
Citation: Frank, U.; Dienstbier, J.;

Tischer, F.; Wawra, S.E.; Gromotka, L.;

Walter, J.; Liers, F.; Peukert, W.

Multidimensional Fractionation of

Particles. Separations 2023, 10, 252.

https://doi.org/10.3390/

separations10040252

Academic Editor: Ronald Beckett

Received: 14 March 2023

Revised: 29 March 2023

Accepted: 6 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

separations

Article

Multidimensional Fractionation of Particles
Uwe Frank 1, Jana Dienstbier 2, Florentin Tischer 1 , Simon E. Wawra 1, Lukas Gromotka 1, Johannes Walter 1,3,
Frauke Liers 2 and Wolfgang Peukert 1,3,*

1 Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4,
D-91058 Erlangen, Germany

2 Department of Data Science (DDS), Optimization under Uncertainty & Data Analysis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, D-91058 Erlangen, Germany

3 Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a,
D-91058 Erlangen, Germany

* Correspondence: wolfgang.peukert@fau.de

Abstract: The increasing complexity in particle science and technology requires the ability to deal with
multidimensional property distributions. We present the theoretical background for multidimensional
fractionations by transferring the concepts known from one dimensional to higher dimensional
separations. Particles in fluids are separated by acting forces or velocities, which are commonly
induces by external fields, e.g., gravitational, centrifugal or electro-magnetic fields. In addition,
short-range force fields induced by particle interactions can be employed for fractionation. In
this special case, nanoparticle chromatography is a recent example. The framework for handling
and characterizing multidimensional separation processes acting on multidimensional particle size
distributions is presented. Illustrative examples for technical realizations are given for shape-selective
separation in a hydrocyclone and for density-selective separation in a disc separator.

Keywords: multidimensional separation; two-dimensional property distribution; size; shape;
composition

1. Introduction

Particle science and technology evolve towards ever increasing complexity with
respect to multidimensional particle properties. In general, the properties of particle
systems can be defined by a five-dimensional parameter space, given as particle size,
shape, surface, structure (e.g., pore size, shape or defect distributions) and composi-
tion [1]. In the past, our activities were focused mostly on controlling the particle size of
a specific material in a wide size regime depending on the application. With the advent
of powerful synthesis protocols within nanotechnology, in particular in the liquid phase,
narrowly distributed samples first became available. Particle shape, very prominently
exemplified by the discovery of 2D materials (e.g., graphene [2,3], MoS2, BN and many
other materials), came into focus later. Additionally, complex structures were developed,
such as core-shell particles for controlled drug release, quantum dots for optimized
electronic properties and metal particles with many other shapes (e.g., rods, tetrapods,
double pyramids) showing distinct plasmonic features, as well as nanostructured patchy
particles [4]. Particle composition is another variable and includes today not only many
one- and two-component systems, but also three- and four-component semiconducting
chalcopyrates (e.g., CuInS [5], kesterites such as Cu2ZnSnS4 [6] or battery materials
such as NiCoAl or NiCoMg oxides [7]) and even five and more components in minerals
and high entropy alloys contained in one single particle. Scaling up from small well-
controlled lab syntheses to the industrial scale inevitably leads to a broadening of all
property distributions. Many lab protocols and industrial particle-formation processes
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include steps for purification, phase separation and size classification. In nanotechnol-
ogy in particular, post-processing is critical and often prohibitive for the transfer from
lab scale to industrial production.

The size classification of particles is well established in industry only for particle diam-
eters larger than 1 µm. Typical realizations are impeller wheel classifiers, centrifuges and
cyclones. The size separation of nanoparticles is still challenging but recent developments
have shown considerable progress. For instance, Nirschl and co-workers demonstrated
cut sizes down to a few 10 nm in a discontinuously operated bowl centrifuge [8]. Other
examples include strong centrifugal fields in analytical centrifuges [9], electric fields [10–12]
or size-selective precipitation [13]. Highly promising results were obtained by nanoparticle
chromatography both for the purification of complex mixtures, e.g., carbon nanodots [14],
single-walled carbon nanotubes [15] and also the classification of plasmonic noble metals
and quantum dots [16,17]. Material dependent separations with respect to density, elec-
tric or magnetic properties are mostly applied to larger particles, especially in recycling
processes. Industrial shape separation is rarely reported in the open literature, whereas pro-
tocols for the separation of 2D materials such as nanosheets are promising at lab scale [18].
A national priority program in Germany (PP2045—Highly specific and multidimensional
fractionation of particle systems with technical relevance) comprises several projects aiming
for multidimensional size, shape and property fractionation [19].

The development of multidimensional separation processes strongly relies on method-
ologies for the multidimensional characterization of the complex particles. The tedious
counting of particles by microscopy strongly limits fast and efficient analysis, which is
essential for parameter studies and validation. Interestingly, several new characterization
methods beyond size have been developed in the last few years; see a recent review [20].
In particular, centrifugation methods combine separation and optical characterization to
obtain information beyond size. Highly promising approaches have evolved from the field
of analytical ultracentrifugation, where sedimentation, diffusion and spectral properties of
particles can be obtained in one experiment [21–23]. With the development of powerful
tomographic techniques, the characterization of particles of complex composition such as
minerals in magnetic separation is now possible [24,25].

Independent of the required scope, be it an industrial process or analytical technique,
the mathematical description of a separation into fine and coarse fractions requires a
unifying framework. While the description of a one-dimensional fractionation is well
known, further considerations are necessary for the separation of multidimensional par-
ticle property distributions. Only a fundamental and uniform description of separation
processes provides the possibility of performing knowledge-driven process design for
multidimensional particle systems.

In general, particles are separated and classified according to acting forces, i.e., in
external gravitational, centrifugal, electric or magnetic fields. The acting force or velocity
field(s) influence the particle motion. In addition, short-range particle interactions can be
employed and used for fractionation. In this case, the particles interact selectively with
external surfaces, e.g., in flotation with bubbles, or in particle chromatography with the
stationary phase material via tailored repulsive or attractive forces [16], a highly promising
approach for nanoparticles. Particle–particle interactions are employed in the case of size-
selective agglomeration [26]. Particles of differing properties move on different trajectories,
which allows their separation into different fractions and their collection in adequately
designed apparatus. These forces may be orthogonal or non-orthogonal. In the former case,
fractionation by the orthogonal forces can be decoupled and realized in several independent
consecutive and simultaneous separations steps.

Within this general framework, we distinguish different cases according their dimen-
sionality. In a one-dimensional (1D) separation, one external (resulting) field drives particle
motion and fractionates an n-dimensional (nD) particle property distribution in fine and
coarse nD distributed fractions. In two-dimensional (2D) separations, two external fields,
e.g., a centrifugal field and an electrical or a magnetic field, act on the particles simulta-
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neously. One-dimensional separations still comprise the vast majority of most industrial
separation processes. However, even this case is seldom applied to higher dimensional
distributions [25]. The reason for this is that any proper description of such applications
requires adequate multidimensional characterization, which was missing in the past. With
the development of new and improved analytical techniques, it is now time to expand the
classification framework to higher dimensions. As examples, we show how centrifugal
separations act on 2D particle populations. Technical realizations could be a hydrocyclone,
a disc separator at industrial scale or analytical (ultra-) centrifugation in the lab. Extensions
to particle chromatography are currently being investigated.

2. Particle Property Distributions

Particle properties are defined by the five parameters: size, shape, surface, structure
and composition. Therefore, a particle ensemble is described by a multidimensional
particle property distribution. For simplification, we restrict the investigated distributions
to particle size distributions (PSDs) dependent on geometrical parameters. Nevertheless, all
presented calculations can be applied to all continuously and discontinuously distributed
properties as well, such as surface, volume, density, composition and electronic band gap.
The basic definition of a PSD is given by [1,27–29]

qr

(→
x
)
=

Amount of kind r in interval d
→
x

Interval size dx ·total amount of kind r
(1)

where r defines the quantity, which is used to describe the particle ensemble. Common
are number r = 0, surface r = 2 and volume r = 3 weighted distributions; r is usually
determined by the employed characterization method. The particle property vector

→
x

describes the set of quantities which are necessary to characterize a particle compre-
hensively. For spheres, this is related to the diameter

→
x = x; more complex particles

require additional parameters, e.g., rods can be characterized by their length l and di-
ameter d, which means

→
x = (l d)T. A cuboid requires three parameters—one for each

side length
→
x = (a b c)T. Since PSDs are weighted according to the applied measuring

technique of the underlying physical principle, the comparison of different PSDs requires
their conversion to the same quantity [30]. For spheres in the 1D case, this is well known
and simply performed via exponent shifts, i.e., from a given k-based density distribution
qk to a r-based qr distribution [27–29,31]

qr(x) =
xr−k qk(x)

Mr−k,k
=

xr−k qk(x)∫ xmax
xmin

xr−k qk(x) dx
(2)

while in the nD scenario the following equation is used [1]

qr

(→
x
)
=

κ
(→

x
)

qk

(→
x
)

Mr,k
=

κ
(→

x
)

qk

(→
x
)

∫
→
x∈Rn κ

(→
x
)

qk

(→
x
)

d
→
x

. (3)

In Formula (3), the r weighted distribution is obtained from the k weighted one via
pointwise multiplication with a weighting function κ(

→
x ) and division by the according

moment Mr,k, where the weighting function depends on the particle property vector
→
x .

The related moment is obtained via integration of the weighting function κ multiplied
with the particle property distribution qk over the multidimensional space. A common
example for weightings are surface- and volume-weighted distributions q2 and q3, where κ
is replaced by functions for the surface and volume of the investigated particle systems.
The influence of the weighting is illustrated for 2D PSDs of gold nanorods in Figure 1.
The weighting leads to nontrivial shifts in the distributions, which clearly emphasizes the
important influence of multidimensional characterization methods. If not stated otherwise,
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the descriptions of separation processes are performed on number-weighted distributions.
Here, the connection between particle properties and physical separation parameters is
straightforward. Nevertheless, the outlined techniques can be used for differently weighted
distributions as well, in which case the separation functions have to be converted to the
weighting used.
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Figure 1. Differently weighted 2D length-diameter PSDs of gold nanorods. Depicted are the modal
values (stars) for number (q0, blue), surface (q2, cyan) and volume (q3, yellow) weighted distributions
with an isoline that corresponds to a value of 1√

e max (qi). Reproduced with permission from [1].
Copyright 2019, Wiley.

3. Methodology

A separation process takes place in an apparatus where one or several force fields
act on the particles of a particle ensemble and drive the individual particles to different
locations within the apparatus (see, e.g., [29,31]) as schematically illustrated in Figure 2. In
the simplest case, the particles in the feed distribution are separated into a coarse and a
fine fraction. Additionally, separations into several fractions are possible. Examples for the
latter are cross-flow classifiers, e.g., the coanda classifier [32], field flow fractionation [33]
or most recently size-exclusion nanoparticle chromatography [16], where several fractions
can be obtained by fraction samplers during one run. In the following, the 4 essential steps
of a separation are discussed:

• integral mass balance
• differential mass balance
• separation curves
• yields
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Figure 2. Schematic drawing of a separation apparatus. A particle (red) is dragged by a force F (blue
vector) to different locations within the apparatus. The particle is transported either to the coarse or
fine fraction.

As illustrated in Figure 1, the particles move into different basins (here, the coarse and
the fine fractions) depending on their properties and the acting force vector. In each basin,
the resulting particle ensemble is described by a PSD. The underlying physical processes,
which drive the motion of the particles, depend for spherical particles on the diameter x.
The separation is described by the integral mass balance, which relates the amount of feed
to the amounts of the classified fine and coarse fractions, dependent on the type of amount
used (e.g., number or volume): MFeed,r = Mc,r + Mf,r. Normalization with the amount of the
feed MFeed,r leads to

cr + fr = 1 with cr =
Mc,r

MFeed,r
and fr =

M f ,r

MFeed,r
(4)

where cr represents the amount of coarse particles divided by the overall amount of
particles and fr represents the fine fraction of particles. From a differential mass balance in
the interval dx, the following relationship between the feed (qFeed,r), coarse (qc,r) and fine
fractions (qf,r) is derived:

qFeed,r(x) = cr qc,r(x) + fr q f ,r(x) (5)

In the following, we omit the index r for the sake of simplicity. The probability of
a particle to settle into the specific basins is described by the size-dependent separation
efficiency T(x), often denoted as fractional separation efficiency, grade efficiency or Tromp
curve, which is defined as

T(x) =
Amount of particles in coarse fraction in interval dx

Amount of particles in feed in interval dx
= c

qc(x)
qFeed(x)

= (1− f )
q f (x)

qFeed(x)
. (6)
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Usually, one wants to obtain a separation where all particles which are bigger than a
certain diameter xcut settle in the basin for the coarse material. Therefore, an ideal separation
function can be described by the Heaviside function

T(x) =
{

0 x < xcut
1 x ≥ xcut

. (7)

However, in practice only a smeared-out separation function with more or less pro-
nounced sigmoidal features is obtained. An example for such a realistic separation function
is given in Figure 3a, where a Gaussian-distributed ensemble of spheres is separated ac-
cording to the parameter κ as function of diameter x. The PSDs of the coarse (c) and fine (f )
material can be obtained via

qc =
1
c

T(x) qFeed(x) c =
∫

x∈R+
T(x) qFeed(x) dx (8)

q f =
1
f
(1− T(x))qFeed(x) f =

∫
x∈R+

(1− T(x)) qF(x) dx. (9)
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Figure 3. (a) Example for a monomodal 1D number-based PSD qFeed (blue) with separation function
T(x) (red). The grey lines indicate the 0.25, 0.5 and 0.75 values for the separation function in ascending
order. The 0.25 and 0.75 values are commonly used for the calculation of the separation sharpness,
while the 0.5 value is the cut size. (b) 1D PSD qFeed (blue) with resulting PSDs qc (dashed magenta)
and q f (dashed green) after the separation process. The grey lines indicate the 0.25, 0.5 and 0.75
values for the separation function.

All particles with diameter x ≥ xcut, which belong to T0.5 with T0.5 = T(xcut) = 0.5, are
sorted in the coarse fraction and all particles smaller than this value into the fine fraction.
In Figure 3b, the non-ideal separation according to T(x) is illustrated. The PSD of the coarse
material contains a significant amount of misplaced grains, Λi; this corresponds to all
contributions where qc ≥ 0 and x ≤ xcut. The same is true for the fine material. Here
the misplaced grains are visible where q f > 0 and x > xcut. The corresponding yields are
obtained via

Λc = c ·
∫ xcut

0
qc(x) dx =

∫ xcut

0
T(x) qFeed(x) dx (10)

Λ f = f ·
∫ +∞

xcut
q f (x) dx =

∫ +∞

xcut
(1− T(x)) qFeed(x) dx. (11)

In the following sections, we will outline how similar calculations can be performed
for multiple separations acting on multidimensional PSDs.
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4. Separation Processes Acting on Two-Dimensional Distributions

In the previous section, the 1D separation of a 1D particle system was discussed. An
obvious expansion is the investigation of a separation acting on 2D PSDs. Examples for
this already exist (e.g., [34,35]). These separations are outlined in the previously introduced
nomenclature, namely in the sense of PSDs, separation functions and yields. Afterwards,
two orthogonal separation processes, followed by consecutive and simultaneous non-
orthogonal separations acting on 2D PSDs will be discussed.

These examples are separations with respect to composition (respectively, density and
size) which often occur in mineral processing or in the synthesis of alloy nanoparticles [36].
Shape- and size-selective fractionations are needed in the formation of 2D materials [18], in
shape-selective comminution processes [37] or after shape-selective synthesis, which often
contain several types such as platelets and spheres [21].

4.1. One-Dimensional Separation Acting on a Two-Dimensional PSD

In this section, we exemplarily consider 2D number-weighted PSDs of gold nanorods,
which will be separated in dependence of their volume V. Nanorods can be fully described
by their length l and diameter d as parameters, therefore the particle property vector is
given by

→
x = (l d)T. Thus, the PSD of the feed is defined as qFeed : R+ ×R+ → R+ . The

investigation of other 2D property distributions can be performed analogously. For the
sake of simplicity, a linear separation is assumed between a lower volume boundary V0
and an upper boundary V1. The rod volume, for which T(Vcut) = 0.5, is labelled with Vcut;
see Figure 4a. This linear function can be translated in the 2D length-diameter space, since
the volume is a function of l and d, V ∝ (l d)T. The corresponding 2D function T(l, d) is
depicted in Figure 4b. In order to illustrate the effect of the separation on the PSD, the
isolines of T(l, d) are plotted inside the PSD qFeed(l, d).
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are obtained from 

Figure 4. (a) 1D volume-dependent separation function for the gold nanorods T(V). Between two
volume values, the lower boundary (red line) and the upper limit of the volumes (green line) a linear
function mimics the volume-dependent separation behavior; the black line marks the cut size with
T(Vcut) = 0.5. (b) Translation of T(V) in the 2D length-diameter space as V(l, d). The illustrated isolines
belong to the lower and upper boundaries and to the cut size from the left-handed plot. They are
displayed in the same color. Small particles, in the sense of small length-diameter value combinations
in the investigated 2D space, possess a smaller volume and have a lower probability to be sorted in
the coarse fraction.

Both the integral and differential mass balances hold also in the 2D case, i.e.,

c + f = 1 and qFeed(l, d) = c·qc(l, d) + f ·q f (l, d) (12)
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with c and f as the total amount of particles in the coarse and fine fraction. The definition
of the grade efficiency in the 2D case is given by

T2D(l, d) =
Amount of particles in coarse fraction in interval d

→
x (l, d)

Amount of particles in feed in interval d
→
x

T2D(l, d) = c
qc(l, d)

qFeed(l, d)
. (13)

Based on Equations (8) and (9), the PSDs qc for the coarse and qf for the fine fraction
are obtained from

qc =
1
c

T(l, d) qFeed(l, d) c =
∫
(l, d)∈R2

+

T(l, d) qFeed(l, d) dl dd (14)

q f =
1
f
(1− T(l, d)) qFeed(l, d) f =

∫
(l, d)∈R2

+

(1− T(l, d)) qFeed(l, d) dl dd. (15)

The boundaries of the separation in terms of the minimal and the maximal sepa-
rated particle volume and the cut size at Vcut are illustrated. The combination of length-
diameter values that yields the corresponding volume is shown in Figure 5a. The isoline
for Tcut = T(Vcut) = 0.5 divides the particle feed in coarse and fine fractions (see Figure 5b,c).
Since the separation is not ideally sharp and thus not each particle with V > Vsep is sorted to
the coarse fraction, misplaced coarse material exists within the fine fraction and vice versa.
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two orthogonal separations. This case is illustrated in Figure 6 and refers to separations 
with two different orthogonal forces, for instance, a centrifugal separation followed by 
electrical field flow fractionation, electrophoretic separation or magnetic separation. The 
direct overlay in one apparatus has been discussed in the literature but is so far hardly 
applied. For instance, Leschonski discussed the concept of a rotating differential mobility 
analyzer operated in the gas phase [10]. In the liquid phase, one may think of 
electrophoretic field flow fractionation applied in a centrifugal field. 

Figure 5. (a) 2D Gaussian PSD of gold nanorods with isolines for the separation function values with
T(Vcut) = 0.5 (black), T = 0, (red), T = 1 (green). The volume belonging to T(Vcut) = 0.5 corresponds
to an isoline through the mean length-diameter value. The figure indicates that the PSD is split in a
coarse and a fine fraction. The resulting PSDs of the coarse fraction are depicted in (b) and the PSD of
the fine fraction in (c). Misplaced particles are visible as contributions below the black line for the
coarse material and above the black line for the fine material.



Separations 2023, 10, 252 9 of 23

4.2. Two Orthogonal Separations

In this section, we extend the case of a 1D separation that is acting on a 2D PSD to two
orthogonal separations. This case is illustrated in Figure 6 and refers to separations with
two different orthogonal forces, for instance, a centrifugal separation followed by electrical
field flow fractionation, electrophoretic separation or magnetic separation. The direct
overlay in one apparatus has been discussed in the literature but is so far hardly applied.
For instance, Leschonski discussed the concept of a rotating differential mobility analyzer
operated in the gas phase [10]. In the liquid phase, one may think of electrophoretic field
flow fractionation applied in a centrifugal field.
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Figure 6. Simultaneous separation with respect to two acting forces FS and Fµ, mass flows corre-
sponding to consecutive separation.

As example, a separation according to sedimentation with an orthogonal acting electri-
cal field is chosen. The related parameters are the sedimentation coefficient s and electrical
mobility µ. The separation functions will be denoted T1(s) : R+ → [0, 1] for the sedimenta-
tion and T2(µ) : R+ → [0, 1] for the mobility. The forces which separate the feed particles
are denoted FS and Fµ (see Figure 6). For the separations regarding sedimentation and
mobility, the following values of the mean cut sizes are defined: scut ∈ R+ with T1(scut) = 0.5
and µcut ∈ R+ with T2 (µcut) = 0.5. Since there are two separations, the feed is subdivided
into four basins, which are defined as:

I: s ≥ scut ∧ µ ≥ µcut coarse fraction with respect to both s and µ
II: s ≥ scut ∧ µ < µcut intermediate fraction (coarse for s, fine for µ)
III: s < scut ∧ µ ≥ µcut intermediate fraction (fine for s, coarse for µ)
IV: s < scut ∧ µ < µcut fine fraction with respect to both s and µ.

Each separation can be regarded as separation in one coarse (I), one fine (IV) and two
intermediate fractions (II and III) with respect to the acting physical forces (Figure 7).
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Figure 7. The assumed linear separation efficiencies for (a) a separation function with respect to
sedimentation s and (b) a separation with respect to electrical mobility µ. The red and black lines
correspond to the Ti = 0.5 values, respectively. (c) 2D Gaussian PSD qFeed (l, d) of the gold nanorods,
which is separated in the fractions I-IV by the outlined separation in (a,b). The red line corresponds to
an isoline of the sedimentation coefficients where s = scut, the black line is the isoline for all electrical
mobilities with µ = µcut.

The two separation events can be regarded as independent because the acting forces
are orthogonal to each other and no interaction between them is assumed, leading to the
multiplication of the individual probabilities to obtain the probability for the combined
event. The probability for a particle to be in basin I, where the coarse material regarding
both attributes is collected, is given by T1(s) · T2(µ). Here it becomes evident that all
investigations have to be performed based on the same set of parameters, namely the length
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and diameter; therefore, all quantities need to be expressed in terms of these parameters.
The sedimentation coefficient is obtained via [22]

s =
mparticle ·

(
1− ρsolvent

ρparticle

)
3πη

f
f0

xV
. (16)

with the particle mass mparticle = V ·ρparticle, volume of the particle V = l π
(

d
2

)2
, the particle

density (gold bulk density) ρparticle, the solvent density (water) ρsolvent, solvent viscosity η
(water) and frictional ratio

f
f0

= 1.0304 + 0.0193y + 0.06229 y2 + 0.00476 y3 + 0.00166 y4 + 2.66·10−6 y5 (17)

where y is the logarithm of the aspect ratio y = ln
(

l
d

)
[38] and the volume equivalent diam-

eter of the particle xV = 3
√

6V
π . The electrical mobility is given in a simplified way [11] by

µ =
Q

3 π η
f
f0

xV
(18)

where the charge Q is the product of the particle surface area A multiplied with the surface

density charge ρCh, Q = AρCh, A = 2π
(

d
2

)2
+ 2 π d

2 l. The variables s and µ are linked
to the geometric parameters (l, d) of the nanorod ensemble. Based on the integral mass
balance, the feed PSD qFeed is given by the weighted sums of all basin PSDs and the related
normalized mass fractions γi

qFeed(l, d) = ∑
i ∈ {I,..., IV}

γi qi(l, d)1 = ∑
i ∈ {I,..., IV}

γi. (19)

The calculation of a missing PSD from a certain basin is possible, if all other PSDs
including the feed and the relative amounts of the fractions are known

γI qI(l, d) = qFeed(l, d)− ∑
i ∈ {I I,I I I, IV}

γi qi(l, d). (20)

We summarize the product of the 1D separation efficiencies to T2D,I(l, d), which is
the probability that a particle with (l, d), is in basin I (overall coarse fraction) and call it
in the following the effective separation function for basin I. The PSD in fraction I can be
determined—equivalent to Equation (6)—via

qI(l, d) = γ−1
I T1(s)T2(µ)qFeed(l, d)

= γ−1
I T1(l, d) T2(l, d) qFeed(l, d)

= γ−1
I T2D,I(l, d) qFeed(l, d).

(21)

qFeed (l, d) is the number-weighted PSD, which is multiplied with the probability of a
particle being in I and normalized a posteriori via

γI =
∫ ∞

0

∫ ∞

0
T2D,I(l, d) qFeed(l, d) dl dd. (22)

For the other basins, the PSDs can be determined similarly. The separation efficiency
for basin IV (overall fines fraction), where the fines from both separations are collected,
is (1−T1(s)) (1−T2(µ)). For the two intermediate basins, the particles belong to the coarse
fraction of one attribute and to the fine fraction of the other one. Thus, we determine the
efficiencies of fraction II with T1(s) (1−T2(µ)) and for fraction III with (1−T1(s)) T2(µ). The
resulting separation functions for the four basins are illustrated in Figure 8a. The individual
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separation functions are not ideally sharp, resulting in qFeed(l, d) not beeing sharply divided
into the four fractions. Therefore, the PSDs of the single fractions always contain particles
from the other fractions as well; see Figure 8b. In summary, the PSDs resulting from two
orthogonal separations are obtained via the following steps:

1. Determine the individual separation functions as functions of the acting physical
principles, e.g., T1(s), T2(µ);

2. Translate the parameter-dependent functions to the set of the investigated parameters,
e.g., length and diameter (l d)T;

3. Determine the number of fractions;
4. Determine if each fraction belongs to the coarse or fine fraction with respect to the

individual separations;
5. Calculate the effective separation functions for each basin;
6. Calculate the PSD for each basin via the effective separation function and the prefactors γi.
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Figure 8. (a) Effective separation functions for the fractions. The fractions for coarse and fine
material are defined by the T = 0.5 value of the separations. The values have a range of 0 (blue)
to 1 (yellow). (b) Resulting PSDs in the fractions after the separation process through the effective
separation functions. It is clearly visible that the outlined process can separate the fine-fine and
coarse-coarse fractions rather well, but has difficulties separating particles, where either µ or s can
be regarded as coarse-fine or fine-coarse material. This is induced by the imperfect sharpness of the
individual separations.

The resulting distributions and separation efficiencies contain all relevant informa-
tion for additional transformations, analogously to the previous sections. One important
quantity is the amount of misplaced particles Λ, which can be obtained by conditional
integration of the corresponding PSDs. For example, for fraction I the misplaced amount
ΛI is in the regions where the sedimentation coefficient and mobility values are smaller
than the previously defined cut sizes’ equivalent mean T-values; this corresponds to the
fractions labelled II, III and IV.

ΛI =
x

{(l, d)∈R2
+ |s(l, d)<ssep or µ(l, d)<µsep}

γI qF(l, d) dl dd (23)
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4.3. Consecutive Separations

The separation with two acting orthogonal forces is similar to consecutive separations
as shown in Figure 9. A prerequisite for the equivalence of simultaneous and consecutive
separations is the ability to describe the separation process in terms of a perpendicular set
of forces under the assumption of negligible interparticulate forces.
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Figure 9. Decoupled consecutive separations with orthogonal force separation corresponding to
consecutive separation.

With the two separating forces acting perpendicularly, the particle motions can be
considered independent of each other. In the first stage, the particles are separated in
two fractions exhibiting either slow or fast sedimentation (s). Each fraction can then be
separated individually according to its electric properties (µ), delivering similar fractions
I-IV, as for the simultaneous separation apparatus. The consecutive separation from s to
µ is applied to the coarse and to the fine fractions and results in four basins with four
classes of particles: fast sedimenting neutral (I), fast sedimenting charged (II), slowly
sedimenting neutral (III) and slowly sedimenting charged (IV) particles, as indicated in
Figure 9. The separation function can be determined according to Equation (24) from
particle trajectory calculations and the resulting final position of a particle with respect
to the four basins.

For orthogonal separations, it does not matter if the two separations are performed
simultaneously in one apparatus or in series in different apparatus. The more general
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case of non-orthogonal forces does not allow us to decouple the separation into indi-
vidual separation steps independently of each other. In this case, the transport of the
particle through the apparatus must be determined by full-scale particle-trajectory calcu-
lations, based on the flow and force fields in the apparatus. Today, coupled CFD-DEM
simulations are widely used, which would also allow us to take also particle–particle
interactions into account.

T2D,Y

(→
x
)
=

Amount of particles in fraction Y in interval d
→
x

Amount of particles in feed in interval d
→
x

(24)

5. Generalization to M-Fold Orthogonal Separations Acting on
Multidimensional PSDs

The investigation of multidimensional PSDs, which are subject to multi-fold separation
processes, is a straightforward, generalized extension of the methodology outlined in
Section 3. An nD number weighted PSD qFeed

(→
x
)

,
→
x ∈ Rn, n ∈ N is separated in

a distinct number of basins by m ∈ N separation processes. The number of basins is
defined as B ∈ N and depends on the separation techniques used. The m separation
functions are again expressed in the same coordinates that are used to describe the particle
ensemble—the

→
x coordinates—and are denoted as Ti

(→
x
)

with i ∈ {1, . . . , m}. The
probability for a particle to be in certain basin j ∈ {1, . . . , B} is given by the multiplication
of the m single probabilities resulting from the separation processes. Once again, each
separation leads to a separation of the feed into coarse and fine fractions. For these, we can
define two sets of separation processes for each basin

Kj =
{

i ∈ {1, . . . , m}
∣∣∣ Ti

(→
x
)

separates within the coarse material
}

(25)

Pj =
{

i ∈ {1, . . . , m}
∣∣∣ Ti

(→
x
)

separates within the fine material
}

(26)

which contain all separations that sort into basin j. With these sets, the calculation of the
PSD in the basin j can be expressed as

qj

(→
x
)
= γ−1

j ∏
i ε Kj

Ti

(→
x
)

∏
i ε Pj

(
1− Ti

(→
x
))

qFeed

(→
x
)
= γ−1

j T j
(→

x
)

qFeed

(→
x
)

(27)

with the effective separation function for the basin j, T j
(→

x
)

, which is calculated via the mul-

tiplications from the two product functions, T j
(→

x
)
= ∏i ε Kj

Ti

(→
x
)

∏i ε Pj

(
1− Ti

(→
x
))

.
Similar to the 2D case, the prefactor γj still yields the same information—the amount of
particles in the basin j—and can be obtained via a posteriori normalization of the separation
result from the global mass balance

γj =
∫

x ∈ Rn

T j
(→

x
)

qFeed

(→
x
)

d
→
x . (28)

We note here that with γj and qj

(→
x
)

given, the original PSD qF

(→
x
)

can be recon-
structed as

B

∑
j=0

γjqj

(→
x
)
=

B

∑
j=0

T j(x)· qFeed

(→
x
)
= qFeed

(→
x
)

. (29)

This equation holds, since each particle has to belong to exactly one fraction and
therefore the probabilities sum up to 1. With this in mind, we can also reconstruct a PSD
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q0,r

(→
x
)

, with r ∈ {1, . . . , m }, if the other PSDs and qFeed

(→
x
)

are known. In this case
we determine

γr qr

(→
x
)
= qFeed

(→
x
)
− ∑

j ∈{1,...,B}\r
γj qj

(→
x
)

. (30)

6. Examples of Technical Realizations
6.1. Hydrocyclone: Fractionation with Respect to Size and Shape

Hydrocyclones are used to separate solid or liquid particles from a liquid phase by
centrifugal forces. The advantage of the hydrocyclone over other centrifugal separators
is that no moving parts are used (Figure 10). Hydrocyclones are widely applied in the
mineral, starch and offshore industries.
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Figure 10. Sketch of a hydrocyclone with characteristic dimensions.

This example is related to a recently developed process in our group to deform
spherical glass particles to platelets below the brittle–ductile transition in a stirred media
mill [37,39]. We assume a quadratic volume based PSD (q3) of spheres between 2–7 µm.
These spheres are deformed into cylinders with a final thickness of l = 200 nm using
a stirred-media ball mill. During compression, the particle density increases due to
internal densification; for calculations, it is assumed that the density increases linearly
from 100% (spheres) to 110% for fully deformed particles with a final thickness of 200 nm.
The resulting number-weighted PSDs of the spheres (starting shape) and the plates with
a thickness of 200 nm (final shape) are shown in a 2D diagram in Supporting Information,
Figure S1. In order to obtain a realistic distribution of the particle ensemble during this
process, the different stages between spheres and cylinders with a final thickness of
200 nm are calculated via the aspect ratio (l/d). At each stage, the aspect ratio (l/d)
is assumed to be normally distributed. The resulting PSD of the feed can be seen in
Figure 11b.
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For the separation of the feed, a hydrocyclone with a geometry according to Rietema
(Supporting information, Table S1) is designed. The cut size xcut can be calculated using
the Reynolds number Re (33), the Euler number Eu (32) and the product of the Stokes and
Euler number Stk50Eu (31), as described in the literature [40]. The values of the constants ki
and ni (Supplementary Materials Table S2) are dependent on the geometry of the cyclone
and can be taken from the literature for Rietema cyclones [41]:

Stk50Eu =
π (ρs − ρ) ∆P DC (xcut)

2

36 η ρ
.

V
= k1

[
ln
(

1
Rw

)]n1

exp(n2 cV) (31)

Eu =
π2 ∆P D4

C

8 ρ
.

V
2 = k2 Ren3 exp(n4 cV) (32)

Re =
4 ρ

.
V

π η DC
(33)
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Rw = k3

(
DU
DC

)n5
Eun6 (34)

By assuming a feed flow rate
.

V of 15 L/min, a feed concentration cV of 5%, a liquid
density of pentanol of ρS = 810 kg/m3, a solid density of silica particles of ρ = 2200 kg/m3

and liquid viscosity η of 3.68 mPas as operation parameters, a cut size xcut of 4.8 µm
results. The corresponding hydrocyclone diameter is 10 cm, the pressure drop ∆P is
39.7 bar and the water flow ratio RW is 7.4%. Similar hydrocyclone sizes and pressure
drops can also be found in the literature [42]. Using the classical equation of Rosin and
Rammler as proposed by Plitt, the corrected separation function can be calculated using
(35). For the purpose of simplicity and comprehensibility of the example, the corrected
separation function is used:

T(x)′ = 1− exp

[
−0.693 ·

(
dC
xcut

)b
]

(35)

T(x)′ is corrected to avoid the typical fish hook and spans from 0 to 1. Here, the
parameter b is a measure for the sharpness of separation. For Rietema hydrocyclones, a
value of 2.45 is used, which corresponds to a separation sharpness of 53%. dC refers to a
characteristic diameter of the particle. In the case of a sphere, dC is the sphere diameter, but
in the case of deviating geometries, form factors must be applied.

Particle shape influences separation through the shape-dependent movement of the
particles through the hydrocyclone. The separation efficiency can be modelled by taking
into account all forces acting on the particles (in particular centrifugal, gravitational and
drag forces) [43].

For simplicity, we only refer to the fundamental balance of centrifugal and drag forces
and neglect the complicated motion of non-spherical particles. Here, the centrifugal force
acts on the volume of the particle ( π

6 x3
V) and the drag force acts on the cross-section ( π

4 x2
A)

of the particle. By assuming a steady state and laminar flow conditions in the Stokes regime,
the equation of motion simplifies to (39), where the form factor enters with an exponent of
−0.25. Thereby, the chosen form factor φ (38) is defined as the ratio of the diameter of the
volume equal sphere xV to the diameter of the projection area equal sphere xA and ranges
between 1 (sphere) and 0. This is similar to the well-known sphericity according to Wadell,
but relates the volume equivalent diameter to the diameter of the same projection area
rather than the same surface area. Thus, φ−0.25 as integrated into the separation function as
can be seen in (40):

∑ F = FZ + FD =
π

6
x3

V ρS aZ +
1
2

π

4
x2

A ρF cD vRel |vrel | (36)

cD =
24
Re

=
24 η

ρF |vrel | xA
(37)

φ = ψ2
V,A =

x2
V

x2
A

xA =
ψV,A

xV
(38)

xV =

(
x2

V
x2

A

)−0.25√
18 η

ρPaZ
w = φ−0.25

√
18 η

ρPaZ
w (39)

T(x)′ = 1− exp

[
−0.693 ·

(
xV φ−0.25

x50

)m]
(40)

In the case of the cylinders, it can be assumed that they are oriented in such a way that
they show their minimum projection area in the main flow direction (circular path in the
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hydrocyclone) in order to minimize the drag force. Therefore, for the radial movement of
the cylinders, the maximum projection area is included in the drag force (xA = d) [43].

The results depicted in Figure 11 show the corrected separation function and the PSD
of the feed, as well as the coarse fraction and the fine fraction, in 2D space.

Figure 11a shows the 2D separation function. It can be clearly seen from the isolines of
the same volume that the separation performance improves with increasing deformation
from sphere to plate. The reason for this is the increasing cross-section of the particles with
increasing deformation, which raises the drag force. This enables the separation of spheres
and plates. As can be seen in Figure 11b, the feed consists of spheres (d/l ratio = 1) and
plate-shaped cylinders (d/l ratio > 1) up to a minimum thickness of 200 nm. Applying the
separation function (Figure 11a) to the feed distribution results in the fine fraction and
coarse fraction. The separation is most clearly visible in the coarse material. Here, the peak
of the distribution shifts from a diameter of 4.4 µm and a length of 0.7 µm towards larger
diameters of 10.2 µm and shorter length of 0.3 µm, i.e., more plate-shaped particles. The
fines with the more spherical particles can be sent back to the mill for further deformation.
This enables a quasi-continuous operation of the process, in which the coarse material is
separated after fixed time intervals and the fine material is fed back into the mill with new
feed material.

6.2. Disc Separator: Fractionation with Respect to Size and Density Separation

Finally, we extend the classification to a size- and density-distributed particle ensemble
using a disc separator (disc stack centrifuge), where the separation depends on the particle
size as well as the density difference between the liquid and solid phase function (Figure 12).
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Details on the design and operating principle can be found in the literature [45,46].
The separation function of a disc separator can be estimated from [47]

T
(

x, ρp
)
=

(
ρp − ρ f

)
x2πω2(r3

a − r3
i
)

27
.

VTη f tanα
(41)

where ρp and ρf are the particle and fluid density, x the diameter of the particles, ra and ri
the outer and inner radius of the discs, ηf the fluid viscosity and α the angle of the discs;
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see Supporting Information, Table S3, for the values of the material properties. The angular
velocity ω is calculated from the rotational speed n by

ω = 2πn. (42)

Assuming that the feed is equally distributed among the individual disc gaps, the flow
rate of each disc gap

.
VT is expressed by

.
VT =

.
V
N

, (43)

where
.

V is the total feed volume flow and N the number of disc gaps. In the Support-
ing Information, Table S3, the material parameters and the dimensions of the centrifuge
are listed.

For the calculations, a size- and density-distributed particle system as shown in
Figure 13a is assumed. Using Equation (43) and the material and geometric data in the
SI, the separation function T(d, ρp) is then calculated (see Figure 13b). The corresponding
PSDs of the coarse and fine fraction are given in Figure 13c,d.
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As can be seen from the initial distribution in Figure 13a, the feed consists of
particles with a mean size of ~13 µm and a mean density of ~2650 kg

m3 . After classification
with the disc separator by applying Equation (43) to the feed distribution, the initial
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particle size and density distribution is classified into a coarse and fine fraction. While
the distribution of the feed dispersion lies within the range ~5 µm to ~21 µm and
~2050 kgm−3 to 3250 kgm−3, the distribution of the coarse fraction ranges from ~7 µm
to ~21 µm and ~2100 kgm−3 to ~3250 kgm−3. Therefore, all particles below 7 µm
and particles with a density smaller than 2100 kgm−3 are completely classified into
the fine fraction. Particles larger than 17 µm and particles with a density higher than
3200 kgm−3 can be found only the coarse fraction. Thus, the center of the coarse fraction
is shifted to ~14 µm and ~2700 kgm−3 and the center of the fine fraction is observed at
~11 µm and ~2600 kgm−3.

7. Conclusions

Based on the comprehensive mathematical framework for multidimensional particle
size and property distributions [1] and the ways of calculating these illustrated [20,21,48],
we describe one or higher dimensional separation processes for the fractionation of nD
property distributions. As a particular example, we discuss the separation processes of 2D
PSDs for nanorods, where we distinguish between a single separation step, two orthogonal
separations and consecutive and simultaneous separation, as well as non-orthogonal and
interacting separations.

A simultaneous separation according to two physical quantities can be described as
two consecutive separations in the case of two perpendicular acting separation forces. For
the two orthogonal separations, a fractionation according to sedimentation and electrical
mobility is chosen as example. This leads to the classification of the feed into four fractions.
The non-orthogonal superposition of two field forces is the most complex case and requires
full particle-trajectory calculations.

The mathematical framework is generalized to m-fold orthogonal separations on
multidimensional PSDs. The number of fractions depends upon the number and kind of
applied separation processes, where each separation process can be considered individually
with its individual coarse and fine fraction. This leads to a superposition of all separation
functions and effective separation functions for each fraction. As illustrative simplified
examples, we present shape-selective separations in hydrocyclone and density-dependent
separations in a disc centrifuge. Building on the presented framework, studies on the
chromatographic separations of nanoparticles are underway.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations10040252/s1, Figure S1: Number-weighted particle
size distribution q0 of the sphere (l = d) and the spheres deformed into cylinders with a thickness of
0.2 µm shown in a 3D diagram; Table S1: Geometry of Rietema hydrocyclones; Table S2: Constants k
and n for different hydrocyclone designs; Table S3: Material properties and geometrical data of the
disc separator. References [41,49] are cited in the Supplementary Materials.
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Abbreviations
µ electrical mobility
aZ centrifugal acceleration
B number of basins
b measure for the sharpness of separation
c coarse fraction
cV volume concentration
d diameter of a cylinder
DC hydrocyclone diameter
Eu Euler number
f fine fraction
f/f0 frictional ratio
FD drag force
FZ centrifugal force
l length
M mass
Mc,r r weighted amounts of particle
Mr,k moment
N number of disc gaps
nD n-dimensional
PSD particle size distribution
qr(x) r weighted property density distribution
Qr(x) r weighted property sum distribution
qr(x) charge
RW water flow ratio
Re Reynolds number
s sedimentation coefficient
T(x) separation efficiency
T(x)′ corrected separation efficiency
V volume
.

V flow rate
x particle diameter
xcut cut size
α angle
γi normalized mass fractions
∆P pressure drop
η solvent density
κ(x) a weighting function
Λi yield
ρ density
φ form factor
ω angular velocity
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