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Abstract: This review provides an overview of the most recent developments involving materials for
solid-phase extraction applied to determine organic contaminants. It mainly concerns polymer-based
sorbents that include high-capacity, as well as selective sorbents, inorganic-based sorbents that include
those prepared using sol-gel technology along with structured porous materials based on inorganic
species, and carbon nanomaterials, such as graphene and carbon nanotubes. Different types of
magnetic nanoparticles coated with these materials are also reviewed. Such materials, together with
their main morphological and chemical features, are described, as are some representative examples
of their application as solid-phase extraction materials to extract organic compounds from different
types of samples, including environmental water, biological fluids, and food.

Keywords: materials; solid-phase extraction; organic compounds; silica; polymeric; carbonaceous;
porous; magnetic; (nano)particles; selectivity; capacity

1. Introduction

Sample treatment is still one of the main challenges in the development of analytical methods to
determine organic compounds from different matrices. Therefore, resourcing from sample preparations
that include preconcentration of the compounds and the elimination of matrix interferents is still to be
recommended before any chromatographic determination.

Over time, solid-phase extraction (SPE) has emerged as the most commonly used and successful
sample extraction technique to extract compounds from liquid matrices effectively. One of its main
advantages is its versatility since a wide range of materials that have different properties and types of
interaction with the compounds have become available [1].

Silica-based sorbents and those modified with C18, C8, or NH2 were the first to be applied to
SPE. However, they have a number of drawbacks, such as instability at extreme pHs and the activity
of residual silanols. Carbon-based sorbents such as graphitized carbon blacks (GCBs) and porous
graphitic carbons (PGCs) then emerged, presenting high (and even irreversible) retention of some
compounds. Polymer-based sorbents appeared later to overcome the disadvantages of previous
sorbents and have remained one of the main developments in SPE, with continuous progress being
made over recent decades. Polymeric sorbents combine outstanding morphological properties that
promote capacity and retention with tuned chemical properties that allow suitable interactions with
many types of compounds and show enhanced stability under several SPE conditions. They might
today be described as the most well-established technology for SPE, although several developments
with these types of material have also been made with regards to the tuning of their properties,
interactions, and fields of application.
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In recent years, however, other developments in sorbent technology apart from those involving
polymer-based materials have also taken place. These novel materials include organic-inorganic hybrid
materials, metallic nanoparticles, metal-organic frameworks, carbon nanomaterials, among others.

The aim of this review is to provide an overview of the latest developments in sorbent technology
for SPE. There are different classifications for presenting these materials, although we organized
the present review in accordance with the typical classification of sorbents for SPE that tend to be
silica-based, carbon-based, and polymer-based. Nevertheless, novel strategies in morphology and
chemistry that have emerged recently are also thoroughly discussed. As the field is very large and
promising, we merely describe the materials and their main properties, providing some illustrative
examples for each type of material as a representative fraction of the research published in this field.
We encourage readers to consult specific reviews of each type of material to learn more about the
details of the synthetic approaches used, their characterization, features, and applications.

2. Polymer-Based Materials

Polymer based-materials have been one of the main developments in SPE. This is mainly because
of their morphological (high specific surface area –SAA- and porosity) and chemical features that result
from the diversity of synthetic routes that can be applied, introducing various chemical moieties into
the polymer framework. Indeed, although these materials are long-established and have been applied
over the years, research in this area is continuously growing. Evidence of this is the fact that several
polymeric sorbents are commercially available and widely applied among the scientific community
for various applications, including a wide range of compounds extracted from different fields (food,
biological, environmental, etc.), together with others that have been developed in-house. Table 1 shows
some selected examples of the applications of polymeric-based sorbents. Comprehensive information
on the application of these materials can be found in previous reviews and book chapters on the
subject [2–5].

Different types of polymer-based sorbents have been developed to accommodate high-capacity or
high-selectivity properties, or a combination of both. The following sections describe these and discuss
some examples of their applications.
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Table 1. Examples of the applications of polymer-based materials in solid-phase extraction.

Type Material SPE Mode Compounds Sample Instrumental Technique Reference

High capacity PLRP-S off-line drugs of abuse wastewater LC-MS/MS [6]
Bond Elut Plexa dispersive antibiotic milk LC-MS/MS [7]

Strata X off-line pharmaceuticals wastewater LC-MS/MS [8]
Oasis HLB off-line sweeteners wastewater LC-MS/MS [9]
Oasis HLB in-line drugs urine CE-MS [10]

Lichrolut EN off-line EDCs 1 urine, blood, milk GC-MS [11]
XAD-4 modif. NO2/COCH3/NH2/COOH on-line µSPE pesticides urine, oil, wastewater LC-UV [12]

PS-DVB modif. benzoyl on-line pesticides river LC-UV [13]
NVIm-DVB 2 on-line pesticides river LC-UV [14]

MAA-EDMA 3 off-line nerve agents & organophosphorus organic matrix GC-MS [15]
HXLPP 4 on-line pesticides river, wastewater LC-UV [16]

HXLPP (HEMA) 5 off-line pesticides river, wastewater LC-UV [17]
Selective MIP (ciprofloxacin) off-line antibiotics lake, wastewater LC-MS/MS [18]

MIP (caffeic acid) off-line polyphenols Oil, wastewater LC-UV [19]
MIP (bisphenol A) off-line bisphenol A sediments, milk, oil, urine LC-DAD [20]

MIP (insulin) off-line insulin plasma LC-DAD [21]
MIP (PAHs) off-line PAHs 6 seawater GC-MS [22]

SupelMIP NSAIDs off-line NSAIDs 7 wastewater LC-MS/MS [23]
SupelMIP AG off-line aminoglycosides milk LC-MS/MS [24]

AffiMIP-Phenolic off-line PCBs 8, PBDEs 9 animal tissues GC-MS, LC-MS [25]
Oasis MCX off-line drugs of abuse wastewater, urine LC-MS/MS [26]

Strata-X-WC off-line toxins urine LC-TOF 10 [27]
Oasis WAX off-line PFCAs 11 river, groundwater, drinking LC-MS/MS [28]

Bond Elut Plexa SAX off-line herbicides stormwater LC-MS/MS [29]
HXLPP-WAX 4 on-line pharmaceuticals river, wastewater LC-UV [30]
HXLPP-WCX 4 off-line pharmaceuticals river, wastewater LC-MS/MS [31]

DEAEMA-DVB-SAX 12 off-line pharmaceuticals urine LC-UV [32]
GMA-DVB-SCX 13 off-line alkylate purines river, wastewater LC-UV [33]

1 EDCs: endocrine disrupting compounds; 2 NVIm-DVB: N-vinylimidazole-divinylbenzene; 3 MAA-EDMA: methacrylic acid-ethyldimethacrylate; 4 HXLPP: hyper-crosslinked sorbent
prepared by precipitation polymerization; 5 HXLPP (HEMA): HXLPP including hydroxyethylene dimethacrylate; 6 PAHs: polycyclic aromatic compounds; 7 NSAIDs: non-steroidal
anti-inflammatory drugs; 8 PCBs: polychlorinated bisphenyls; 9 PBDEs: polybrominated diphenyl ethers; 10 TOF: time-of-flight; 11 PFCAs: polyfluorinated carboxylic acids; 12 DEAEMA:
2-(diethylamino)ethyl methacrylate; 13 GMA: glycidyl methacrylate.
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2.1. High-Capacity Polymeric Materials

Conventional polymeric sorbents are crosslinked polymers based on poly(styrene-divinylbenzene)
(PS-DVB), which has a hydrophobic structure and SSA of up to 500 m2/g. The hydrophobic structure of
the PS-DVB polymer interacts with the analytes through the Van der Waals forces and π-π interactions
of the aromatic rings. However, the hydrophobic structure shows low retention toward the polar
analytes. This can be overcome by introducing polar moieties into the sorbents to promote polar
interactions with the analytes and improve retention. The SSA can also be increased (ca. 1000 m2/g) by
further crosslinking the polymeric network to obtain hyper-crosslinked (HXL) polymers, which show
enhanced retention capacity.

Hydrophilicity can be introduced by chemically modifying the hydrophobic polymer (i.e., PS-DVB)
with polar functional groups or by copolymerizing with polar monomers. Figure 1 shows the typical
synthetic approach used to obtain hydrophilic polymeric sorbents through chemical modification (A)
and copolymerization (B).
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Figure 1. Synthetic approaches to prepare hydrophilic polymeric sorbents: by chemical modification
(A) and by copolymerization with a hydrophilic monomer (B).

With regard to the chemical functionalization approach, the PS-DVB polymeric network is
chemically modified with a polar moiety framed in a Friedel-Craft reaction. Using this approach,
polymeric materials with optimal morphological features can be obtained from the precursor. Strata-X
(Phenomenex) is a commercially available sorbent based on PS-DVB functionalized with pyrrolidone
moieties that confer hydrophilic properties. In one application, Strata-X was applied to extract a group
of pharmaceuticals from wastewater in combination with liquid chromatography (LC) followed by
mass spectrometry in tandem (MS/MS), achieving satisfactory results in terms of recovery (50–117%)
and low matrix effect (−30–30%) [8]. A PS-DVB polymer was functionalized with a benzoyl moiety
in order to give the obtained sorbent polar properties while maintaining the same morphological
properties (i.e., SSA 900 m2/g). Packed in the on-line SPE followed by LC with UV detection (LC-UV),
this sorbent successfully applied to extract a group of pesticides in river water and achieved better
results than those obtained with the non-modified resin [13]. Recently, XAD-4 resin (PS network) was
modified with amine, nitro, acetyl, and carboxyl groups. These materials were then applied in the
on-line µSPE (5 mg) followed by LC-UV to determine a group of 22 analytes covering different polarities.
The recovery results were again compared to commercial sorbents and revealed that XAD-COOH
was better than all the other sorbents tested. XAD-COOH was also applied to analyze oil, hospital
wastewater, and urine samples with successful results [12].

As for the copolymerization approach, this consists of copolymerizing a hydrophilic monomer (i.e.,
N-vinylpyrrolidone—NVP-, methacrylic acid—MAA-, 4-vinylpyridine—4VP-, etc.) with a crosslinking
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agent (DVB, ethyledimethacrylate—EDMA-, etc.). This strategy has been extensively applied to
generate both commercial and in-house SPE sorbents. Although different hydrophilic polymeric
materials are available, Oasis HLB (Waters), which is a copolymer of NVP-DVB with SSA of 800 m2/g,
has become the most popular due to its capacity and robustness as reported in many applications [2,5].
Oasis HLB was selected for a comparative study that included six sorbents with different SSAs and
hydrophilicity features for determining a group of artificial sweeteners in water samples followed
by LC-MS/MS. This selection was based on the better results achieved (recovery between 73–112%)
compared to the other materials tested [9]. This type of sorbent has been widely used in multi-residue
analysis due to its generic features that are capable of retaining compounds with a broad range of
properties. For instance, a multiresidue method to determine more than 1000 licit and illicit drugs
from wastewater and surface water was developed based on SPE using the Oasis HLB, followed by LC
with a quadrupole-time of flight (QToF) detector [34].

Despite the availability of commercial sorbents, various research groups have synthesized
hydrophilic sorbents by means of copolymerization (Figure 1B). Our research group, for instance,
prepared 4VP-DVB [35], N-vinylimidazole-divinylbenzene (NVIm-DVB) [14] that presented SSA of
about 700 m2/g. They were successfully applied to the SPE of different polar compounds, including
phenolic compounds and pesticides from environmental water samples. Recently, the performance of
different materials prepared from a combination of different monomers, such as MAA, 2-hydroxyethyl
methacrylate (HEMA), EDMA, and DVB were compared. The material based on MAA-HEMA
ultimately showed the best recoveries (from 75% to 100%) for the extraction of a group of nerve agents
from an organic matrix [15].

As mentioned earlier, another way of enhancing retention is by preparing HXL polymers
obtained by post-crosslinking PS-DVB or vinylbenzyl chloride (VBC)-DVB precursors by means of a
Friedel-Craft reaction. The HXL material obtained has a high micropore content and ultra-high SSA
(up to 2000 m2/g) [36]. In addition, a number of methods have been proposed for obtaining hydrophilic
materials with HXL networks. For instance, a hydrophilic HXL terpolymer based on HEMA-VBC-DVB
(25/25/50, mole ratio) with an SSA of 850 m2/g was synthesized [17]. This material was evaluated in the
off-line SPE to extract a group of polar compounds from environmental water samples. The results
showed that the presence of polar moieties together with the high SSA led to excellent recovery results
(>88%) that outperformed those achieved with commercially available sorbents. Table 1 provides some
examples of HXL materials, both commercially available and in-house prepared.

2.2. Selective Polymeric Materials

Selective materials mainly comprise molecularly imprinted polymers (MIPs) and mixed-mode
ion-exchange polymer materials when a washing step during the SPE protocol is applied. A common
feature is their ability to retain target analytes through specific interactions after an effective washing step.

The selectivity of a MIP arises during synthesis, when functional monomers (which have the
moieties to interact with the template) and crosslinker agents (to provide the suitable morphological
properties) are polymerized in the presence of the target compound(s) (template) that controls the
functionality of the cavities and size during polymerization. Once the polymerization is complete, the
template is removed so that the target compound(s) can establish interactions with the shape, size,
and functionalities of the binding sites generated. The preparation of MIPs and their application in
SPE (so-called MISPE) have been extensively described and discussed in several reviews [37,38] since
they were first reported by Sellergren in 1994 [39]. Table 1 provides some selected examples of MIPs,
covering in-house generated and commercially available.

In one example [19], different functional monomers and crosslinker agents were evaluated to
prove the selectivity of the generated MIP toward caffeic acid and p-hydroxybenzoic acid for the
selective extraction of polyphenols from olive oil wastewaters. From the monomers tested, it was found
that 4VP and allylaniline showed better recognition than MMA and allylurea, and pentaerythritol
triacrylate (PETRA) was more suitable as a crosslinker than EDMA due to its flexibility. Other studies
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compare the recognition ability of the MIP when different templates are tested. Several of the MIPs
prepared using the same target compound as the template. However, template bleeding during SPE is
one of the main drawbacks of MISPE. The “dummy” imprinting approach that involves the use of an
analog molecule as the template can solve this problem. Phenolphthalein was successfully used as a
dummy template for the selective MISPE extraction of bisphenol A from biological, environmental,
and food samples [20].

Class selectivity can also occur when a MIP shows retention for the target compound and
other structurally related compounds. For instance, a MIP prepared using ciprofloxacin as the
template showed cross-reactivity for a group of fluoroquinolones, but not for other antibiotics [18].
Class selectivity can also be exploited by preparing multi-template MIPs, in which more than one
template is used during the synthesis. Song et al. [22] developed a MIP using a group of 16 polycyclic
aromatic hydrocarbons (PAHs) as the template. This multi-template MIP was then evaluated through
the MISPE of PAHs from seawater, achieving even higher recoveries than the MIP prepared using a
single PAH as a template.

Class selective MIPs have also been commercialized under different brands for different families
of compounds such as nonsteroidal anti-inflammatory drugs (NSAIDs) (SupelMIP NSAIDs and Affilute
MIP-NSAIDs), amphetamines (SupelMIP Amphetamine), and aminoglycosides (SupelMIP-Aminoglycosides).
For instance, SupelMIP NSAIDs were evaluated through the selective determination of these pharmaceuticals
in wastewater samples [23]. During the development of the method, a cleanup step was added to the
MISPE protocol, so the matrix effect was lower than those obtained with Oasis HLB (non-selective
sorbent). The recoveries achieved were similar for both sorbents.

The use of MIPs has become more widespread over recent years, and in addition to those prepared
using polymeric frameworks, other supports such as metallic nanoparticles, hybrid materials, and
carbon-based materials have also been developed. These types of MIPs are covered in the corresponding
sections that follow.

Mixed-mode ion-exchange polymeric materials are an alternative for achieving selectivity and
capacity in a single material for ionic or ionizable compounds as long as a washing step is included in the
SPE protocol. These materials combine a polymeric skeleton (non-specific interactions) functionalized
with ion-exchange groups (specific interactions with the charged analytes) and can be classified into
four groups: strong cation exchangers (SCX), strong anion exchangers (SAX), weak cation exchangers
(WCX) and weak anion exchangers (WAX). SCX sorbent is usually functionalized with sulfonic acid
groups, whereas WCX is functionalized with a carboxylic acid. SAX sorbent usually has quaternary
amine groups, while WAX has either ternary, secondary, or primary amines. These have progressively
been applied in many different fields in recent years, and some reviews have also been published [5,40].
Due to their widespread use, several mixed-mode sorbents have been made commercially available,
while some researchers have developed in-house versions. Table 1 presents some selected examples of
mixed-mode ion-exchange polymeric materials and their applications.

SCX sorbents such as Oasis MCX, Strata-X-C, and Chromabond HR-X have been widely used for
determining drugs of abuse and novel psychoactive substances in complex samples such as wastewater
and biological fluids. This is because most of these drugs have basic properties and so they can interact
ionically with the acidic groups of the SCX sorbent when these compounds are charged (at acidic
pH values). With these conditions, an effective washing step based on the organic solvent can be
applied, disrupting only the reversed-phase interactions and not the ionic interactions that caused the
selectivity to arise. For instance, in the monitoring of cocaine and its main metabolites in wastewater
and urine samples, Oasis MCX was selected from among other evaluated mixed-mode sorbents (Oasis
MAX and Oasis WCX) and one generic sorbent (Oasis HLB), since it provided the best recoveries
after a washing step consisting of 2 mL of MeOH. The developed method based on SPE followed by
LC-MS/MS provided recoveries higher than 60% and limits of quantification in the low ng/L range [26].
Strata-X-WA and Oasis WAX were compared for the extraction of a group of perfluorinated carboxylic
acids (PFCAs) from drinking, surface, and groundwater. Both provided good extraction recoveries for
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different compounds in the PCFA family, but Oasis WAX was ultimately selected for its robustness and
quantitative recoveries [28].

An in-house HXL sorbent with WCX moieties (called HXLPP-WCX) was synthesized by
copolymerization of the terpolymer based on MAA-VBC-DVB, which contains the carboxylic acid
moieties in the MAA monomer. The HXLPP-WCX sorbent was successfully evaluated in the
SPE and was used as a benchmark for the commercially available Oasis WCX and Strata-X WC
during the extraction of a group of pharmaceuticals from environmental samples [31]. A copolymer
based on 2-(diethylamino)ethyl methacrylate (DEAEMA) and DVB (DEAEMA-DVB) with a ternary
amine was then functionalized with diglycidyl ether derivatives followed by quaternization with
N,N-dimethylethanolamine (DMEA) to produce a mixed-mode SAX sorbent that was applied to extract
pharmaceuticals from urine samples [32]. Glycidyl methacrylate (GMA)-DVB was functionalized with
sulfonic groups to display SCX properties. This material was then successfully applied to extract
alkylate-purine adducts from urine samples selectively [33].

3. Inorganic-Based Materials

Silica-based materials in bare form or modified with different functional groups, including C18, C8,
phenyl, and amino have, for many years, been some of the most widely used in SPE and are still used
today. However, other inorganic oxides and mixed inorganic polymers, as well as composites of them,
have now emerged and been applied as SPE sorbents in order to improve the chemical and mechanical
features of the originals. The following sections cover different types of inorganic-based materials,
classified according to their preparation approach and interaction mechanisms. The organic-inorganic
hybrid materials have been extensively evaluated as materials in different extraction techniques because
of their features, especially the microextraction techniques such as solid-phase microextraction (SPME)
and stir-bar sorptive extraction (SBSE), but also SPE in different formats such as pipette tip extraction
and microextraction by packed syringe (MEPS) [41,42].

3.1. Organic-Inorganic Hybrid Materials

Organic-inorganic hybrid materials are prepared by mixing organic and inorganic materials into a
single-phase system so that they interact with each other. The combination produces materials with
unique features of enhanced thermal, mechanical, chemical, and other properties that lead to the
improved sorption of compounds [43].

Sol-gel chemistry involves the hydrolysis and condensation of metal alkoxides in the presence of
a catalyst and a solvent prior to forming the polymer network. Figure 2 shows the reactions involved
during the sol-gel process. During the process, a liquid colloidal solution (“sol”) evolves into a solid
(“gel”). During condensation, the sol-gel active organic ligands are then progressively incorporated
into the growing inorganic network. Different hybrid materials can be prepared by combining
different sol-gel precursors and organic monomers, which makes sol-gel technology highly versatile.
Tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) are the precursors most frequently used to
generate inorganic polymers from silica-based materials. Table 2 shows some selected examples of the
use of materials prepared using sol-gel technology for SPE. For example, a hybrid organic-inorganic
sorbent containing methyltrimethoxysilane (MTMOS) combined with TEOS was prepared and applied
as SPE sorbent for the extraction of a group of pesticides, achieving good results. These were attributed
to the improved hydrophobicity, large SSA, and mesoporous structure of the material thanks to the
introduction of the MTMOS-TEOS [44]. SiO2-based materials are usually used, although other common
inorganic oxides such as titania or zirconia are also employed. For example, titania was used as a
precursor in the sol-gel process to prepare ceramic composite nanofibers that were then evaluated as
an SPE sorbent to extract naproxen and clobetasol from urine and plasma [45].
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Table 2. Examples of the applications of inorganic-based materials in SPE.

Type Material SPE Mode Compounds Sample Instrumental
Technique Reference

Organic-inorganic hybrid sol-gel hybrid MTMOS-TEOS 1 off-line organophosphorus tap, mineral, river, fruit GC-MS [44]
sol-gel hybrid MTMOS-MPTMS 2 off-line NSAIDs 3 river LC-UV [46]

sol-gel composite TiO2-Mn/Fe/Ni/Co µSPE pharmaceuticals urine, plasma LC-UV [45]
Si-β-CD 4 off-line PAHs 5 river, well, rainwater LC-FL [47]
Si-β-CD 4 off-line methyl jasmonate salty plant extract LC-UV [48]

MIP SiO2-TEOS 6 (oxindole) on-line paulatin fruit, fruit juices LC-UV [49]
MIP TEOS-TEPS-3-APTMS 7 (sulfonamides) off-line sulfonamide antibiotic milk LC-DAD [50]

Mesoporous silica MCM-41 8 off-line PAHs 5 ambient air GC-MS [51]
SBA-15-C18-CO 9 off-line EDCs 10 milk LC-DAD [52]

SBA-15-NH2
9 off-line NSAIDs 3 tap, river, wastewater LC-UV [53]

MIP-SBA off-line bisphenol A tap, well, wastewater LC-UV [54]
KIT-6 11 off-line pharmaceuticals urine LC-UV [55]

UVM-Ti25 12 off-line organophosphorus wastewater GC-NPD 13 [56]
LDHs Mg-Al-LDH (NO3

−) dispersive aromatic acids urine, sports drinks LC-UV [57]
Ni-Fe-LDH (NO3

−) dispersive haloacetic acids drinking water LC-MS/MS [58]
Ni-Fe-LDH (NO3

−) µMEPS14 NSAIDs 3 urine LC-UV [59]
yarn@PPy@Cu-Cr-Fe LDH in-tube phenols honey LC-UV [60]

MOF MIL-101 15 dispersive µSPE pantoprozole plasma LC-UV [61]
MIL-68 15 pipette tip sulfonamides lake, milk, meat LC-UV [62]
ZIF-8 16 µSPE PAHs 5 river GC-MS [63]

HKUST-1 17 dispersive herbicides well water, soil, rice, tomato IMS 18 [64]

HKUST-1 17 dispersive µSPE parabens tap, swimming, spa water,
urine, cosmetic cream LC-DAD [65]

MOF-199 embedded NMA-EDMA 19 off-line ursolic acid Chinese herbal medicine LC-UV [66]
UiO-66 20 dispersive µSPE sialic acids serum LC-FL [67]

1 MTMOS-TEOS: methyltrimethoxysilane- tetraethyl orthosilicate; 2 MPTMS: mercaptopropyltrimethoxysilane; 3 NSAIDs: non-steroidal anti-inflammatory drugs; 4 β-CD: β-cyclodextrine;
5 PAHs: polycyclic aromatic compounds; 6 TEOS: tetraethyl orthosilicate; 7 TEPS-3-APTMS: triethoxyphenylsilane-3-aminopropyltrimethoxysilane; 8 MCM41: Mobile Composition of
Matter No. 41; 9 SBA: Santa Barbara Amorphous; 10 EDCs: endocrine disrupting compounds; 11 KIT-6: KoreaAdvanced Institute of Science and Technology-6; 12 UVM: Universidad
Valencia mesoporous; 13 NPD: nitrogen-phosphorous detector; 14 MEPS: microextraction by packed syringe; 15 MIL: materials of Institute Lavoisier; 16 ZIF: zeolite imidazole framework;
17 HKUST: Hong Kong University of Science and Technology; 18 IMS: ion mobility spectrometry; 19 NMA-EDMA: N-methylolacrylamide-ethylenedimethacrylate; 20 University of Oslo.
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B-cyclodextrin materials that confer a certain degree of selectivity have been prepared using a
similar sol-gel approach. For instance, Mauri-Acejo et al. [47] compared the efficiency of two materials,
which either bound or included cyclodextrin on a microporous silica composite, for the retention
of a group of PAHs. The authors found that with the bound approach, the losses of cyclodextrin
were minimized, and thus, the sorbent’s performance was better than the previous cyclodextrin-silica
sorbents that had also been prepared as part of the strategy.

Different molecularly-imprinted hybrid organic-inorganic materials have been prepared using a
sol-gel process but adding the template molecules to the reaction mixture. For example, a MIP for the
selective extraction of patulin (mycotoxin) was prepared using a silica gel precursor and TEOS along
with a dummy template (oxindole). The prepared MIP was successfully tested in the on-line SPE-LC-UV
to determine this mycotoxin in fruit samples [49]. Recently a multi-template MIP for sulfonamide
antibiotic was prepared using a sol-gel approach in which 3-aminopropyl trimethoxysilane (3-APTMS)
and phenyl triethoxysilane (PTES), as well as the different sulfonamide templates, were used as sol-gel
precursors, together with TEOS as a crosslinking agent during the sol-gel process [50]. It was then
evaluated in the selective determination of sulfonamides from milk samples. The method achieved
good results and was able to determine and identify these drugs in milk samples quantitatively.

3.2. Mesoporous Silica Materials

Highly ordered mesoporous silica are also explored as SPE sorbents due to their easy
functionalization, high adsorption properties, and fast sorption kinetics [69]. Silica-based mesoporous
materials are prepared using molecular precursors through the sol-gel process, which involves the use
of a neutral or charged surfactant (to act as a template) in aqueous solution or water-soluble polymer.
The polymerization and condensation of the silica precursors result in hexagonal mesoporous materials.
After this, the template is removed by calcination. Depending on the disposition of the template
(surfactant) during the synthesis, two different synthetic approaches can be distinguished: a “true
liquid crystal templating procedure” and a “cooperative self-assembly process”. Figure 3 shows the
formation pathway of highly ordered mesoporous silica using the liquid crystal templating procedure.
Regardless of the procedure, the properties of the mesoporous material can be tuned by modifying the
synthetic parameters (pH and temperature) and the type of surfactant and additive [3,69]. Since the first
ordered mesoporous silica known as MCM41 (Mobile Composition of Matter No. 41) was prepared,
different materials have been developed, including Santa Barbara amorphous (SBA), Fudan University
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(FDU) and hexagonal mesoporous silica (HMS). As an example, MCM41 was applied for the extraction
of PAHs in ambient air, achieving similar results to those obtained using the polymeric-based sorbents
XAD-2 and XAD-16 [51].
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In addition, the modification of the surface of the mesoporous silica further broadens the physical
and chemical properties of these materials, expanding their applications. Table 2 shows some
selected examples of the application of highly ordered mesoporous silica in SPE. For instance, a one-pot
synthesized ordered mesoporous silica (SBA-15) functionalized with octadecyl groups (SBA-15-C18-CO)
was tested as an SPE sorbent in the determination of 12 endocrine-disrupting compounds (EDCs)
in milk [52]. The novel sorbent enabled the extraction of most of the compounds with recoveries
ranging from 72% to 105%, results that are similar to those achieved with other extraction methods for
the same compounds. SBA-15 was also functionalized with 3-[2-(2- aminoethylamino)ethylamino]
propyl-trimethoxysilane (a silane with three amines) and then reacted with an excess of phenyl glycidyl
ether to generate a mixed-mode anion-exchanger containing both anion-exchange (three amines)
and reversed-phase (multiple ether-linked phenyls) functionalities in a single branched ligand [53].
This sorbent was successfully evaluated in the extraction of a group of acidic pharmaceuticals from
environmental water samples, benefiting from both the reversed-phase and the SAX interactions
between the sorbent and the analytes. Pellicer-Castell et al. [56] prepared different mesoporous silica
sorbents (Universidad Valencia materials –UVM-), including pure, modified with cyclodextrins and
doped with Ti and Fe (to tune the porosity of the original sorbent). Of these, a sorbent doped with Ti
(UVM7-Ti25) presented the best porous properties, and thus, provided the best results for the extraction
of a group of organophosphorus compounds from environmental water samples. Mesoporous silica
have also been modified with dendrimers (macromolecules with highly repetitive branched structures)
to obtain materials, combining the advantages of dendrimers (great functionalization) with the ease of
separation of the solid support. Li et al. [55] adopted this strategy to prepare a sorbent for SPE that
combined reversed-phase with anion-exchange interactions. This material was then applied to the
extraction of a group of acidic drugs from urine and achieved good results that were attributed to the
specific (anionic) interactions between the sorbent and the target analytes.

3.3. Layered Double Hydroxides

Layered double hydroxides (LDHs) are nanomaterials structured in a 2D form that consist
of positively-charged layers of metal hydroxides separated by an interlayer region containing
anions and some water molecules between layers [71,72]. Figure 4 shows a schematic overview
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of LDHs. They usually contain both divalent and trivalent metal cations following the formula
[M2+

1–xM3+
x(OH)2][An−]x/n·zH2O, where M2+ may be cations such as Mg2+, Zn2+, and Ni2+, M3+ may

be cations such as Al3+, Ga3+, Fe3+ and Mn3+, An− may be anions such as CO3
2−, NO3

−, Cl−, SO4
2−

and RCO2−, and x is the mole fraction of M3+. LDH features include a large SSA, diversity of chemical
composition, anion exchange capabilities, and a water-resistant structure that makes them suitable SPE
sorbents. It should be borne in mind that LDHs can provide different interaction mechanisms such
as anion-exchange interactions, which means that the selectivity in complex samples can be further
exploited. Furthermore, as LDHs are unstable at acidic pH, an interesting feature is that they can
be dissolved in this acidic medium so that, once the extraction step has been carried out using LDH
materials, the addition of acidic media dissolves the sorbent without any need for an elution step (which
could be incomplete). Doing this means that the speed and efficiency of the overall SPE procedure are
enhanced [57]. It should also be noted that because of this dissolvable feature, dispersive SPE (dSPE) is
the most usual mode of extraction. This practice, using dissolvable LDHs, has been further exploited
in various studies [71,73]. Table 2 shows some selected examples of the application of LDHs in SPE.
For instance, dissolvable Mg-Al LDHs (using NO3

−, Cl− and CO3
2− as anions) were applied in dSPE

to extract a group of aromatic acids from urine and sports drink samples [57] and haloacetic acids from
drinking water [58]. In another example, Ni-Fe LDH-based sorbent using Ni(NO3)2 and Fe(NO3)3, was
prepared, followed by urea hydrolysis using coprecipitation [59]. It was then applied in the µSPE by
packed sorbent in which 8 mg of particles was inserted in a spinal syringe connected to a syringe pump.
Using an optimized SPE protocol, the target analytes (NSAIDs) were successfully extracted, yielding
recoveries within the range 53–92%. The method was then applied to extract NSAIDs from different
urine samples with results outperforming those already reported using other extraction materials [59].
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3.4. Metal-Organic Frameworks

Metal-organic frameworks (MOFs) are porous coordination polymers consisting of transition
metal clusters and organic ligands that create 3D organic-inorganic hybrid networks [71,74]. There are
different types of MOF—a schema of which is shown in Figure 5—that include a zeolite imidazole
framework (ZIF) (Figure 5A), metal atoms linked with imidazolate and functionalized imidazolate
ligands through a nitrogen atom, materials of Institut Lavoisier (MILs) (Figure 5B) based on trivalent
metal centers and carboxylic acid bridging ligands, materials of University of Oslo (UiO) (Figure 5C)
that consist of a building block based on zirconium, and materials of Hong Kong University of Science
and Technology (HKUST) (Figure 5D), which is a 3D structure based on copper. Although they have
different properties, in general terms, they all share high porosity as a result of their nanoscale cavities
and high SSA, plus good thermal and chemical stability. These properties make MOFs excellent
candidates for various applications in the area of sample preparation. However, as the direct use of
MOFs as nano/microcrystals presents a number of limitations when packing in an SPE cartridge or in
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dSPE (since this involves centrifugation and filtration) due to their small particle size and nonspherical
shape, they should be combined with different supports in order to be readily applied as SPE materials.
These strategies have also been extensively used to prepare materials for other sorptive extraction
techniques, such as SPME and membrane-based techniques [3,71,74]. Table 2 lists some examples of
the use of MOFs in SPE, as well as those combined with different supports for the same use.
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MOFs are generally applied in dSPE mode [61,64,65,67]. For example, HUSKT-1 (based
on a copper-benzene-1,3,5-tricarboxylate framework) was used as sorbent in dSPE combined
with ion mobility spectrometry (IMS) for the preconcentration of herbicide from water, soil, and
agricultural-product samples. The sorbent showed high stability and reusability and high recoveries
(94–108%) with a preconcentration factor of 20 [64]. MOFs embedded in polymeric monoliths is
another strategy, which has mainly been used in SPME and other extraction techniques, but also SPE.
For instance, a monolithic column based on N-methyloacrylamide (NMA) and EDMA were used
as the host material for embedding MOF-199 (copper-1,3,5-benzenetricaboxylate). By incorporating
the MOF particles, the SSA and permeability of the monolith improved significantly. It was then
applied in on-line SPE-LC-UV to determine ursolic acid from Chinese herbal medicine with successful
results in terms of recovery, reproducibility, and accuracy [66]. Other approaches have been based
on incorporating the MOFs into beads, which in most cases, are magnetic. One such case was the
incorporation of MIL-100(Fe) into Fe3O4 nanoparticles for application in magnetic SPE [77]. In a more
sophisticated stage, Maya et al. [78] prepared MOF in the form of core-shell particles through the
immobilization of precursor metal oxides followed by their in situ conversion into MOF by reaction
with the appropriate organic linker. In this case [78], in the first instance, a layer of ZnO is coated onto
cation exchange PS beads to obtain ZnO@PS precursor beads, which are then reacted with an organic
linker (2-methylimidazole) to obtain ZIF-8@ZnO@PS. The authors compared the performance of these
beads in the extraction of a group of EDCs from water samples with that achieved with the beads
obtained when ZIF-8 was directly immobilized in the polymer beads. They found that the extraction
performance was much lower than that obtained with the in situ conversion approach.

MOFs have also been used as precursors or as part of other sorptive materials, such as metallic
nanoparticles and porous magnetic carbons. These are covered in the following sections of this review.

3.5. Metallic Nanoparticles

Metallic nanoparticles (NPs), including Fe3O4, TiO2, ZrO2, Al2O3, among others, in bare form or
modified with different functional coatings, are particularly characterized by their large SSA, which
gives rise to high sorption capacity. There are also magnetic NPs (MNPs) that mainly contain iron,
nickel, and cobalt and their oxides, with magnetite (Fe3O4) and maghemite (γ-Fe2O3) being the most
popular. MNPs are especially useful because of the strong magnetic properties that make NPs easy
to isolate using an external magnetic field without the need for centrifugation and filtration [73,79].
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These features make MNPs very straightforward for use in dSPE, also known as magnetic SPE (MSPE),
making them the main SPE mode used. Table 3 lists some selected examples where MNPs are used
in dSPE.

Different types of coating have been applied to the surface of NPs and MNPs, including
polymer-based, silica-based, MOFs, multiwalled carbon nanotubes (MWCNTs), and graphene (G)
or graphene oxide (GO). One of the most frequently used is coated with silica (Fe3O4@SiO2) and
functionalized with different moieties, such as the C18 groups (Fe3O4@SiO2-C18) [79,80]. MNPs
are covered in different sections of this review, and examples of their applications can be found in
Table 3. In the present section, we focus on the preparation and application of Fe3O4@SiO2-C18 as an
example of one of the most popular MNPs. Figure 6A shows the schematic procedure for obtaining
Fe3O4@SiO2-C18. This comprises three steps: (1) the magnetite was prepared from ferric chloride,
(2) the Fe3O4 NPs obtained were then treated with TEOS to start the sol-gel process, and (3) finally, the
Fe3O4@SiO2 NPs were reacted with chlorodimethyl-n-octadecylsilane to obtain the Fe3O4@SiO2-C18.

In the case studied here [81], these MNPs based on Fe3O4@SiO2-C18 were applied to the extraction
of a corticosteroid from rat plasma using the MSPE mode, achieving high recoveries thanks to the
contribution of the hydrophobic part (C18 chains) that strongly interacts with the target compound.
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Table 3. Examples of the applications of metallic nanoparticle materials in SPE.

Type Material SPE Mode Compounds Sample Instrumental
Technique Reference

Silica-based Fe3O4@SiO2-C18 magnetic corticosteroid plasma LC-UV [81]
Fe3O4@SiO2-C18 magnetic pesticides pond water GC-MS [86]
Fe3O4@SiO2-MIP magnetic codeine urine LC-UV [85]

LDH Fe@Mg-Al-LDH magnetic bisphenol A, nonylphenol river, wastewater LC-UV [87]
MOF Fe3O4@MIL-100 magnetic µSPE PAHs 1 tap, well, pond water LC-FD [77]

Fe3O4@ZIF-8 magnetic EDC 2 drinking water LC-UV [78]
Polymer-based Fe3O4@PS-DVB magnetic fenitrothion water, urine UV [82]

Fe3O4@polyaniline magnetic µSPE benzodiazepines tap, river, well, lake water,
plasma, urine LC-UV [83]

Fe3O4@polypyrrole magnetic µSPE antidepressant drugs plasma, urine LC-UV [84]
Carbon-based Fe3O4@C60fullerenes magnetic azodyes wastewater CE-UV [88]

Fe3O4@MWCNTs 3 magnetic aconitites serum LC-DAD [89]
Fe3O4@GO 4 magnetic PAHs 1 urine LC-MS [90]

Fe3O4@SiO2@GO@IL 5 magnetic chlorophenols tap water LC-MS/MS [91]
Fe3O4@GO@hemimicelles magnetic PFAS 6 river, wastewater LC-MS/MS [92]

1 PAHs: polycyclic aromatic compounds; 2 EDCs: endocrine disrupting compounds; 3 MWCNTs: multiwalled carbon nanotubes; 4 GO: graphene oxide; 5 IL: ionic liquid; 6 PFAS:
perfluoroalkyl substances.
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Other authors have included the polymeric shell in the magnetite core so as to obtain polymeric
MNPs. Figure 6B shows a schema of the synthetic procedure used to obtain Fe3O4@PS-DVB MNPs.
Essentially, once the magnetite was prepared, it was mixed with the monomer mixture to polymerize
under the polymerization conditions [82]. This procedure is easy to achieve, but the authors found that
these Fe3O4@PS-DVB MNPs showed weak magnetic properties during the MSPE procedure. This was
solved by adding bare MNPs to the extraction mixture to provide faster and more efficient precipitation
of the polymeric MNPs from the extraction mixture. After this, the performance of the Fe3O4@PS-DVB
MNPs to extract a group of pesticides from different types of the sample was successfully achieved [82].
Other polymeric coatings have also been prepared in MNP, using polyaniline [83] and pyrrolidone,
for example [84]. MIPs have also been prepared using magnetite as the core in order for the MNPs
generated to have selectivity when applied in MSPE procedures. For instance, a MIP MNPs was
developed for the selective extraction of codeine from urine [85]. In this case, magnetite was first coated
with silica; then these Fe3O4@SiO2 MNPs were reacted with the functional monomer, the crosslinking
agent and the template in order to generate cavities in shape and form, able to interact with the target
compound specifically. Figure 6C shows the schema of this synthetic procedure.

4. Carbon-Based Materials

Carbon exists in various allotropic forms ranging from the classical GCBs and PGCs to fullerenes,
carbon nanotubes (CNTs), carbon nanofibers, carbon nanodisks, G, and GO, among others. However,
fullerenes, CNTs, G and GO are mainly used for other analytical applications rather than SPE. Figure 7
presents their structures, and Table 4 summarizes their most relevant applications as sorbents for
SPE. They have been explored as SPE materials due to their features of chemical and thermal stability,
ordered porosity, and high SSA, which promote high sorption capacity towards the analytes [93].
The development of new carbon-based materials for sample preparation has recently been reported.
These use the carbonization of low-cost commercially available polymers or biomass to reduce
production costs that have been also reported [71]. For example, biomass-derived hierarchically porous
carbon was prepared by hydrothermal treatment and the carbonization of banana peel. It was then
applied as SPE sorbent for the extraction of carbamate pesticides from watermelon and cucumber with
good results thanks to the respectable SSA (ca. 500 m2/g) that promoted interactions with the target
compounds [94].Separations 2019, 6, x FOR PEER REVIEW 188 of 30 
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4.1. Fullerenes

Fullerenes are polyhedral nanostructures made up of 5–6 membered carbon rings in the form
of a hollow sphere, tube, or ellipsoid (Figure 7A). Due to their extreme insolubility in aqueous or
organic media, their use is very limited. However, their lower aggregation predisposition simplifies
their application in SPE. In one of the earliest studies [95] on C60 fullerenes, their SPE performance
was compared to that of Tenax TA and C18 sorbents for the extraction of BTEX compounds from the
sea and wastewater samples. The results for C60 fullerenes revealed that they were better in terms of
the preconcentration factor achieved as well as for their precision and reusability. Fe3O4-activated
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carbon, Fe3O4-fullerene, and Fe3O4-activated carbon-fullerene nanomaterials were prepared for the
extraction of a group of azo dyes from wastewater samples [88]. In this comparison, 5 mg of each
material was dispersed in the sample to conduct dSPE under optimized conditions. The best recoveries
were achieved by the mixed material (Fe3O4-activated carbon-fullerene) since it provided more
diverse interactions (π-π, hydrophobic) and spatial distribution with the analytes compared to the
individual forms.

4.2. Carbon Nanotubes

CNTs are formed by rolling graphene sheets into a cylindrical shape. Single-walled CNTs
(SWCNTs) are based on one sheet, whereas those with more than one sheet are known as MWCNTs
(Figure 7B). Their main properties as sorbents are their high SSA that enables π–π interactions, and the
easy functionalization of their surface chemistry with different functional groups [93]. The performance
of MWCNT sorbent was compared to that of C18 silica and activated carbon for the SPE of a group of
pesticides from different surface water samples [96]. The results indicated that the MWCNT showed
better enrichment performance. Specifically, apart from its high SSA, the sorbent interacts strongly
with the benzene rings of carbamates thanks to the surface of the MWCNT being made up of hexagonal
arrays of carbon atoms in graphene sheets. MWCNT composites and their surface modification have
also been explored via chemical treatment with various reagents. The purpose of this is to improve their
adsorption properties and extraction efficiency further. Lalovic et al. [97] compared the performance
of bare MWCNTs and those modified with acidic or basic reagents (i.e., HCl, HNO3, and NaOH) for
the extraction of multi-class pharmaceuticals from environmental water. It was found that treatment
with HCl decreases the content of oxygen groups on the surface and thus reduces the number of
electron-acceptor groups, which favors extraction efficiency towards the target compounds.

4.3. Graphene and Graphene Oxide

G’s structure is a thin honeycomb lattice of carbon atoms, while GO has the same structure but
containing multi-functional groups such as carboxyl, hydroxyl, and epoxides (Figure 7C), which can be
further reduced to convert into reduced GO (rGO). These materials exhibit high SSA (>2000 m2/g), high
mechanical strength, and thermal conductivity, and in addition, GO exhibits high polarizability. In spite
of these properties, the application of G as a sorbent is limited due to its lower water dispersibility. GO
overcomes this limitation and is more frequently used in sample preparation. For instance, GO was
applied as material in the SPE combined with electromembrane extraction (EME) followed by capillary
electrophoresis (CE) for the determination of chlorphen oxyacid herbicides in environmental water
samples [98]. In a further step, the GO framework (GOF) consisting of layers of GO interconnected by
linkers such as boric acid was developed. Li et al. [99] synthesized GOF using 1,4-phenyldiboronic acid
as the linker, which was then successfully evaluated as material in SPE for the extraction of phenylurea
herbicides in celery and lake water samples.

In addition, the synthesis of hybrid materials produced by G- or GO-bound silica (i.e., G@silica)
or composite materials produced by combining with different inorganic and organic materials have
been also proposed [79,100]. For instance, GO grafted with SiO2 (GO@SiO2) was used in dSPE for
the extraction of phenolic acid from urine. Excellent recoveries (up to 95%) were achieved with a
small mass of material (20 mg) [101]. A composite of Fe3O4@SiO2@GO was further modified with
ionic liquid (IL) and successfully applied in the preconcentration of a group of polar and non-polar
chlorophenols from the tap, well, and river water prior to their determination by LC-MS/MS [91].
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Table 4. Examples of the applications of carbon-based materials in SPE.

Type Material SPE Mode Compounds Sample Instrumental
Technique Reference

Fullerenes C60 on-line BTEX 1 sea, wastewater GC-MS [95]
SiO2-C60 dispersive peptides serum MALDI-TOF-MS 2 [102]

Carbon
nanotubes SWCNTs 3 SPE salicylic acid river CE-UV [103]

MWCNTs 4 SPE carbamate
pesticides tap, river water LC-MS [96]

SiO2-MWCNTs SPE nucleosides,
nucleobases urine LC-DAD [104]

MWCNTs4-HCl dispersive pharmaceuticals surface,
groundwater LC-MS/MS [97]

Graphene G 5 dispersive carbamate
pesticides fruit juice LC-MS/MS [105]

GO 6 SPE herbicides river, seawater CE-UV [98]
SiO2-GO dispersive phenolic acids urine LC-UV [101]

GO-1,4-PDBA 7 SPE herbicides pond water,
celery LC-DAD [99]

1 BTEX: benzene, toluene, ethylbenzene, and xylene; 2 MALDI-TOF: matrix-assisted laser desorption-time-of-flight;
3 SWCNTs: single-walled carbon nanotubes; 4 MWCNTs: multiwalled carbon nanotubes; 5 G: graphene; 6 GO:
graphene oxide; 7 1,4-PDBA: 1,4-phenyldiboric acid.

5. Other Materials

5.1. Silicates

Minerals such as clays have been proposed as materials for sample preparation due to their low
cost. However, their characteristic shape and size make them more suitable for use as a support or in
disperse mode rather than to be used directly in SPE. Montmorillonite (MMT), a layered silicate that
has been used as a strengthening material for polymers due to its high SSA, was applied as support to
prepare magnetic particles coated with C16-silica using the sol-gel approach [106]. Fifty mg of material
was then applied in dSPE to extract bisphenol A from a 50 mL water sample from environmentally
different origins such as leachate, river, and well water, achieving complete recoveries (95–98%) and
enrichment factors greater than 30.

Zeolites are another type of silicate that present similar properties and limitations as clays.
Their main application in sample preparation is as a support or in dispersed mode. For instance, zeolite
NaY modified with polyaniline through in-situ oxidative polymerization was prepared to be applied
for the preconcentration of multi-class pesticides using dSPE in environmental and fruit samples, with
recoveries of the target compounds ranging between 64–128% [107]. Zeolite in the form of networks is
a subclass of MOF (see Section 3.4), and other zeolites used in sorptive extraction techniques can be
found in specific reviews [71,108].

5.2. Natural Sorbents

Cotton wool (500 µg) was inserted into SPE micro tips for the purification of glycan and
glycopeptides from biological samples for subsequent mass spectrometric detection. The results
revealed the removal of salts and nonglycosylated peptides, among other things, leading to the
successful determination of the target compounds [109]. Pollen with a high hydroxyl content and
chemically stable was also explored as an SPE sorbent in the enrichment of plant growth regulators in
fruits and vegetables [110]. Its morphological properties (SSA 30 m2/g and 30–40 µm particle size) and
suitable chemical properties (presence of hydroxyl moieties) made this natural material suitable for the
extraction and purification of the target compounds. Cigarette filters were also used as a sorbent to
solid-phase extract a group of organophosphorus and organochlorine pesticides from environmental
samples before gas chromatography with mass spectrometry (GC-MS) analysis. For the performance,
120 mg of cigarette filter was packed in a cartridge, and the SPE procedure was conducted as usual.
When 100 mL of water was percolated through the cartridge, the recoveries of all the target analytes
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were greater than 76% and comparable to those obtained with a C18 sorbent. The method provided
suitable limits of detection to monitor their presence in the samples analyzed [111].

5.3. Ionic Liquids-Based Sorbents

Supported ILs (SILs) and polymeric ILs (PILs) that provide hydrogen bonding, dipole–dipole,
and ionic interactions with the analytes have also been used as SPE materials. Silica particles modified
with N-methylimidazolium L-prolate (NMIM-Pro@SiO2) are an example of a SIL. NMIM-Pro@SiO2

was applied for the extraction of polyphenols from green tea leaves and showed a high sorption
capacity and selectivity [112]. Post-modification of polymeric supports such as VBC-DVB with
N-methylimidazolium was also proposed and applied as SPE sorbent for the extraction of a group of
pharmaceuticals through the ion-exchange interactions that take place between the sorbent and the
analytes [113].

Another approach is to prepare a PIL composed of IL-based monomers. For example, a
series of 2-acrylamido-2-methyl propane sulfonate [AMPS−] combined with imidazolium [IM+],
phenylimidazolium [PhIM+], butylimidazolium [BuIM+] and N,N-methylenebisacrylamide (MBAA)
as crosslinkers was prepared and applied in protein adsorption experiments [114]. Figure 8
shows a schematic illustration of the preparation of these PIL materials. In another example,
1-vinyl-3-butylimidazolium chloride was copolymerized with EDMA to prepare a MIP selective
for chlorsulfuron [115]. This MIP was further evaluated to determine chlorsulfuron from water samples
by on-line SPE-LC-UV and achieved recoveries greater than 80%. Several other examples of ILs as
materials for SPE can be found in reviews of the subject [116,117].
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5.4. Electrospun Nanofibers

Electrospun nanofibers (NFs) generated using the electrospinning technique (which produces
polymers with nanoscale fibrous structures) have a high SSA with various chemical properties thanks
to pre- or post-electrospinning modification processes. Most of the electrospun nanofibers used in
SPE are based on either PS (low mechanical strength) or Nylon-6 (high mechanical strength). PS was
used to prepare electrospun NFs with the resulting material evaluated in packed-fiber SPE (0.3 mg
of PS NFs packed in a 200 µL pipette tip) mode for the extraction of Trazadone from a plasma
sample. This approach is claimed to be cost- and time-effective, as well as, selective and sensitive [118].
In order to enhance the features of NFs, their combination with polymers has also been explored.
For example, Bagheri et al. [119] developed a blend of polypyrrole and Nylon-6, which combines
the π-π interactions promoted by polypyrrole as well as the polar interaction promoted by Nylon-6.
The polypyrrole/Nylon-6 composite was applied in µSPE to isolate malathion from aqueous samples.
The method that includes µSPE followed by GC-MS proved to be quite good, providing sufficient
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sensitivity and good reproducibility. More details on the preparation of NFs and their application as
SPE materials can be found in reviews on this subject [120,121].

Apart from the materials described in the previous sections, other materials have also been
developed. However, they are not described in the present review because their main application
involves other sorptive microextraction techniques, such as SPME, SBSE, and MEPS instead of SPE,
which is the sorptive technique explored in this review. Readers can consult other reviews or book
chapters that cover these subjects more thoroughly.

6. Conclusions

The research in the development of different materials for SPE classically categorized as silica-based,
carbon-based, and polymer-based is a continuously evolving field to improve their chemical and
morphological features.

Apart from the traditional material developments, other new materials such as organic-inorganic
hybrid materials, carbon nanomaterials, metallic nanoparticles, metal-organic frameworks, among
others, have been recently introduced and successfully applied as SPE materials.

In view of the emergence of novel materials in recent years, as well as those already well established
for years, it should be anticipated that advances in sorbent technology for SPE in particular—and
sorptive extraction techniques in general—could become a never-ending field of research.
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Abbreviations

1,4-PDBA 1,4-phenyldiboric acid
2-AMPS 2-acrylamido-2-methyl propane sulfonate
3-APTNS 3-aminopropyltrimethoxysilane
4VP 4-vinylpyridine
BTEX benzene, toluene, ethylbenzene, and xylene
BuIM butylimidazolium
CE capillary electrophoresis
CNTs carbon nanotubes
DAD diode array detector
DEAEMA 2-(diethylamino)ethyl methacrylate
DMEA N,N-dimethylethanolamine
dSPE dispersive solid-phase extraction
DVB divinylbenzene
EDCs endocrine disrupting compounds
EDMA ethylenglycol dimethacrylate
EME eletromembrane extraction
FDU Fudan University
FL fluorescence detector
G graphene
GC gas chromatography
GCB graphitized carbon blacks
GMA glycidyl methacrylate
GO graphene oxide
GOF graphene oxide framework
HEMA 2-hydroxyethyl methacrylate
HKUST Hong Kong University of Science and Technology
HMS hexagonal mesoporous silica
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HXL hypercrosslinked
ILs ionic liquids
IM imidazolium
IMS ion mobility spectrometry
KIT-6 KoreaAdvanced Institute of Science and Technology-6
LC liquid chromatography
LDHs layered double hydroxides
MAA methaacrylic acid
MALDI matrix assisted laser desorption
MBAA N,N-methylenebisacrylamide
MCM Mobile Composition of Matter
MEPS microextraction by packed syringe
MIL materials of Institute Lavoisier
MIPs molecularly imprinted polymers
MMT montmorillonite
MNPs magnetic nanoparticles
MOFs metal-organic frameworks
MS mass spectrometry
MS/MS tandem mass spectrometry
MSPE magnetic solid-phase extraction
MTMOS methyltrimethoxysilane
MWCNTs multi-walled carbon nanotubes
NFs nanofibers
NMA N-methylolacrylamide
NMIM N-methylimidazolium
NPs nanoparticles
NSAIDs nonsteroidal anti-inflammatory drugs
NVIm N-vinylimidazole
NVP N-vinylpyrrolidone
PAHs polycyclic aromatic hydrocarbons
PBDEs polybrominated diphenyl ethers
PCBs polychlorinated bisphenyls
PETRA pentaerythritol triacrylate
PFAS perfluoroalkyl substances
PFCAs polyfluorinated carboxylic acids
PGC porous graphitic carbon
PhIM phenylimidazolium
PILs polymeric ILs
PS polystyrene
QTOF quadrupole time of flight
rGO reduced graphene oxide
SAX strong anion exchanger
SBA Santa Barbara Amorphous
SBSE stir bar sorptive extraction
SCX strong cation exchanger
SILs supported ILs
SPE solid-phase extraction
SPME solid-phase microextraction
SSA specific surface area
SWCNTs single-walled carbon nanotubes
TEOS tetraethoxysilane
TEPS triethoxyphenylsilane
TMOS tetramethoxysilane
TOF time-of-flight
UiO University of Oslo
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UV ultraviolet
UVM Universidad Valencia mesoporous
VBC vinylbenzyl chloride
WAX weak anion exchanger
WCX weak cation exchanger
ZIF zeolite imidazole framework
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