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Abstract: The enantioselective separation of synthetic cathinones via capillary electrophoresis with
ultraviolet detection (CE-UV) was successfully achieved using an acidic formate buffer with the
ionic liquid tetrabutylammonium chloride (TBAC) and beta-cyclodextrin (β-CD) as co-additives.
Synthetic cathinones (also known as “bath salts”) belong to a class of unregulated drugs labeled new
psychoactive substances (NPS). These drugs are readily available and can cause paranoia, confusion,
violence, and suicidal thoughts. The stereochemistry of synthetic cathinones, as with other drugs,
can influence their potency, toxicity, metabolism, and interaction with other molecules. Thus, it
is important to be able to effectively separate different types of synthetic cathinone as well as to
resolve enantiomers of each. A study of buffer additives, pH, and counter ions was conducted to
identify a system yielding complete enantioselective separation of synthetic cathinones by capillary
electrophoresis. Buffer additives TBAC and β-CD, when used separately, did not afford the desired
separation; however, when employed as co-additives, enantiomers of each of six different bath salt
standards (pentylone, 4-MEC, methylone, MDPBP, MDPV, and naphyrone) were resolved. Achieving
this separation of a complex mixture of closely related illicit drugs by CE using an ionic liquid
and cyclodextrin together, as buffer co-additives, may provide a new starting point from which to
approach the enantiomeric analysis of other drug samples as syntheses of NPS continue to rapidly
evolve to evade regulation and law enforcement.

Keywords: synthetic cathinones; illicit drugs; capillary electrophoresis; ionic liquid; cyclodextrin;
UV-Vis absorbance detection

1. Introduction

Capillary electrophoresis (CE) is a technique that separates analytes based on their size
and charge, leading to differences in migration time in an electric field [1]. It complements
gas chromatography (GC) and high-performance liquid chromatography (HPLC) separa-
tions and features quick separation times, low reagent consumption, small-volume samples,
and very high-resolution separations that can be easily automated [2,3]. It was first used
for amino acid and protein determinations but quickly found applications in other areas,
including pharmaceutical analysis and disease diagnosis [4–7]. Micellar electrokinetic capil-
lary chromatography, a variant of CE employing surfactant in the separation buffer to create
a micellar phase, was shown to be especially well suited to illicit drug determination [8,9].
The versatility of CE is, in part, due to the versatility of separation buffer compositions
that can be readily employed. By modifying the separation buffer to contain selective
reagents such as cyclodextrins, Nowak et al. [10] used CE with ultraviolet (UV) absorbance
detection for enantioselective determinations of two synthetic cathinone drugs, PVP (α-
pyrrolidinovalerophenone) and MDPV (methylenedioxypyrovalerone). Baciu et al. [11]
used CE with diode array detection (DAD) to identify mephedrone and its metabolites in
human hair.

Separations 2023, 10, 417. https://doi.org/10.3390/separations10070417 https://www.mdpi.com/journal/separations

https://doi.org/10.3390/separations10070417
https://doi.org/10.3390/separations10070417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/separations
https://www.mdpi.com
https://orcid.org/0000-0003-3099-6171
https://doi.org/10.3390/separations10070417
https://www.mdpi.com/journal/separations
https://www.mdpi.com/article/10.3390/separations10070417?type=check_update&version=2


Separations 2023, 10, 417 2 of 11

There is interest in being able to detect new psychoactive substances (NPS) such
as synthetic cathinones (also known as bath salts) in order to support their regulation
and to enable law enforcement to prosecute their sale and use. These drugs have no
legal medical applications but are designed to provide cheap mimics of the effects of
cathinone [12], which is a naturally occurring, beta-ketoamphetamine alkaloid found in the
leaves of the Catha edulis (or “khat”) plant, native to the horn of Africa, East Africa, and
the Middle East [13]. The chemical structure of cathinone and six of its illegal, synthetic
analogues is shown in Figure 1. Between 2005 (the first year a synthetic cathinone was
reported to the European Union Early Warning System) and 2018, synthetic cathinones
constituted 20% of all NPS reported (139 of 687 total drugs) [14]. The similar yet ever-
evolving structures of synthetic cathinones make their detection challenging, particularly
as they are commonly sold as mixtures of several analogues. Furthermore, the different
enantiomers of a given synthetic cathinone exhibit differences in their potency, toxicity,
metabolism, and interactions with other molecules, thus compelling the analyst to devise
enantioselective separation methods for these drugs [15].
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Cyclodextrins (CDs) are commonly employed as chiral selectors in enantioselective
separations of drugs by capillary electrophoresis [16,17]. These are cyclic saccharide poly-
mers with a toric, truncated cone structure. They have a hydrophobic interior cavity and
a hydrophilic outer surface and are formed during Bacillus or additional bacteria strains’
starch digestion via cyclodextrin glycosyl transferase (CGTase) [13]. Cyclodextrins are com-
mercially available, versatile, easily derivatized, and have been extensively studied. The
three main types—alpha (α-CD), beta (β-CD), and gamma (γ-CD)—differ in the number
of glucopyranose molecules they contain: six, seven, and eight, respectively. They can be
derivatized in many ways to alter their charge, cavity size, and the nature of their interac-
tions with food, drug, and biological analytes [18]. There are two primary mechanisms of
interaction between a CD and an enantiomeric analyte to form a transient complex (see
Figure 2 for a simplified representation of β-CD with 4-MEC). In the first, the analyte’s
hydrophobic portion is included in the cyclodextrin’s hydrophobic cavity. The second
consists of dipole–dipole interactions or hydrogen bonding between the polar moieties of
the analyte and hydroxyl groups on the cyclodextrin rim [19,20]. Cyclodextrin molecules
experience differential interactions with the two “hands” of the molecule to form a more
stable complex with one of the two enantiomers, thus effecting enantioseparation. The
transient analyte–cyclodextrin complex that results has a unique migration time based
on variations in the complexation mechanism and pKa shift [10]. For example, β-CD
was used as a buffer additive to facilitate the chiral determination of four cathinones in
urine by CE-UV [21]. However, cyclodextrins alone may not be able to provide sufficient
resolution in cases where CE separations of complex mixtures are pursued, and so other
buffer additives may be necessary.
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Other buffer additives used to improve resolution in CE separations include ionic
liquids (ILs), which are salt-like compounds consisting of organic cations and inorganic
or organic anions that exist in liquid phase below 100 ◦C [22]. Ionic liquids have high
conductivity, low vapor pressure, good solubility, and are classified as green chemistry
solvents [23], although they are known to be highly toxic to aquatic systems [24]. Ionic
liquids can significantly affect separations due to their interaction with deprotonated silanol
groups on the inner capillary surface (thus reducing or even reversing electroosmotic flow),
their interaction via ion-pairing type associations with analytes (thus affecting the analytes’
net size and charge, and hence, their mobilities), and by increasing the ionic strength and
viscosity of the separation buffer or background electrolyte (thus reducing electroosmotic
flow and increasing migration times). Important predecessors to the use of ionic liquids in
CE separations included surfactants, such as cetyltrimethylammonium bromide (CTAB)
and tetradecyltrimethylammonium bromide (TTAB), which were first used to modify
electroosmotic flow in the 1980s [25,26]. Since then, many applications of ionic liquids as
buffer additives in CE have been developed and reviewed [27,28].

The effects of ILs as buffer additives in CE may be further enhanced when they
are used in conjunction with CDs [29]. However, the nature of interactions between
analyte and buffer additives (and between buffer additives themselves) in such systems
is complex, and so separation conditions must be carefully optimized. A competitive
inhibition mechanism was proposed for the interaction of aryl propionic acid analytes
with β-CD chiral selectors in the presence of an ionic liquid [30]. Given the competitive
nature of interactions in buffer systems with co-additives, synergistic effects are predicted
to occur with lower concentrations of CD, whereas antagonistic effects may occur at higher
CD concentrations [31]. For example, Wahl and Holzgrabe achieved enantioseparation of
ephedrine, pseudoephedrine, and methylephedrine by CE using a 75 mM phosphate buffer
(pH 1.5) containing amino acid-based ILs (125 mM) and β-CD (30 mM) [32].

To capitalize on such synergistic effects for the challenging enantiomeric separation
of six synthetic cathinones (those pictured in Figure 1), and to establish optimized CE
conditions employing low cost, readily accessible buffer reagents, we employed a formate
separation buffer with co-additives tetrabutylammonium chloride (TBAC) and β-CD. As
seen in Figure 3, TBAC is an achiral ionic liquid, which is commonly used as an alkylating
agent, a phase transfer catalyst, and an ion-pairing agent. Acting separately, the ionic
liquid (TBAC) and cyclodextrin (β-CD) buffer additives were unable to provide adequate
resolution of the complex drug samples, but acting together, they enabled a successful
enantiomeric separation. By coupling ultraviolet (UV) absorbance detection with CE, we
rendered fluorescent analyte derivatization unnecessary. To our knowledge, this is the
first chiral separation of a mixture of six synthetic cathinones including pentylone, 4-MEC,
methylone, MDPBP, MDPV, and naphyrone. Optimization of the CE-based separation
method, as described herein, included a careful study of the impact of the following: TBAC
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concentration; applied separation voltage; capillary dimensions (and injection volumes);
capillary temperature; and background electrolyte composition (including buffer species
and other additives such as organic solvent and phytic acid). Given the vast and growing
number of synthetic cathinones in circulation, the most significant advance represented by
this simple but effective CE-UV method relative to other illicit drug separation methods is
its anticipated utility (and adaptability) for the analysis of other mixtures of evolving bath
salt samples in the future.
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2. Materials and Methods

Ammonium formate (99%), formic acid (99%), and β-cyclodextrin (β-CD, 98%) were
purchased from Acros Organics (Fair Lawn, NJ, USA). Tetrabutylammonium chloride
(TBAC, >98.0%) was purchased from TCI (Portland, OR, USA). Sodium phosphate dibasic
(ACS grade), phosphoric acid (ACS grade), and sodium bicarbonate (ACS grade) were
purchased from Fisher Scientific (Suwanee, GA, USA). Boric acid (>99.5%) was purchased
from Sigma (Jaffrey, NH, USA). All synthetic cathinones were purchased (as 1 mg/mL
solutions in methanol) from Cerilliant (Round Rock, TX, USA). Aqueous solutions were
prepared using deionized water from a Milli-Q Reagent Water System (Billerica, MA, USA).

Separation buffers were prepared by dissolving the appropriate mass of reagent in
water before adjusting the pH, quantitatively transferring the resulting aqueous solution to
a volumetric flask and adding water to the volume fill line. Formate separation buffer was
prepared by dissolving the appropriate quantity of ammonium formate in water, followed
by the addition of aliquot(s) of β-CD and TBAC stock solutions prior to pH adjustment
to 3.1 by the dropwise addition of 1.0 M formic acid solution. The final concentrations of
buffer additives β-CD and TBAC in the formate separation buffers were as specified in
Section 3. To minimize the possibility of solvent-based UV-spectral interferences, aliquots
of synthetic cathinone standards (in methanol, as received), individually or combined to
create cathinone mixtures, were vacuum centrifuged at ambient temperature (using an
Eppendorf Vacufuge Concentrator 5301) until dry, before reconstituting with ultrapure
water to a concentration of 1 mg/mL in each of the synthetic cathinones.

Capillary electrophoresis analysis was performed on a P/ACE MDQ CE with 32 Karat
software (Beckman Coulter, Redwood City, CA, USA). Uncoated, fused silica capillaries
(Polymicro Technologies, Phoenix, AZ, USA) of various lengths and inner diameters were
used. New capillaries were conditioned prior to use by pressure-flushing sequentially with
0.1 M NaOH, water, and buffer for 60 min each. Thereafter, capillaries were reconditioned
by pressure-flushing sequentially with 0.1 M NaOH, water, and buffer for 10 min each
(before a new sequence) or 1 min each (between runs). Sample injection was achieved by
pressure for 5 s at 0.5 p.s.i. (3450 Pa) unless otherwise noted. Injections were conducted
in triplicate in most instances (or at least in duplicate, even for those experiments with
especially long run times, for example) to ensure reproducibility. CE detection was achieved
via on-column, UV absorbance at 214 nm, with a detection window created by removing
a small section of polyimide coating from the exterior of the capillary 10.0 cm from the
outlet end.
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3. Results & Discussion
3.1. Enantiomeric Separations of Synthetic Cathinones by Capillary Electrophoresis

Novel psychoactive substances (NPS) may be readily determined by separation with-
out regard for their enantiomeric composition, and although this may be a suitable approach
when total drug concentrations are sought, it is inadequate when more detailed informa-
tion about relative proportions of chiral constituents is needed. For example, it has been
reported that synthetic cannabinoids are not typically sold as racemic mixtures whereas
synthetic cathinones are [33]. With an interest in developing a versatile, simple, and cost-
effective separation method suitable for a mixture of six synthetic cathinones (pentylone,
4-MEC, methylone, MDPV, naphyrone, and MDPBP), such that future adaptation of the
method for evolving synthetic cathinone structures would be possible, we began by explor-
ing the effect of β-CD as the sole buffer additive in a CE-UV method. When using a 50 mM
ammonium formate buffer at pH 3.1 with 12 mM β-CD added, a mixture of just three of the
target analytes (MDPV, MDPBP, and naphyrone) yielded poor signal and no enantiomeric
resolution (Figure 4, bottom—blue trace). This result was somewhat unexpected as β-CD is
a commonly encountered, stand-alone chiral selector [34]. However, upon addition of the
ionic liquid tetrabutylammonium chloride TBAC as a co-additive, it was possible to resolve
enantiomers of tertiary amine-based synthetic cathinones MDPBP, MDPV, and naphyrone
(Figure 4, top—orange trace). It is possible that the improved enantiomeric resolution
obtained with co-additives β-CD and TBAC was due, at least in part, to the effect of the
ionic liquid reducing interactions between the analytes and charged sites on the capillary
wall, while not disrupting chiral interactions between β-CD and the drug analytes.
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Figure 4. Electropherograms of a mixture of tertiary synthetic cathinones (MDPBP, MDPV, and
naphyrone) at 1 mg/mL each, prepared in ultrapure water. Lower (blue) trace: 12 mM β-CD sole
buffer additive; upper (orange) trace: 25 mM TBAC + 12 mM β-CD co-additives, in a 50 mM
ammonium formate separation buffer (pH 3.1). Other CE conditions: applied voltage = 20 kV;
absorbance detection at 214 nm; capillary dimensions = 50 µm × 50 cm × 60 cm (i.d. × effective
length × total length); and pressure injection (5 s at 0.5 psi = 5 nL sample volume).

3.2. TBAC Concentration Study

As buffer additives in CE, ionic liquids (ILs) can serve multiple roles: to reduce
or reverse electroosmotic flow (due to IL interactions with the charged capillary wall,
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along with IL contributions to increased ionic strength and viscosity of the background
electrolyte) and to alter the electrophoretic mobility of analytes (due to ion-pairing and
electrostatic associations with analytes) [23]. We chose to use TBAC as the IL in this study
due to its ready availability, cost effectiveness, low toxicity, and high thermal stability.
Separations were conducted using 50 mM formate buffer (pH 3.1) containing 12 mM β-CD,
with 25 mM, 50 mM, or 100 mM TBAC as co-additive. The optimal TBAC concentration
was 50 mM, as it enabled partial resolution of enantiomers of all six drugs of interest
(Figure 5). Longer migration times and greater resolutions were achieved for tertiary
amine synthetic cathinones (MDPBP, MDPV, and naphyrone) compared to secondary
amine synthetic cathinones (pentylone, 4-MEC, and methylone). At a lesser concentration
of TBAC (25 mM), migration times were reduced, as expected. However, this came at
the expense of resolution, which was insufficient for the mixture of synthetic cathinones
studied here. At a greater concentration of TBAC (100 mM), enantiomeric resolutions
were increased but this came at the expense of unacceptably long migration times (for
example, see Figure S1). Furthermore, higher concentrations of ionic liquid buffer additives
have been shown to cause increased peak tailing [31]. In the present work, it is likely
that electrodispersion is the cause of poor peak shape at higher concentrations due to a
mismatch between the mobility of the analyte complex and co-ions in the running buffer,
and so, in an effort to optimize these various parameters (peak shape, migration time, and
resolution), a final co-additive concentration of 50 mM TBAC was chosen and used in
subsequent experiments.

Absolute values of migration times differed for synthetic cathinone peaks arising
from single-drug standard samples relative those in drug mixtures. Compare, for example,
Figure 5A(ii) for a mixture of secondary amine synthetic cathinones, pentylone, 4-MEC,
and methylone, to Figure 5A(iii)—pentylone alone, Figure 5A(iv)—4-MEC alone, and
Figure 5A(v)—methylone alone; or compare Figure 5A(vi) for a mixture of tertiary amine
synthetic cathinones, MDPBP, MDPV, and naphyrone, to Figure 5A(vii)—MDPBP alone,
Figure 5A(viii)—MDPV alone, and Figure 5A(ix)—naphyrone alone. Purely electrostatic
interactions between the (positively charged) synthetic cathinones and (positively charged)
ionic liquid are not favored, but differences in associations between cathinones and capillary
wall sites (affected by the presence of TBAC), and potentially competitive associations
between β-CD and cathinones in a mixed sample (as opposed to single-cathinone samples),
may contribute to these observed differences in peak migration times. Identification of
peaks in electropherograms of mixed drug samples should, therefore, be conducted not only
by comparison to single-drug standards but also by spiking or standard addition methods.
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Figure 5. Electropherograms of synthetic cathinones (1 mg/mL each), employing TBAC (50 mM)
and β-CD (12 mM) as buffer co-additives in a 50 mM ammonium formate separation buffer (pH 3.1)
to effect enantiomeric separations. (A): (i, pink), Six-drug mixture of methylone, 4-MEC, pentylone,
MDPBP, MDPV, and naphyrone; (ii, orange), mixture of secondary amine synthetic cathinones
methylone, 4-MEC, and pentylone; (iii, gray), pentylone alone; (iv, yellow), 4-MEC alone; (v, purple),
methylone alone; (vi, green), mixture of tertiary amine synthetic cathinones MDPBP, MDPV, and
naphyrone; (vii, blue), MDPBP alone; (viii, red), MDPV alone; and (ix, black), naphyrone alone.
(B): Expanded view of (A) (i, pink), six-drug mixture. Other CE conditions: applied voltage = 20 kV;
absorbance detection at 214 nm; capillary dimensions = 50 µm × 50 cm × 60 cm (i.d. × effective
length × total length); and pressure injection (5 s at 0.5 psi = 5 nL sample volume).

3.3. Effects of Background Electrolyte, Capillary Dimensions, Temperature, and Separation Voltage

In an effort to further improve enantioseparations of the six-drug mixture of synthetic
cathinones, we studied the effects of other CE operating parameters, including background
electrolyte, capillary temperature and dimensions, and separation voltage. An applied
voltage of 20 kV proved optimal; lesser separation voltages (e.g., 5 kV) led to an undesirable
increase in analyte migration time with no improvement in enantiomer resolution, while
greater separation voltages (e.g., 30 kV) led to decreased resolution (with decreased migra-
tion time). At the higher applied voltage of 30 kV, we also conducted an experiment with a
smaller capillary (20 µm inner diameter × 30 cm effective length × 40 cm total length), but
this only further degraded the separation (with very short migration times near 5 min).

Additional experiments with different sizes of capillary were conducted to validate
our initial selection of a 50-µm i.d. × 50-cm effective length × 60-cm total length uncoated,
fused silica capillary, as was successfully employed in Figure 5. When operating at the
optimized separation voltage of 20 kV, a smaller capillary inner diameter (20 µm) but
unchanged length (50-cm effective length × 60-cm total length) led to no observed signal,
presumably due to reduced sensitivity associated with reduced path length for on-column
UV absorbance detection. Additionally, applying the same injection pressure and time
(0.5 p.s.i. for 5 s) on the smaller 20-µm i.d. capillary would have resulted in an injection
volume of only 0.13 nL (compared to 4.95 nL for the initial 50-µm i.d. capillary), and this
small quantity of sample would have compounded the detection sensitivity limitations.
Using a shorter capillary (30-cm effective length × 40-cm total length) but retaining the
initial inside diameter of 50-µm led to reduced resolution, as expected (due to shorter
analysis times); however, it also led to reduced sensitivity despite maintaining the same
path length (same inside diameter) with a larger injection volume (7.4 nL) arising from the
unchanged pressure injection conditions applied to the shorter capillary. The exact cause of
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the observed decrease in peak height in this instance is unclear. It is possible that the larger
volume injection resulted in enhanced electrodispersion effects, which were manifest in
reduced peak heights.

Initial experiments were conducted with the capillary thermostatted at 25 ◦C, but capil-
lary temperatures of 15 ◦C and 35 ◦C were also studied. Migration time increased by nearly
30 min and enantiomer separation was not enhanced at the lower temperature, whereas
both migration time and enantiomer separation decreased at the higher temperature. As
such, we used 25 ◦C as the optimal operating temperature throughout these studies.

To complete our optimization studies, a variety of different background electrolyte
systems were tested, but none outperformed the 50 mM formate (pH 3.1) buffer with
TBAC and β-CD as co-additives, as was successfully used in Figure 5. For example, a
simple phosphate (150 mM)—borate (1 mM) buffer system (pH 6.1) with no added TBAC
or β-CD was tested. Boric acid was included to simultaneously lower the zeta potential,
electroosmotic flow, and eddy migration as it features a higher pKa than silica groups [35].
Moreover, borate is known to form complexes with other species containing hydroxyl
groups and polysaccharides, to improve their separation [36]. However, this system was
incapable of resolving even a two-drug mixture (1 mg/mL each of 4-MEC and MDPBP).
Using this buffer system, an intense signal was observed for MDPBP alone at concentrations
between 0.05 mg/mL and 1 mg/mL. However, no linear relationship between peak area
and drug concentration could be established under these conditions, and of course, no
resolution of MDPBP enantiomers could be achieved in such a buffer system void of chiral
selective agents. A review [16] of the utility of a wide array of different cyclodextrins for
the chiral analysis of drugs included mixed cyclodextrin systems, which were shown to
increase enantiomer resolution in some cases based on differences in complexation with
the CDs of different size or charge. However, the addition of 3 mM α-CD as a supplement
to the 12 mM β-CD chiral selective agent did not enhance the enantiomeric separation of
the mixture of six drugs, nor did the presence of 12 mM α-CD as the sole chiral selective
agent in the present work.

Organic solvents as buffer additives provide the analyst with additional options for
selectivity and improved resolution in some systems. For example, Bean et al. [37] found
that acetonitrile (ACN) as a buffer additive greatly improved sorghum and maize protein
separation due to the additive’s ability to modify the capillary wall zeta potential and
electroosmotic flow. The organic solvent as buffer additive can also improve solubility for
weakly hydrophobic analytes while decreasing self-association and drug–drug interactions
within complex samples. As such, we added 1% ACN to a separation buffer of 150 mM
phosphate (pH 6.1) without any TBAC and β-CD and found that separation of a six-drug
mixture improved (relative to the 150 mM phosphate buffer without ACN). Still, complete
resolution of the six-drug mixture was not possible, nor was enantiomeric resolution
possible when ACN was used as a buffer additive in the absence of the TBAC and β-CD
co-additives (see, for example, Figure S2). Other organic solvents that have found use
as CE buffer additives and that share the essential characteristics of ACN in this role
include isopropanol, ethanol, and methanol, among others. The shared characteristics
of these potential buffer modifiers include low viscosity and vapor pressure, miscibility
with aqueous buffers, and optical transparency at the analytes’ absorbance maximum
(214 nm in these studies). An exhaustive study of organic solvents as buffer additives for
the separation of synthetic cathinones remains to be conducted and could possibly provide
further improvements to the method in the future. This would be especially helpful if the
method needs to be modified to suit mass spectrometry detection.

Lastly, we explored the effect of phytic acid as a buffer additive. Phytic acid is known
to improve capillary electrophoresis sensitivity and resolution because the dodecasodium
salt of inositol-hexaphosphoric acid retains a polyanionic structure across a large pH range,
to allow for interaction with cationic analytes [38]. With 10 mM phytic acid added to
the previously studied 150 mM phosphate background electrolyte (pH 6.1) system, the
six-drug mixture was unresolved (with just three distinct peaks observed in the resulting
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electropherogram, as see in Figure S2). Again, in the absence of TBAC and β-CD co-
additives, enantiomeric resolution could not be achieved. Although these and previous
background electrolyte studies were not intended to exhaustively survey the effects of all
possible combinations of buffer additives on the enantiomeric separation of a six-drug
mixture containing pentylone, 4-MEC, methylone, MDPBP, MDPV, and naphyrone, they
served to affirm our selection of 50 mM formate (pH 3.1) with TBAC (50 mM) and β-CD
(12 mM) co-additives as an effective buffer system for synthetic cathinone analysis by CE.

4. Conclusions

By optimizing the combination of the ionic liquid tetrabutylammonium chloride TBAC
with β-CD as co-additives in a simple formate buffer system, we have demonstrated im-
proved resolution of the enantiomers of six synthetic cathinones by CE with UV absorbance
detection. To our knowledge, the chiral separation of this mixture of synthetic cathinones
using this combination of buffer co-additives has not been previously demonstrated. How-
ever, even greater value lies in the promise of this method being readily applied to complex
mixtures of new, rapidly evolving variations on these NPS structures, which pose chal-
lenges to analytical labs, clinicians, and law enforcement personnel. Importantly, it is the
combination of 50 mM TBAC with 12 mM β-CD that proved effective; neither additive
on its own could yield the desired resolution. CE-UV experiments using various other
background electrolyte systems without chiral selector or ionic liquid additives were also
conducted in an effort to validate the effectiveness of the TBAC—β-CD system. Further
work is needed to improve (reduce) the length of time required for analysis of synthetic
cathinone mixtures by CE employing the optimized formate—TBAC—β-CD system. Al-
though UV absorbance detection proved convenient for these analytes, peak identification
requires confirmation by spiking or standard additions rather than direct comparison to
electropherograms of single-drug samples. Furthermore, other classes of NPS, including
synthetic cannabinoids, may be well suited to analysis by the method described herein.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations10070417/s1, Figure S1: Increase in TBAC (100 mM
TBAC) increases migration time for secondary amine synthetic cathinones; Figure S2: Comparison of
the effects of buffer additives: 1% acetonitrile and 10 mM phytic acid.
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Substituted Cathinones Studied by Capillary Electrophoresis Supported by Density Functional Theory Calculations. J. Chromatogr.
A 2018, 1580, 142–151. [CrossRef]

11. Baciu, T.; Borrull, F.; Calull, M.; Aguilar, C. Enantioselective Determination of Cathinone Derivatives in Human Hair by Capillary
Electrophoresis Combined In-Line with Solid-Phase Extraction. Electrophoresis 2016, 37, 2352–2362. [CrossRef]

12. German, C.L.; Fleckenstein, A.E.; Hanson, G.R. Bath Salts and Synthetic Cathinones: An Emerging Designer Drug Phenomenon.
Life Sci. 2014, 97, 2–8. [CrossRef] [PubMed]

13. Geresu, B. Khat (Catha edulis F.) and Cannabinoids: Parallel and Contrasting Behavioral Effects in Preclinical and Clinical Studies.
Pharmacol. Biochem. Behav. 2015, 138, 164–173. [CrossRef] [PubMed]

14. Soares, J.; Costa, V.M.; de Lourdes Bastos, M.; Carvalho, F.; Capela, J.P. An Updated Review on Synthetic Cathinones. Arch.
Toxicol. 2021, 95, 2895–2940. [CrossRef]

15. Almeida, A.S.; Silva, B.; de Pinho, P.G.; Remião, F.; Fernandes, C. Synthetic Cathinones: Recent Developments, Enantioselectivity
Studies and Enantioseparation Methods. Molecules 2022, 27, 2057. [CrossRef]

16. Saz, J.M.; Marina, M.L. Recent Advances on the Use of Cyclodextrins in the Chiral Analysis of Drugs by Capillary Electrophoresis.
J. Chromatogr. A 2016, 1467, 79–94. [CrossRef]

17. Peluso, P.; Chankvetadze, B. Native and Substituted Cyclodextrins as Chiral Selectors for Capillary Electrophoresis Enantiosepa-
rations: Structures, Features, Application, and Molecular Modeling. Electrophoresis 2021, 42, 1676–1708. [CrossRef]

18. Zhu, Q.; Scriba, G.K.E. Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography:
Fundamentals and Applications. Chromatographia 2016, 79, 1403–1435. [CrossRef]

19. Saha, S.; Roy, A.; Roy, K.; Roy, M.N. Study to Explore the Mechanism to Form Inclusion Complexes of β-Cyclodextrin with
Vitamin Molecules. Sci. Rep. 2016, 6, 35764. [CrossRef] [PubMed]

20. Chankvetadze, B.; Scriba, G.K.E. Cyclodextrins as Chiral Selectors in Capillary Electrophoresis: Recent Trends in Mechanistic
Studies. TrAC Trends Anal. Chem. 2023, 160, 116987. [CrossRef]

21. Pérez-Alcaraz, A.; Borrull, F.; Aguilar, C.; Calull, M. An Electrokinetic Supercharging Approach for the Enantiodetermination of
Cathinones in Urine Samples by Capillary Electrophoresis. Microchem. J. 2020, 158, 105300. [CrossRef]
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