 32 12 12 12 12 4
3 36 28 12 44 32 28 64 56 52
4 32 12 4 32 28 8 16 16 12
5 32 16 8 36 24 8 36 32 28
6 60 28 12 12 8 8 16 16 16
7 36 16 8 52 36 16 16 16 16
8 24 8 8 52 20 4 20 16 16
9 20 8 8 40 8 8 24 12 8
10 20 8 4 36 20 4 20 12 8
11 16 8 8 12 8 8 12 12 12

Average 16.73 22.18 19.39
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Table 11. Fault detection rates for abrupt faults.

Fault No.
Scheme A Scheme B Scheme C

Mag. 1 Mag. 2 Mag. 3 Mag. 1 Mag. 2 Mag. 3 Mag. 1 Mag. 2 Mag. 3

1 85.0% 92.5% 97.5% 70.0% 85.0% 92.5% 90.0% 92.5% 97.5%
2 87.5% 95.0% 97.5% 80.0% 92.5% 92.5% 92.5% 92.5% 97.5%
3 77.5% 82.5% 92.5% 72.5% 80.0% 82.5% 60.0% 65.0% 67.5%
4 80.0% 92.5% 97.5% 80.0% 82.5% 95.0% 90.0% 90.0% 92.5%
5 80.0% 90.0% 95.0% 77.5% 85.0% 95.0% 77.5% 80.0% 82.5%
6 62.5% 82.5% 92.5% 92.5% 95.0% 95.0% 90.0% 90.0% 90.0%
7 77.5% 90.0% 95.0% 67.5% 77.5% 90.0% 90.0% 90.0% 90.0%
8 85.0% 95.0% 95.0% 67.5% 87.5% 97.5% 87.5% 90.0% 90.0%
9 87.5% 95.0% 95.0% 75.0% 95.0% 95.0% 85.0% 92.5% 95.0%
10 87.5% 95.0% 97.5% 77.5% 87.5% 97.5% 87.5% 92.5% 95.0%
11 90.0% 95.0% 95.0% 92.5% 95.0% 95.0% 92.5% 92.5% 92.5%

Average 89.6% 86.1% 87.9%

Processes 2021, 9, x FOR PEER REVIEW 12 of 18 
 

 

Table 10. Fault diagnosis time (s) in abrupt faults. 

Fault No. 
Scheme A Scheme B Scheme C 

Mag. 1 Mag. 2  Mag. 3  Mag. 1  Mag. 2  Mag. 3  Mag. 1  Mag. 2  Mag. 3  

1 24 12 4 48 24 12 16 12 4 

2 20 8 4 32 12 12 12 12 4 

3 36 28 12 44 32 28 64 56 52 

4 32 12 4 32 28 8 16 16 12 

5 32 16 8 36 24 8 36 32 28 

6 60 28 12 12 8 8 16 16 16 

7 36 16 8 52 36 16 16 16 16 

8 24 8 8 52 20 4 20 16 16 

9 20 8 8 40 8 8 24 12 8 

10 20 8 4 36 20 4 20 12 8 

11 16 8 8 12 8 8 12 12 12 

Average 16.73 22.18 19.39 

Table 11. Fault detection rates for abrupt faults. 

Fault No. 
Scheme A Scheme B Scheme C 

Mag. 1 Mag. 2  Mag. 3  Mag. 1  Mag. 2  Mag. 3  Mag. 1  Mag. 2  Mag. 3  

1 85.0% 92.5% 97.5% 70.0% 85.0% 92.5% 90.0% 92.5% 97.5% 

2 87.5% 95.0% 97.5% 80.0% 92.5% 92.5% 92.5% 92.5% 97.5% 

3 77.5% 82.5% 92.5% 72.5% 80.0% 82.5% 60.0% 65.0% 67.5% 

4 80.0% 92.5% 97.5% 80.0% 82.5% 95.0% 90.0% 90.0% 92.5% 

5 80.0% 90.0% 95.0% 77.5% 85.0% 95.0% 77.5% 80.0% 82.5% 

6 62.5% 82.5% 92.5% 92.5% 95.0% 95.0% 90.0% 90.0% 90.0% 

7 77.5% 90.0% 95.0% 67.5% 77.5% 90.0% 90.0% 90.0% 90.0% 

8 85.0% 95.0% 95.0% 67.5% 87.5% 97.5% 87.5% 90.0% 90.0% 

9 87.5% 95.0% 95.0% 75.0% 95.0% 95.0% 85.0% 92.5% 95.0% 

10 87.5% 95.0% 97.5% 77.5% 87.5% 97.5% 87.5% 92.5% 95.0% 

11 90.0% 95.0% 95.0% 92.5% 95.0% 95.0% 92.5% 92.5% 92.5% 

Average 89.6% 86.1% 87.9% 

 

  

(a) (b) 

Figure 8. Diagnosis performance of scheme A (a) and scheme B (b) under abrupt fault No. 2 with relative magnitude of 

1.67%. 
Figure 8. Diagnosis performance of scheme A (a) and scheme B (b) under abrupt fault No. 2 with relative magnitude of 1.67%.

Processes 2021, 9, x FOR PEER REVIEW 13 of 18 
 

 

  

(a) (b) 

Figure 9. Diagnosis performance of scheme A (a) and scheme B (b) under abrupt fault No. 7 with relative magnitude of 

27.86%. 

Figure 8 shows the performance of schemes A and B in diagnosing abrupt fault No. 

2, with the fault relative magnitude being 1.67%. In Figure 8 and the subsequent diagnosis 

output plots, F1 to F11 represent the neural network outputs corresponding to Fault No. 

1 to No. 11 listed in Table 1, respectively. The upper dash-dotted lines indicate the diag-

nosis threshold (0.8) while the lower dash-dotted lines indicate the advance warning 

threshold (0.4). Figure 8a shows that scheme A successfully diagnosed the fault at 20 s 

after the fault being initiated. Figure 8b shows that the outputs from scheme B responded 

quickly, when the abnormal condition occurred but with fluctuations. Eventually the fault 

was diagnosed at 32 s after the fault being initiated. The output curve then still oscillates 

with a certain magnitude over the 0.8. It can be seen that the proposed scheme A diag-

nosed the fault 12 s earlier than scheme B and the output curve is steadier than scheme B.  

Figure 9 shows the performance of schemes A and B in diagnosing abrupt fault No. 

7, with the fault relative magnitude being 27.86%. As in the previous case, the outputs in 

scheme A have isolated points exceeding the diagnosis threshold (0.8) before the oscilla-

tion stabilized. Figure 9a shows that scheme A successfully diagnosed the fault at 16 s 

after the fault being initiated. Figure 9b shows that scheme B successfully diagnosed the 

fault at 36 s after fault being initiated. The diagnosis time of scheme A for this fault is 20 s 

shorter than that of scheme B. 

4.3. Performance under Incipient Faults 

The proposed scheme A and the conventional schemes B and C are applied to three 

groups of incipient faults given by Table 5 to compare fault diagnosis results. All of the 

incipient faults were initiated at 0 s. Table 12 indicates that all diagnosis systems success-

fully diagnosed all the considered incipient faults. In terms of the diagnosis speed, the pro-

posed diagnosis scheme A diagnosed the incipient faults 13.82 s and 5.09 s earlier on average 

than schemes B and C, respectively . Table 13 gives the FDR values for the considered incip-

ient faults of the three schemes. In can be seen that the proposed scheme A gives overall 

higher FDR than schemes B and C. Table 13 also indicates that the FDR is higher when the 

fault developing speed is higher as a faster developing fault is generally easier to detect and 

diagnosis than a slower developing fault. As with the abrupt fault cases, there are no incor-

rect diagnosis cases and all the undetected samples are during the early stages of the faults 

when their magnitudes are low. Thus, MDR can be simply worked out as 1-FDR and are 

not shown here. The following figures show three sets of diagnosis outputs in incipient 

faults as examples to show the good performance of the proposed scheme.  

Figure 9. Diagnosis performance of scheme A (a) and scheme B (b) under abrupt fault No. 7 with relative magnitude of 27.86%.



Processes 2021, 9, 1659 13 of 17

Figure 8 shows the performance of schemes A and B in diagnosing abrupt fault No. 2,
with the fault relative magnitude being 1.67%. In Figure 8 and the subsequent diagnosis
output plots, F1 to F11 represent the neural network outputs corresponding to Fault No. 1
to No. 11 listed in Table 1, respectively. The upper dash-dotted lines indicate the diagnosis
threshold (0.8) while the lower dash-dotted lines indicate the advance warning threshold
(0.4). Figure 8a shows that scheme A successfully diagnosed the fault at 20 s after the fault
being initiated. Figure 8b shows that the outputs from scheme B responded quickly, when
the abnormal condition occurred but with fluctuations. Eventually the fault was diagnosed
at 32 s after the fault being initiated. The output curve then still oscillates with a certain
magnitude over the 0.8. It can be seen that the proposed scheme A diagnosed the fault 12 s
earlier than scheme B and the output curve is steadier than scheme B.

Figure 9 shows the performance of schemes A and B in diagnosing abrupt fault No. 7,
with the fault relative magnitude being 27.86%. As in the previous case, the outputs in
scheme A have isolated points exceeding the diagnosis threshold (0.8) before the oscillation
stabilized. Figure 9a shows that scheme A successfully diagnosed the fault at 16 s after the
fault being initiated. Figure 9b shows that scheme B successfully diagnosed the fault at
36 s after fault being initiated. The diagnosis time of scheme A for this fault is 20 s shorter
than that of scheme B.

4.3. Performance under Incipient Faults

The proposed scheme A and the conventional schemes B and C are applied to three
groups of incipient faults given by Table 5 to compare fault diagnosis results. All of
the incipient faults were initiated at 0 s. Table 12 indicates that all diagnosis systems
successfully diagnosed all the considered incipient faults. In terms of the diagnosis speed,
the proposed diagnosis scheme A diagnosed the incipient faults 13.82 s and 5.09 s earlier
on average than schemes B and C, respectively. Table 13 gives the FDR values for the
considered incipient faults of the three schemes. In can be seen that the proposed scheme
A gives overall higher FDR than schemes B and C. Table 13 also indicates that the FDR is
higher when the fault developing speed is higher as a faster developing fault is generally
easier to detect and diagnosis than a slower developing fault. As with the abrupt fault
cases, there are no incorrect diagnosis cases and all the undetected samples are during
the early stages of the faults when their magnitudes are low. Thus, MDR can be simply
worked out as 1-FDR and are not shown here. The following figures show three sets of
diagnosis outputs in incipient faults as examples to show the good performance of the
proposed scheme.

Table 12. Fault diagnosis time (s) in incipient faults.

Fault No.
Scheme A Scheme B Scheme C

γ1 (s−1) γ2 (s−1) γ3 (s−1) γ1 (s−1) γ2 (s−1) γ3 (s−1) γ1 (s−1) γ2 (s−1) γ3 (s−1)

1 96 52 40 92 64 48 96 52 44
2 80 48 44 88 56 44 108 44 48
3 104 48 40 152 68 52 136 64 60
4 76 48 40 84 76 44 72 44 56
5 116 64 44 152 72 60 132 92 76
6 132 100 80 156 136 88 104 96 56
7 144 96 60 160 100 64 144 104 80
8 88 76 32 96 80 40 76 68 40
9 88 44 44 136 72 48 68 60 44
10 96 68 44 124 80 40 80 68 52
11 128 88 52 144 96 44 148 88 68

Average 72.73 86.55 77.82
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Table 13. Fault detection rates for incipient faults.

Fault No.
Scheme A Scheme B Scheme C

γ1 (s−1) γ2 (s−1) γ3 (s−1) γ1 (s−1) γ2 (s−1) γ3 (s−1) γ1 (s−1) γ2 (s−1) γ3 (s−1)

1 52% 74% 80% 54% 68% 76% 52% 74% 78%
2 60% 76% 78% 56% 72% 78% 46% 78% 76%
3 48% 76% 80% 24% 66% 74% 32% 68% 70%
4 62% 76% 80% 58% 62% 78% 64% 78% 72%
5 42% 68% 78% 24% 64% 70% 34% 54% 62%
6 34% 50% 60% 22% 32% 56% 48% 52% 72%
7 28% 52% 70% 20% 50% 68% 28% 48% 60%
8 56% 62% 84% 52% 60% 80% 62% 66% 80%
9 56% 78% 78% 32% 64% 76% 66% 70% 78%
10 52% 66% 78% 38% 60% 80% 60% 66% 74%
11 36% 56% 74% 28% 52% 78% 26% 56% 66%

Average 63.6% 56.7% 61.1%

Figure 10 shows the performance of scheme A and scheme B in diagnosing incipient
fault No. 3, with the fault developing speed as γ = −1.29× 10−4(s−1). It can be seen
from Figure 10a that, under scheme A, the network output corresponding to fault No. 3
raises to over 0.8 with some slight oscillations after a period fault developing, while all
other network outputs remain close to 0. As shown in Figure 10b, under scheme B, the
network output corresponding to fault No. 3 gradually raises accompanied with some
large oscillations until across the diagnosis threshold, then it becomes steady, while all
other network outputs remain close to 0. Hence, both schemes successful diagnosed fault
No. 3 occurred in this process. Figure 10a shows that scheme A successfully diagnosed the
fault at 104 s. Figure 10b shows that scheme B successfully diagnosed the fault at 152 s. For
this particular incipient fault, scheme A diagnosed the fault 48 s earlier than scheme B, and
the output curves of scheme A also stabilize earlier than those of scheme B.
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Figure 11 shows the performance of schemes A and B in diagnosing incipient fault No. 5,
with the fault developing speed being γ = 1.12× 10−4(s−1). As shown in Figure 11a, after
the period of fault progressing, the network output corresponding to fault No. 5 raises up
and exceeds 0.8 rapidly, while all other network outputs remain close to 0. Hence, scheme
A successfully diagnosed the fault at 116 s. As shown in Figure 11b, the network output
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corresponding to fault No. 5 gradually increases across the diagnosis threshold 0.8, while all
other network outputs remain close to 0. Hence, scheme B successfully diagnosed the fault at
152 s. For this particular incipient fault, the proposed scheme A diagnosed the fault 36 s earlier
than scheme B, and the output curves of scheme A also stabilize earlier than those of scheme B.
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Figure 11. Diagnosis performance of scheme A (a) and scheme B (b) under incipient fault No. 5 with developing speed of
1.12× 10−4(s−1).

Figure 12 shows the performance of schemes A and B in diagnosing incipient fault
No. 10, with the fault developing speed being γ = 6.71× 10−5(s−1). It can be seen from
Figure 12 that, after an initial period of fault progressing, the network output corresponding
to fault No. 10 gradually increases close to 1 with some slight oscillations, while all other
network outputs remain lower than 0.2. Figure 12a shows that scheme A successfully
diagnosed the fault at 96 s. Figure 12b shows that scheme B successfully diagnosed the
fault at 124 s. It can be seen that the output curve corresponding to fault No. 10 from scheme
B is slower in reaching the diagnosis threshold when the abnormal condition occurred. In
this case, the proposed scheme A diagnosed the fault 28 s earlier than scheme B.
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5. Conclusions

This paper proposes an enhanced intelligent neural network based online process fault
diagnosis system by integrating Andrews plot and neural network techniques. By using
features extracted from Andrews plot as the inputs to a neural network, the diagnosis speed
and reliability are improved. A method for determining the important features in Andrews
function is also proposed. Applications to a simulated CSTR process show very encour-
aging results. It is shown that the proposed method can give good performance in terms
of diagnosis speed and accuracy. In addition, the proposed data pre-processing method
is highly effective in adjusting the high dimensional data to an appropriate size. As with
other neural network-based fault diagnosis systems, one limitation of the proposed method
is that it requires the availability of process data covering various faults. Coping with
imbalanced data sets and unavailability of certain fault data deserves future investigation.
Integrating Andrews plot with other machine learning methods such as support vector
machines or random forests could be carried out in the future. Furthermore, the combined
use of Andrew plot and other feature extraction approaches could be investigated in the
future to reduce uncertainty. Applications to real-world systems could be considered in
the future.
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