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Abstract: This review describes the recent advances from the past five years concerning the
development and applications of molecularly imprinted membranes (MIMs) in the field of sample
treatment and separation processes. After a short introduction, where the importance of these
materials is highlighted, a description of key aspects of membrane separation followed by the
strategies of preparation of these materials is described. The review continues with several analytical
applications of these MIMs for sample preparation as well as for separation purposes covering
pharmaceutical, food, and environmental areas. Finally, a discussion focused on possible future
directions of these materials in extraction and separation field is also given.
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1. Introduction

Sample treatment is one of the most important stages in chemical analysis. Its role is primarily
focused on removing potentially interfering components present in the sample and as well as to
preconcentrate the analytes to achieve the desired sensitivity. The most widely used method for the
extraction and clean-up of solutes of interest is solid-phase extraction (SPE), which involves the use
of stationary phases such as nonpolar polymer or C18-bonded silica. However, these sorbents have
limited selectivity, are rather expensive, and designed for single use. To increase selectivity, molecularly
imprinted polymers (MIPs) were introduced in recent decades [1,2], thus providing a specific interaction
target molecule-polymer, similar to the interactions antigen-antibody in biological systems.

The synthesis of MIPs involves the formation of a template (that is commonly the target analyte)-
monomer complex with either covalent or non-covalent interactions, followed by copolymerization in
the presence of a suitable cross-linker. After removing the template, imprinted cavities of specific size
and shape are left inside the polymer network, exhibiting sites with molecular recognition properties
for the target molecule.

Attending to the type of interaction between the template molecule and functional monomer, MIPs
can be classified in non-covalent, covalent, and semi-covalent imprinting. In the non-covalent approach,
the formation of pre-polymerization complex is accomplished via weak non-covalent interactions
(van der Waals forces, hydrogen bonding, ionic interactions, etc.). After the synthesis, the template is
easily removed from the polymer simply by rinsing with appropriate solvents. This approach is the
most widely used, due to its versatility, simplicity, and ease of preparation. In the covalent approach,
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the template and the functional monomer are covalently bound prior to polymerization; however,
the removal of the template as well as its posterior rebinding to the cavities is more laborious. On the
other hand, the semi-covalent option combines the advantages of both non-covalent and covalent
approaches, being the template covalently bound to a functional monomer during polymerization,
whereas only non-covalent interactions are exploited during the template rebinding [3,4].

In any case, the resulting MIPs are stable, robust, and resistant to a wide range of pH, solvents and
temperature, and exhibit advantages of stability, reusability, ease of use, and low cost of preparation [5,6].
Also, they exhibited large selectivity and an enhanced adsorption capability compared to their analogues
synthesized in absence of template (NIPs). Indeed, MIPs are currently being used in a wide of analytical
applications, including chromatography [7,8], microextraction techniques [7,9–13], and sensing [14].

As we mentioned above, these materials are prepared in different formats. Among the recent MIP
supports, the development of MIPs on soft and flexible platforms such as paper or membranes is of
great interest [14–16]. In particular, the introduction of molecular recognition sites into membranes
to produce molecularly imprinted membranes (MIMs) is highly advantageous since it combines
the separation ability of the membranes (due to their pore size) with the great selective recognition
ability of the imprinted polymer. The MIM format can favor the mass transfer processes decreasing
adsorption/retention time in extraction and separation processes [14,15,17,18]. Indeed, MIM separation
technology was widely used in the fields of separation and purification, being particularly helpful
for large-scale continuous separation operations, especially in industrial applications [14]. However,
the extension of MIMs to sample treatment field has been relatively limited.

The present review summarizes and discusses papers published in the last five years to fill this
void in analytical science, emphasizing the key role of these supports in the sample treatment field.
The review starts with an introduction of membrane media, including the different approaches, from the
conventional in situ polymerization to the surface molecular imprinting strategies for the preparation
of selective MIMs. Next, the applications of the above-mentioned materials for the extraction or
preconcentration of different target compounds in a wide range of matrices are described. Also, recent
applications of these promising materials in the separation and purification processes are included,
with special emphasis in pharmaceutical, food and environmental field. Finally, a general conclusion
as well as expected future trends of MIM media in sample preparation and separation purposes
is included.

2. General Aspects of MIMs and Preparation

2.1. Fundamental Aspects in Membrane Separation

Usually, membrane supports regulate the transport of molecules among phases allowing
their separation and purification. In particular, separation capability of membranes is governed
by its perm-selectivity, which depends on diffusivity and affinity of the membrane. Diffusion
transport mechanism of molecules across the membrane depends on the dimension and/or shape
of the given molecule and porosity of the membrane, thus predominating solution-diffusion
mechanism for non-porous membranes, and partition-diffusion mechanism for porous membranes
(pore size > 1 nm) [14,19]. Also, flux is another essential factor in membrane separation processes.
Indeed, flux and perm-selectivity often have a trade-off relationship. The compromise is made by the
fact that enhancement of the flux through the membrane usually leads to a simultaneous reduction
in perm-selectivity and vice versa. Consequently, it is important to increase both factors to produce
MIMs with enhanced performance for extraction, purification, and separation purposes.

For this purpose, it is relevant in order to achieve a good MIM performance to control the density
and affinity of membrane MIP sites and to create proper membrane pore morphology. Indeed, different
mechanisms for selective transport can be regarded. According to Ulbricht et al. [20], two mass
separation mechanisms can occur in membranes: One is facilitated permeation that is the preferential
diffusion of the target molecule as a result of affinity, whereas the other is retarded permeation owing
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to the affinity binding of the target molecule translating into the faster elution of competitors of the
print molecule. These mechanisms are strongly related to morphological features of resulting MIMs.
Thus, in MIMs with meso- and micropores, the template binding to imprinted cavities can either
change the pore network to alter membrane permeability (the so-called “gate-effect”) or a variation of
the permeation rate due to the interaction with the micropore walls [19]. On the other hand, in MIMs
with trans-membrane macropores, a retarded permeation of the target molecule is held by binding to
accessible imprinted sites thus compensating nonselective transport by convection or diffusion [19].
Once we comment on the key aspects of MIMs to be considered in extraction and separation purposes,
different strategies to obtain MIMs will be described.

2.2. Types of Strategies to Synthesize MIMs

In general, three main strategies can be used for MIM preparation [14,20]: (i) preparation of
MIMs from previously synthesized “conventional” MIP particles; (ii) preparation of MIP structure and
membrane morphology simultaneously; and (iii) preparation of MIPs on or in a previously synthesized
membrane with suited morphology.

In the first approach, different methods were developed for MIP particles production, such as bulk
polymerization, precipitation polymerization, suspension polymerization, among others, which were
reviewed [1,21]. The prepared MIP particles are incorporated to the membrane support by physical
mixing or other procedures, giving a membrane with mostly embedded MIP particles. As a result,
these membranes showed a low availability of efficient imprinting sites, and consequently, a final
limited performance. Besides, the permeability of this type of membranes is relatively low, which limit
their applications in affinity separation and extraction purposes. Figure 1 shows an example of this
preparation strategy, where the resulting MIMs and non-imprinted membranes (NIMs) were visualized
by scanning electron microscopy (SEM). As can be seen, the addition of MIP nanoparticles to cellulose
acetate (CA) membrane produced the presence of larger pores (binding sites) within the membrane
matrix compared with the NIM [22].
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stable flat-sheet membranes. In this sense, when established MIP synthesis protocols are applied, the 
“synchronization” of imprinting and film solidification steps are of critical importance in controlling 
the MIM shape, structure, and functionality [14]. In this sense, two main routes were used, the 
“traditional” in situ cross-linking polymerization and the “alternative” polymer solution phase 
inversion. Also, NIMs are made following the same procedures but without the presence of template 
molecule in the casting solution. An example of this strategy was that described by Székely et al. [23], 
who developed nanofiltration membranes with molecular recognition sites by phase inversion 

Figure 1. SEM micrographs showing the surface morphology of MIM prepared by embedding
of nanoMIP particles in a CA membrane (a) and its corresponding NIM (b). Reproduced with
permission [22].

Concerning the second strategy (“simultaneous MIM preparation”), the control of film thickness,
e.g., by solution casting or using molds, is an essential aspect to achieve reproducible and stable flat-sheet
membranes. In this sense, when established MIP synthesis protocols are applied, the “synchronization”
of imprinting and film solidification steps are of critical importance in controlling the MIM shape,
structure, and functionality [14]. In this sense, two main routes were used, the “traditional” in situ
cross-linking polymerization and the “alternative” polymer solution phase inversion. Also, NIMs are
made following the same procedures but without the presence of template molecule in the casting
solution. An example of this strategy was that described by Székely et al. [23], who developed
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nanofiltration membranes with molecular recognition sites by phase inversion molecular imprinting
technique. The MIM showed a finger-like macrovoid morphology compared to the NIM (Figure 2),
which is an usual characteristic in membranes prepared from nonsolvent-induced phase inversion
method [24]. The presence of template-induced binding cavities also led to higher surface area and
pore volume values than the NIM.
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Figure 2. SEM images showing membrane cross-sections of MIM (A) and NIM (B) prepared via phase
inversion technique. Reproduced with permission [23].

Although the first route using preestablished MIP preparation protocols for the synthesis of
flat-sheet membranes is still being applied, the phase inversion imprinting has become a widely
recognized technique in MIM preparation. It consists of the solidification of the polymer accomplished
by solvent evaporation or by nonsolvent-induced precipitation. Thus, the polymer selection for phase
inversion imprinting had been extended to most of the commonly used membrane materials, e.g., CA,
polyacrylonitrile, polyamide, and polysulfone (PSf), among others [14,20]. One reported example of
the application of this imprinting technique is given in Figure 3. In particular, He et al. [25] developed a
highly selective CA blend imprinted membranes for salicylic acid prepared with sulfonated polysulfone
as a functional polymer, polyethylene glycol-4000 and ionic liquid 1-butyl-3-methylimidazolium
chloride as additives.
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Figure 3. Schematic illustration of preparation of a MIM by phase inversion technique. Reproduced
with permission [25].

Despite inherent advantages of this strategy, both routes share the same major limitation that MIP
sites and membrane morphology are formed in the same step from the same building blocks, either
monomer or polymers. Consequently, the limited accessibility of imprinted sites due to a random
distribution inside and on the surface of the bulk polymer phase remains a major unsolved problem.
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In the third strategy, the MIMs are prepared using the surface imprinting method. With this
technique, the available imprinted sites are mostly located on the membrane surface, thus facilitating
fast recognition, especially for natural macromolecules. Besides, due to the high porosity and good
mechanical properties of the support membrane, the resultant composite membrane exhibited a large
surface area to volume ratio, excellent permeability, binding capability, and good stability. Several
methods were developed to form imprinting sites on the surface [26]. One of the preferred methods
to prepare such membranes is by surface grafting of functional layers to the base membrane’s pore
surface. It can be accomplished by an intrinsic initiation of photosensitive groups introduced onto
the surface membrane or by coated initiation via a hydrogen-abstracting photoinitiator that yields
polymer starter radicals on the substrate [20]. This last option can be easily adapted to any type of
membrane with the presence of C-H bonds, e.g., a porous polypropylene (PP) membrane. Figure 4
illustrates an example of surface photo-grafting for the formation of molecularly imprinting sites.
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a membrane.

An example of illustration of the surface structure of MIMs obtained by this imprinting technique
is given in Figure 5 [27]. As can be observed, a layer of polymer coated the surface of polyvinylidene
fluoride (PVDF) membrane in NIM and MIM (Figure 5b,c, respectively). Besides, the images also
showed that MIM (at the same magnification) was rougher than NIM, which was due to the coating of
thin template layer on the top surface of PVDF membrane.
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Also, other approaches such as surface deposition [26], emulsion polymerization [26], or even
electrospinning [28] were used to create imprinting sites on the surface membrane. For instance, a MIP
layer on the surface of electrospun micro/nanofibers, which acts as a support for the imprinted polymer,
can be produced either in absence of specific interactions with the support, or via specific grafting
approaches. A scheme of this approach can be depicted in Figure 6. In particular, the “grafting”
approaches provide an effective way of changing the chemical and physical properties of the fibers and
the resulting materials are potentially more robust over longer periods of time compared to blending.
Besides, grafting of polymers from the surface of the fiber is preferred since the grafting densities can
be tailored and hence more effective control over biointerfacial interactions can be achieved [28].
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supporting fibers. Reproduced with permission from [28].

To improve some physical properties of MIMs, in recent years, nanoparticles (NPs) were also
added to the membranes in all above-mentioned strategies, particularly in the second and third
ones [29]. The particular properties of these nanostructures relies on the type of NP as well as their
features (size and shape), which will allow the use depending on the analytical needs. With the aim of
obtaining composite membrane materials with enhanced flux, better anti-fouling properties, chemical
stability and great perm-selectivity, NPs were incorporated into the membranes. As an example, it was
found that MIMs modified by different inorganic nanocomposite, such as SiO2 [30] and TiO2 [31]
demonstrated excellent rebinding ability and enhanced performance features. More examples of
molecularly imprinted nanocomposite membranes and their application to sample preparation and
separation processes will be given in the following sections.

3. Use of MIMs in Sample Preparation

Several MIMs were recently developed and applied for selective extraction and determination of
pharmaceutical compounds, drugs, mycotoxins, residual pesticides, and persistent organic pollutants
in biological, food, and environmental matrices. Different synthetic approaches were practiced,
involving various polymerization techniques, and/or supporting substrates, to prepare MIM materials
with different physical-chemical properties, selectivity, and analytical applicability. Other approach
different to the development of MIMs by the above-mentioned imprinting techniques is that based
on the introduction (enclosing) of a small amount of MIP particles (≤ 100 mg) into the lumen of the
membrane. This combination protects the sorbent from with a physical contact with the sample matrix,
while the analytes are allowed to diffuse across the membrane before adsorption onto the enclosed solid
adsorbent. In this section, the most relevant contributions in the sample treatment field of MIMs as
efficient and selective extraction devices will be briefly discussed, and an overview of the applications
is summarized in Table 1.
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Table 1. Recent MIM-based sorbents for extraction purposes in pharmaceutical, clinical, food and environmental samples.

Analyte(s) Template/Monomer/
Crosslinker/Solvent Substrate Imprinting Technique Matrix Determination

Technique
Recovery

(%)
LOD

(ng mL−1)
Reference

Pharmaceutical and clinical

5-FU 5-FU/MAA/EGDMA/MeOH:ACN PET Electrospinning Urine HPLC-UV >93 0.023 [32]
TE TE/AAM/EGDMA/MeOH Organic nylon PVDF; PP Surface grafting Serum UV >70.8 - [27]
VCM VCM/AAM/EGDMA/MeOH Organic nylon; PVDF; PP Surface grafting Serum UV >78 - [33]
L-Tys L-Tys/γ-MPS/ACN PSf Surface grafting Plasma LC/MS/MS >80 0.1 nmol L−1 [34]
CLE
MTX
CPFX
CPF

CLE or MTX or CPFX or
CPF/MAA/EGDMA/CHCl3:MeOH PVDF Surface grafting

Urine
Blood
Milk
Soil

ESI-MS >91% 0.02 (CLE) [35]

Cocaine Cocaine/MAA/EGDMA/H2O Cellulose Surface grafting Oral fluid PSI-MS >100.5 0.27 [36]
COC
BZE
CE
EME

COC/EGDMA/DVB/ACN:TOL PP
In situ polymerization

(MIP particles enclosed in
membrane)

Urine HPLC-MS/MS >97 0.05–0.5 [37]

COC
BZE
CE
EME

COC/EGDMA/DVB/ACN:TOL PP
In situ polymerization

(MIP particles enclosed in
membrane)

Plasma HPLC-MS/MS >96 0.06–0.87 [38]

Cannabinoids
(JWH007; JWH015;
JWH098)

JWH105/EGDMA/DVB/ACN:TOL PP
In situ polymerization

(MIP particles enclosed in
membrane)

Urine HPLC-MS/MS >86 0.032–0.75 [39]

Synthetic
cathinones Ethylone/EGDMA/DVB/ACN:TOL PP

In situ polymerization
(MIP particles enclosed in

membrane)
Urine HPLC-MS/MS >92 0.14–1.02 [40]

Food

CIT 1-naphthol/Methacryloyl
chloride/DVB/Ace:H2O PES Phase inversion Rice HPLC-FD >90 0.5 ng g−1 [41]

Acesulfame Acesulfame/TEPAM/ACN Nylon 6 Electrospinning Beverages HPLC-UV >80 0.6 [42]

Melamine Melamine/MAA/EGDMA/
ACN:H2O CA Surface grafting Milk HPLC-UV >89 7 [43]

2,4-D
Diuron

2,4,5-TD or monuron/MAA/
EGDMA/MeOH CM Surface grafting Fresh fruit PSI-MS >92 0.17–0.6 [44]

Aflatoxins
(AFB1; AFB2;
AFG1; AFG2)

DMC/MAA/DVB/ACN:TOL PP
In situ polymerization

(MIP particles enclosed in
membrane)

Fish feed UHPLC-MS-MS >80 0.42–1.2 µg
Kg−1 [45]

Environmental
SA SA/CS/DMSO CA Phase inversion Water FD - 24000 [46]
SMX
SMM
SDZ

SMX/APTES/TEOS/ACN Agarose In situ polymerization
(encapsulated) Water HPLC-DAD 80–96 0.06–0.17 [47]
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Table 1. Cont.

Analyte(s) Template/Monomer/
Crosslinker/Solvent Substrate Imprinting Technique Matrix Determination

Technique
Recovery

(%)
LOD

(ng mL−1)
Reference

Diclofenac
Metoprolol
VCM

Diclofenac or metoprolol or
VCM/NIPAm, AAc, TBAm /Bis

/H2O
PVDF Surface grafting Water HPLC-UV 50.1–100 3.7–15 [48]

PAHs B[k]F+Indeno/p-vinylbenzene/EDGMA/DMF PP
In situ polymerization

(MIP particles enclosed in
membrane)

Wastewater GC-TOF/MS 63–96 0.01–0.45 [49]

2,4-D: 2,4-dichloropehnoxyacetic acid; 2,4,5-T: 2,4,5-trichlorophenoxyacetic acid; 5-FU: 5-fluorouracil; AAc: acrylic acid; ACN: acetonitrile; Ace: acetone; Bis: N,N′-methylenebisacrylamide;
B[k]F: benzo[k]fluoranthene; BZE: benzoylecgonine; CA: cellulose acetate; CE: cocaethylene; CIT: citrinin; CLE: clenbuterol; CM: Cellulose membrane; COC: Cocaine; CPF: chlorpyrifos;
CPFX: ciprofloxacin; CS: chitosan; DMC: 5,7-dimethoxycoumarin; DMF: dimethylformamide; DMSO: dimethyl sulfoxide; DVB: divinylbenzene; EGDMA: ethylene glycol dimethacrylate;
EME: ecgonine methyl ester; ESI-MS: electrospray ionization-mass spectrometry; FD: fluorescence detection; GC-TOF/MS: gas chromatography-time of flight mass spectrometer;
L-Tys: L-tyrosine; MAA: methacrylic acid; MDPV: 3,4-methylenedioxypyrovalerone; MeOH: methanol; γ-MPS: 3-(trimethoxysilyl)propyl methacrylate; MTX: methotrexate; NIPAm:
N-isopropylacrylamide; PAH: polycyclic aromatic hydrocarbon; PES: Polyethersulfone; PET: polyethylene terephthalate; PSf: polysulfone; PP: polypropylene; PSI-MS: paper spray
ionization-mass spectrometry; PVDF: polyvinylidene fluoride; SA: salicylic acid; SDZ: sulfadiazine; SMM: sulfamonomethoxine; SMX: sulfamethoxazole; TE: teicoplanin; TBAm:
N-tert-butylacrylamide; TEPAM: 3-triethoxysilyl propylamide; TOL: toluene; VCM: vancomycin.
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3.1. Pharmaceutical and Clinical Applications

Beigzadeh et al. [32] made a MIM as SPE support for the selective extraction of 5-fluorouracil
(anti-cancer chemotherapy drug) from urine samples prior to HPLC-UV determination. For this
purpose, the authors fabricated the MIM via the encapsulation of MIP nanoparticles in electrospinning
polyethylene terephthalate (PET) nanofibers. Under optimized conditions, the developed method
showed high recoveries (93–95%) in urine samples and low LODs (0.023 µg L−1). Besides, the selectivity
of MIM was satisfactory since the presence of other cytotoxic drugs (ifosfamide and cyclophosphamide)
in the solution had no effect on the recovery values of target analyte.

Yao et al. [27] reported a MIM for teicoplanin (TE), a glycopeptide antibiotic, in biological samples
prior UV determination. For this purpose, several supporting materials (organic nylon microporous,
polyvinylidene fluoride (PVDF) and polypropylene (PP) membranes) were activated by soaking in
a solution of azobisisobutyronitrile (AIBN) in acetonitrile. Then, the activated membranes were
immersed in the molecular imprinting solution (TE and the functional monomer acrylamide) and
subjected to thermal polymerization. The best performance was shown by PVDF MIM, with maximum
loading capacity of 85 µg cm−2. The selected MIM showed satisfactory recoveries (>70.6%) both in
phosphate buffer solution (0.1 mol L−1 pH 2.50) as well as in a fetal bovine serum matrix (after protein
removal). Another example of surface imprinting technique was proposed by the same authors [33] for
the extraction of vancomycin (VCM) in serum samples followed its UV determination. The resulting
MIM showed a good adsorption capacity (23.8 µg cm−2) and adequate selective adsorption capability
(recovery of VCM in a solution containing teicoplanin as interferent compound gave values of
116%). Besides, the developed MIM was satisfactorily used (recoveries values > 78%) to the direct
determination of VCM in serum whether the proteins were in the system or not.

Another interesting example of surface imprinting technique was developed by Moein et al. [34].
Therein, the authors described the modification of a polysulfone (PSf) membrane using an in situ MIP
sol–gel method for the selective extraction and screening of L-tyrosine (as a lung cancer biomarker)
in plasma samples. The modified molecularly imprinted sol–gel PSf membrane was placed in a
homemade plastic tube and coupled on-line with LC/MS/MS for the selective extraction of this
compound. The analytical features of the optimized method were as follows: satisfactory recoveries
(80–85%), excellent reusability of sorbent (at least 50 times), and low LOD (0.1 nmol L−1).

A remarkable application of the combination of MIM with ambient electrospray ionization for
direct sample analyses was reported by Li et al. [35]. The combination of MIM and ESI-MS provides
a chemically selective surface that avoids the limitations of paper spray ionization (PSI) (such as
low sensitivity and ionization suppression) when complex samples are analyzed. Thus, a PVDF
membrane was previously activated by soaking in a solution containing 10% acrylic acid and 1%
potassium peroxydisulfate at 70 ◦C for 12 h. Next, the activated membrane was immerged in the
prepolymer solution, and subsequently thermally polymerized. Several MIMs using different templates
(clenbuterol hydrochloride (CLE), methotrexate (MTX), chlorpyrifos (CPF) and ciprofloxacin (CPFX))
were prepared and applied to enrich these target molecules in complex matrices before their analysis by
ESI-MS (see scheme in Figure 7). For example, the LOQ achieved for CLE was 0.1 ng mL−1, which let to
quantify this analyte in urine samples. Besides, this study also demonstrated the use of MIM-ESI-MS
in different application fields, where low LOQs were achieved (0.5 ng mL−1, 1 ng mL−1, and 1 ng mL−1

for MTX in blood, CPF in soil, and CPFX in milk, respectively). Additionally, MIM spray ionization is
a relatively fast method to perform, since the MIM is produced in less than 24 h and the PSI analysis
can be done in seconds.
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Figure 7. Workflow and analyte ionization in MIM-ESI. Reproduced with permission from [35].

Inspired by this last work, Tavares et al. [36] developed a MIM, which was used in a paper spray
ionization (PSI)-MS source for the analysis of cocaine in oral fluid samples. In this study, cellulose
membrane (prior activated with benzophenone) was submerged in pre-polymerization solution
followed UV polymerization. The developed MIM gave a LOD of 0.27 ng mL−1 and recoveries ranged
between 100.5% and 105.3%. Other benefits of the method were: no need for sample preparation, low
solvent consumption and fast analysis (<30 s).

As we mentioned above, other group of micro-SPE procedures using MIPs and membranes
imply that the adsorbent (MIP) is enclosed inside the membrane. Thus, Sánchez-González and
co-workers [37–40] developed several MIP-µ-SPE devices for different drugs (cocaine and cannabinoids)
in urine or plasma samples. As shown in Figure 8, MIP particles were placed into the PP membrane using
a cone-shape design with only one seal on the upper end. Then, the MIP-µ-SPE device is introduced
into the sample flask, followed by shaking and elution assisted by ultrasounds. This configuration
avoids heat-sealing damage, and hence loss of MIP particles, since the heat-sealing in these devices is
not in contact with eluting solvents. Besides, the capacity of the orbital-horizontal shaker allowed the
simultaneous performance of several MIP-µ-SPE units (at least 20), which undoubtedly increases the
throughput of the method compared with microextraction by packed sorbent (MEPS) and on-line SPE
approaches. As an example, the proposed system was applied for extraction of synthetic cannabinoids
in urine followed by HPLC-MS analysis. Satisfactory recovery values (83–100%), good reusability of
sorbent (at least 27 times), and low LODs (0.032–0.75 ng mL−1) were achieved.
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3.2. Food Applications

MIMs have been used for determination of mycotoxins in foods, such as citrinin (CIT), a metabolite
produced by several fungal species of Aspergillus [41]. The authors developed MIMs for CIT with
1-naphthol as mimic template, divinylbenzene as crosslinker, and naphthol methacrylate hybridized
into polyethersulfone scaffold by phase inversion process. The resulting MIM was used as SPE
phase for the extraction and pre-concentration of the mycotoxin in rice samples prior to HPLC with
fluorescence detection. Under optimized conditions, the developed method showed high recoveries
(89.7–94.2%), satisfactory precision values (RSD < 6.0%), and low LOD (0.5 ng g−1).

The monitoring and control of food additives is a critical issue in the food industry to guarantee
food quality and promote food safety. Thus, Moein et al. [42] developed an electro spun molecularly
imprinted nanomembrane for selective extraction and determination of acesulfame in beverage samples
and on-line connected to HPLC system. Nylon 6 was used as a polymeric backbone to support the MIP
precursor in the sol-gel process, and it was used to facilitate the electrospinning procedure. The MIM
device gave an imprinting factor (which is determined by comparing the amount of target analyte or
structural analog bound/retained by the MIM and the NIM) of 4.25 and showed a good selectivity
for the target molecule compared to other sweeteners or food additives like saccharine, aspartame,
and caffeine. The sorbent also provided a satisfactory reusability (at least for 35 re-uses without a
significant change in extraction recovery). Other quality analytical parameters of the method included
quantitative extraction recoveries for beverage samples (80–85%), and low LOD (0.6 ng mL−1).

Other interesting application was reported by Akbari-Adergani et al. [43], who developed a MIM
for the selective micro-extraction of melamine from milk samples, which was subsequently determined
by HPLC. For this purpose, MIPs were photografted into the circular hydrophilic CA membrane by
placing it into the pre-polymerization solution (see Figure 9). The resulting MIM showed a great
selectivity compared to NIM, increasing the recoveries from 22–23% to 91–93%. Besides, the developed
method provided low LOD (0.007 µg mL−1) and satisfactory recovery values (88.7–94.8%) in dry
milk samples.
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Also, the combination of MIM with PSI-MS was applied to the selective extraction and
determination of herbicides such as diuron and 2,4-dichlorophenoxy acetic acid in foodstuffs [44].
Thus, MIP was synthesized onto an activated cellulose membrane. In this case, monuron and
2,4,5- trichlorophenoxyacetic acid were used as template molecules instead of the target analytes.
The resulting MIP membrane spray showed signal intensities of analytes that were much higher than
those obtained by non-imprinted polymers (NIP or NIM). The real applicability of the developed MIMs
was demonstrated by separation/extraction of these herbicides from food samples (with recoveries
from 92.5% and 116.9%) and with LODs less than 0.60 µg L−1.

Also, the use of MIPs enclosed in membranes was applied to food safety purposes [45]. The authors
used single cone-shape PP devices containing MIP particles as a µ-SPE system for the selective
extraction of aflatoxins in fish feed, which were determined by HPLC-MS. The analytical features of
the optimized method were as follows: satisfactory recoveries (80–100%), good reusability and low
LODs (0.42–1.2 µg kg−1). These LOD values were quite lower than those established by European
Commission guidelines for aflatoxins in animal feeds.

3.3. Environmental Applications

Meng et al. [46] developed a fluorescent MIM (FMIM) for salicylic acid (SA) using the phase
inversion technique, with SA as template molecule, chitosan as functional polymer. As luminescent
material, complexes of Europium with 2-thenoyltrifluoroacetone (Eu(TTA)3phen) incorporated into the
cavities of a polyamidoamine (PAMAM) dendrimer (Eu(TTA)3phen/PAMAM) were used. Figure 10
shows the preparation process of FMIM and its fluorescence mechanism.
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wider linear range (0–100 mg L−1), acceptable LOD (24 mg L−1), and satisfactory recycling performance
(at least four times). Besides, the FMIM had acceptable fluorescent selectivity toward structural
analogues of SA, and it was successfully used for selective detection and separation of SA in water.

Rozaini et al. [47] dispersed molecularly imprinted silica gel particles in an agarose polymer
matrix to form a mixed matrix membrane for the separation and preconcentration of sulfonamides in
environmental water samples, and their subsequence determination by HPLC. The developed method
offered the following benefits: (i) simple and fast sample preparation and HPLC analysis (<15 min);
(ii) low organic solvent requirement (250 µL) and low sorbent consumption (15 mg per membrane),
and (iii) cost-effective. In addition, the proposed protocol provided good recoveries (80–96% with RSD
values < 10%), high selectivity (selectivity factors of the MIM were between 1.5 and 5.2) and sensitivity
(LOD lower than 0.17 µg L−1) allowing the quantification of these compounds at levels below the
maximum residue limits established by regulatory agencies.

Altintas et al. [48] developed nanostructured MIMs using PVDF membranes previously subjected
to plasma treatment for surface modification. This treatment allowed the addition of functional
groups to the membranes prior to incorporating high capacity and affinity MIPs both by adsorption
and covalent immobilization. In this case, acrylic acid was used as the monomer during the plasma
deposition process and a high density of carboxylic groups were obtained at the surface of the
membranes (see Figure 11). Then, individual MIP solutions (containing as template diclofenac-,
metoprolol- or vancomycin, respectively) were applied and the resulting nanoMIPs were immobilized.
The resulting MIMs were used as SPE phases for the extraction of these analytes in water samples prior
HPLC determination. The optimized method gave satisfactory LODs (3.7–15 ng mL−1) and acceptable
recoveries (nearly 100% for metoprolol and diclofenac, and ca. 50% for vancomycin). Moreover, a pilot
scale test was made, and high volumes (up to 5 L) were successfully applied, thus indicating the high
potential of water purification using MIMs.
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Also, the combination of membrane assisted solvent extraction and a MIP adsorbent (MASE-MIP
technique) into a single step format was described for extraction of polycyclic aromatic hydrocarbons
(PAHs) in wastewater followed by their determination by GC-TOF/MS [49]. As shown in Figure 12,
the membrane extraction cell consisted of a 20 mL headspace vial filled with deionized water spiked with
PAHs. The membrane bag was attached to a metal funnel and fixed with a PTFE ring. The membrane
bag was filled with 80 mg of the MIP particles and 1 mL of an organic acceptor phase. Under optimized
conditions, the method provided good extraction efficiencies (62.8 to 96.8%), acceptable reproducibility
values (RSD = 0.6–24.9%) and LODs ranged from 0.01–0.45 ng mL−1.
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4. Use of MIMs in Separation Processes

Also, MIMs are commonly used in selective molecular separation processes, including reverse
osmosis, nanofiltration, pervaporation, and membrane adsorption. Indeed, these membranes have been
employed in purification of active pharmaceutical ingredients, enantiomeric separation, extraction of
toxic compounds such as metal ions, herbicides, PAHs, and dyes in environmental samples. However,
most of these works were focused on characterization studies of MIMs with scarce emphasis in the
application to real samples. Tables 2 and 3 list several selected examples of the use of MIMs in the
separation of compounds with pharmaceutical, food or environmental interest. Next, the most relevant
contributions in this field will be briefly discussed.

4.1. Pharmaceutical and Food Applications

In recent years, important efforts have been done for the purification of many drug components
from neat solutions, raw materials, or natural sources by using MIMs [23,50–52]. For instance,
Székely et al. [23] prepared an aminopyrimidine (2AP) molecularly imprinted nanofiltration membrane
via phase inversion. The authors used polybenzimidazole (PBI) as a functional polymer for the
molecular imprinting. The resulting MIM exhibited excellent chemical and solvent stability and it
acted as shape specific adsorbent and size exclusion membrane (Figure 13).

In another example, Ghasemi et al. [52] developed a PSf membrane with specific nanocavities
for the selective separation and enrichment of paclitaxel, an anticancer drug widely used in the
treatment of different cancers, from a standard solution and from a natural source, yew tree extract.
By using this MIM, 48% of the initial paclitaxel in the crude yew tree was separated by the membrane,
which demonstrated its applicability in the purification of paclitaxel in an easier way than the
preparative HPLC columns.

Cui et al. [51] prepared bio-inspired MIMs for the purification of artemisinin (Ars), an antiparasitic
drug mainly extracted from plants. The authors, inspired from the highly bioadhesive performance of
mussel protein, bound bio-adhesive and homodisperse polydopamine (pDA) layers on membrane
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surfaces (in particular, PVDF membranes) to form a versatile platform for further modification procedure.
Then, Ars was used as template, AM as functional monomer and EGDMA as cross-linker to prepare
the imprinted membranes via atom transfer radical polymerization (ATRP) technique. The resulting
MIM showed a large adsorption capacity (158.85 mg g−1) and presented better perm-selectivity and
reusability performance than NIMs. The same authors of this study also developed several pDA-based
imprinted nanomaterials or platforms, such as pDA@SiO2 nanoparticles [53] and pDA@RC [54] for
purification/separation of β-blockers, pDA@GO [55] and pDA@TiO2 microspheres [56] for NSAIDs,
and pDA@Al2O3 [57] for isolation of antibiotics. For example, ibuprofen-imprinted nanocomposite
membranes were prepared by the integration of pDA@TiO2 functional microspheres and porous PVDF
membranes. By using ibuprofen as the template molecule, the final membranes were synthesized by
developing a sol–gel imprinting technique (see Figure 14). The as-prepared membranes revealed a
satisfactory adsorption capacity toward ibuprofen (42.14 mg g−1) and regenerability. Additionally,
the as-synthesized imprinting membrane exhibited an excellent perm-selectivity toward ibuprofen
with a separation factor of 4.46.
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Also, MIMs can be employed to remove undesirable products derived from the incomplete
conversion of raw materials used in the synthesis of pharmaceutical active ingredients. As an example,
Sun et al. [58] developed a MIM that could be used for the selective separation of phenol from
salicylic acid (SA) for ensuring the purity of SA product. The MIM was synthesized using the breath
figure method with a styrene-acrylonitrile copolymer as the membrane matrix and MIP nanoparticles
(Figure 15). Thus, the nano-MIPs were first synthesized by oil-in-water emulsion polymerization using
4-vinyl pyridine (4-VP), methyl methacrylate (MMA) or cinnamic acid as the functional monomer,
respectively. Then, the mixture solution was obtained by dissolving matrix and nano-MIPs in
chloroform. Casting the mixture solution on a substrate under a nitrogen flow, the microporous
membrane with binding sites was obtained after complete evaporation of solvent. The results revealed
that the 4-VP-MIM containing 2.0 wt.% of nano-4-VP-MIPs exhibited the highest separation selectivity
for the template phenol, whose selectivity factors relative to SA and p-hydroxybenzoic acid were 5.68
and 5.54, respectively.Separations 2020, 7, 69 16 of 29 
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Also, different membranes were prepared for application in the biomedical field or for various
biotechnological uses, on account of their biomimetic behavior. For example, cholesterol removal
studies using MIMs [59,60] have become more attractive to overcome its deleterious effects on human
health. Thus, Niesa et al. [60] developed a MIM obtained by in situ photopolymerization for extraction
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of cholesterol from blood samples. The MIM was prepared using cholesterol as template, MAA,
EGDMA and 2-2-dimethoxy-2-phenylacetophenone. The synthesized device was able to adsorb 57%
of the cholesterol from blood samples from patients with high cholesterol levels (298 mg dL−1).

Furthermore, MIMs were used for chiral recognition of amino acids [61,62]. For example,
Gao et al. [62] prepared a MIM for L-glutamic acid (L-glu) with an innovative surface imprinting strategy.
By using a chemical initiating system (-NH2/S2O8- system), the functional monomer dimethylaminoethyl
methacrylate (DMAEMA) and the crosslinking agent N,N′-methylenebisacrylamide (MBA) produced
graft/crosslinking-polymerization on the surface of aminated PSf membrane, being L-Glu molecules
wrapped within the grafted polymer layer. The resulting MIM displayed a high selectivity factor of 7.52
for L-Glu relative to the other enantiomer D-Glu, and the optical purity of a penetrating fluid of the
racemic mixture can reach 82%, fully revealing that MIM has excellent enantioseparation ability.

Another field of recent application of MIMs was focused on the removal or depletion of abundant
proteins in blood (i.e., albumin, IgG), since these components mask the low level of valuable biomarkers
(such as cytokines, troponins, etc.) used in diagnosis diseases. Thus, MIMs were used for the depletion
of albumin from neat solutions and biological samples [63–66]. An interesting example is that developed
by Fan et al. [65], where a supermacroporous MIM was prepared via cryopolymerization using a
functionalized ionic liquid {(1-vinyl-3–(2-amino-2-oxoethyl) imidazolium chloride, [VAMIM]Cl]} as
functional monomer and bovine serum albumin (BSA) as the template. The preparation scheme of
this imprinted membrane and the schematic representation of the molecular imprinting procedures
were depicted in Figure 16. The resulting membrane showed several advantages such as easy mass
transport of cryogel and multiple interactions of ionic liquid with protein. The results of adsorption
and permeation studies confirmed that MIM had better selective recognition and perm-selectivity for
BSA than NIM.
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In the pharmaceutical and food industries, the extraction of polyphenols (such as flavonoids)
from vegetable or food materials has gained great importance due to several associated health benefits
of these compounds [67]. In this context, several MIMs were reported to separate and recover
polyphenol compounds from these matrices [22,68,69]. Thus, Mansour et al. [22] synthesized MIMs
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via encapsulation of prepared quercetin-MIP NPs to recover these valuable compounds from food
solid wastes extracts. The binding capacity of the resulting MIM was found to be 80 mmol g−1, and it
was satisfactorily applied to recover various polyphenols from orange (56.1–98.8%), lemon (44–99.3%)
and onion (64.7–94%) peel extracts with different extraction efficiencies.

4.2. Environmental Applications

Due to the biological and environmental impact of metal ions, the development of novel MIMs for
separation and purification of these compounds was reported [70–72]. Thus, Lu et al. [72] developed
thermosensitive imprinted nanocomposite membranes for the selective separation of europium ions.
The authors prepared GO-based hybrid membranes by synergistically stacking GO nanosheets and
modified silica nanospheres on the membranes previously modified by pDA. AgNPs were grafted on
the surface of the membranes to provide anti-fouling ability. Then, temperature-controlled selective
recognition sites were formed using N-isopropylacrylamide (NIPAm) and acrylamide (Am) as functional
monomers, as well as europium ions as templates through a RAFT (reversible addition-fragmentation
chain transfer) method. Competitive adsorption and perm-selectivity studies were performed for the
Eu(III)/La(III), Eu(III)/Gd(III), Eu(III)/Sm(III)) binary mixed systems, showing the imprinted membranes
a high adsorptive selectivity toward target ions. The as-prepared MIM showed a satisfactory reusability
(10 re-uses) and good potential in the separation of rare earth ions from wastewater.

Membrane technology was also expanded to other organic pollutants, such as herbicides [73,74],
phenols (including endocrine disruptors) [75–78], aromatic hydrocarbons [79–83], dyes [84,85],
and antibiotics [86,87], among others. Several representative examples of these applications will be
described below.

Söylemez et al. [74] developed a selective MIM for 2,4-dichlorophenoxyacetic acid (2,4-D) for its
application in real water samples. The 2,4-D imprinted membranes were synthesized by γ-radiation
induced in situ membrane preparation method. The as-prepared membranes showed an imprinting
factor of 3.1 for the target analyte, whereas this value was below 1.3 for other structurally related
compounds. The binding capacity of the MIM was 23.0 µmol g−1, an acceptable reusability (at least
seven times), and it was able to remove approx. 75% of this herbicide from contaminated water samples.

Thus, Wolska et al. [76] developed a MIM on porous PP filters for removal of bisphenol A (BPA).
For this purpose, the authors imprinted a layer of MMA and EGDMA via plasma-induced grafting.
The obtained molecularly imprinted devices could selectively remove this analyte, being inactive in
sorption of other phenol compounds. The MIM reached an adsorption value of 0.06 mmol g−1 and it
was able to remove BPA at 70% level from 0.2 mM BPA aqueous solution.

Zheng et al. [80] prepared molecularly imprinted cellulose membranes for pervaporation
separation of xylene isomers. The MIMs were prepared using 1,2-dihydroxybenzene as template
molecule via phase inversion. The resulting membranes selectively incorporated o-xylene from o-/m-
and o-/p- mixtures at a low o-xylene concentration region, being the adsorption selectivity toward
o-xylene 7.15 and 4.24, respectively.

Also, removal of persistent organic pollutant from environmental compartments is a major issue to
public health and environmental concern. For instance, Mkhize et al. [82] developed MIMs for selective
removal of polychlorinated biphenyls (PCBs) in environmental waters. The membranes were obtained
from casting the viscous solutions of MIPs, PSf and N-methyl-2-pyrrolidone (NMP) as the casting
solvent. Competitive selectivity of the MIMs toward PCBs was evaluated using structurally similar
compounds to PCBs (such as anthracene and p,p′-DDT). The results showed that MIM exhibited high
selectivity to PCBs, being able to achieve removal efficiencies ranged between 71.5 to 94% in spiked
environmental water samples.

Another interesting example is that described by Mujahid and co-workers [83] focused on
removing organosulfur compounds (like dibenzothiophene, DBTh) from fuel both to improve the
performance of engines’ catalytic exhaust system as well as to control SOx emissions. For this purpose,
MIMs were prepared in the absence and in the presence of NiS nanoparticles as suitable affinity
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material in poly(methyl methacrylate) (PMMA) matrix (Figure 17). Both MIP and MIP-NiS membranes
showed excellent desulfurization capability with 84% and 97% sulfur removal. The overall amount of
sulfur removed by MIP (184 µg g−1) and MIP-NiS (215 µg g−1) is respectively about 2.6 and 3.0 times
higher than the NIP (72 µg g−1). This result was attributed to the imprinting effects and inherent
tendency of NiS nanoparticles to interact with these compounds. The developed method embodies a
sustainable and viable strategy for efficient desulfurization compared to conventional methods.
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Lu et al. [84] developed MIMs intended to an efficient removal of dyes in lake water. Using layered
double hydroxides (LDH) as the template matrix or substrate, the authors prepared Rhodamine B
(RhB)–MIMs by an ATRP method (Figure 18). The resulting material had an ultra-thin membrane
structure of about 1 nm, presented a high adsorption capacity (100.1 mg g−1) and adequate selectivity.
The applicability of the MIM was demonstrated by recovering RhB from spiked lake water samples,
achieving removal efficiencies greater than 90%.

Also, antibiotic pollutants in water have received remarkable attention due to the untold damage
to human health and environment. As an example, Zhao et al. [86] prepared composite membranes
using GO/PVDF blended membranes as substrates for selective separation of norfloxacin from
aqueous solution. In particular, the as-prepared GO/PVDF blended membranes were used as
platform to immobilize TiO2 nanospheres, which were modified by a functionalization process with
KH570 for further imprinting process. The as-prepared nanocomposite membrane showed great
selectivity (selectivity coefficient obtained up to 7.35) and permeability (permeability factor above
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6.0). Furthermore, the membrane exhibited satisfactory adsorption capacity (44.81 mg g−1) and
an acceptable reusability (at least six adsorption/desorption cycles). Other interesting example is
that described by Xing et al. [87], who developed sustainable molecularly imprinted nanocomposite
membranes for the selective recognition of tetracycline (TC). Thus, biomass-activated carbon NPs
were integrated into porous CA/CS membranes to synthesize renewable basal membranes with
enhanced adsorption capacity and permeation flux. The specific recognition sites were fabricated from
simple free radical polymerization method, using MAA and Am as functional monomers, and TC as
template. The results indicated that the as-prepared hybrid MIMs exhibited desirable biodegradability,
satisfactory adsorption (15.99 mg g−1) and good separation performance (perm-selectivity factor 2.4).
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Table 2. Recent applications of MIMs in separation processes in pharmaceutical and food field.

Analyte(s) Template/Monomer/
Crosslinker/Solvent Substrate Imprinting Technique Matrix Determination

Technique IF/SF PSF Reference

2-AP 2-AP/-/-/DMAc:H2O PBI Phase inversion - HPLC-UV 4.1/5.5 3.9 [23]

Paclitaxel Paclitaxel/-/-/DMF PSf Phase inversion Yew tree
extract HPLC-UV 2.28/- - [52]

Matrine Matrine/MAA/EGDMA/H2O:MeOH CMPSf Surface grafting - UV 140/4.85 5.9 [50]
Ars Ars/Am/EGDMA/Pyridine PVDF Surface grafting - HPLC-UV 14.9/2.04 5.6 [51]

Propranolol Propranolol/MAA/MBA/H2O Br-Ag-pDA@SiO2-based
composite PVDF Surface grafting - HPLC-UV 4.85/2.70–3.24 5.52–6.71 [53]

Propranolol Propranolol/MAA,
AM/MBA/EtOH

GO/TiO2-based
composite RC Surface grafting - HPLC-UV 4.26/

3.0–3.2 11.35–13.66 [54]

Ibuprofen Ibuprofen/APTES/TEOS/EtOH pDA@GO-based
composite PVDF Surface grafting - UV 4.38/3.51–3.91 6.55–6.63 [55]

Ibuprofen Ibuprofen/APTES/TEOS/EtOH pDA@TiO2-based
composite PVDF Surface grafting - UV 4.68/3.25–3.66 4.42–4.46 [56]

Tetracycline Tetracycline/MAA/EGDMA/H2O Ag/pDA@Al2O3 ceramic
membrane Surface grafting - UV 2.64/3.27–3.60 5.95–6.15 [57]

Phenol Phenol/4-VP/DVB/MeOH SAN In situ polymerization
(embedded membrane) - UV -/

5.54–5.68 - [58]

Cholesterol Cholesterol/MTrp,
HEMA/EGDMA/MeOH HEMA In situ polymerization

(embedded membrane)

Intestinal
mimic

solution
HPLC-UV -/-

2.04–2.39 - [59]

Cholesterol Cholesterol/MAA/EGDMA/ACN - In situ polymerization Blood UV - - [60]
D-Tryptophan D-Tryptophan/-/CaCl2/H2O SAg Phase inversion - HPLC-UV - - [61]

L-glu L-glu/DMAEMA/MBA/DMF-H2O CMPSf Surface grafting - UV 1.44/7.52 3.25 [62]

BSA (pDA)-BSA/-/-/H2O CS/PVP/MWCNTs Phase inversion Bovine
blood Fluorescence 2.80/1.73-2.14 - [63]

BSA BSA/ HEMA-MAP/EGDMA/PBS - In situ polymerization - UV 3.74/1.12–1.34 - [64]
BSA BSA/VAMIN/MBA/PBS - In situ cryo-polymerization Blood UV 2.37/1.33–2.35 1.73 [65]

BSA; Lys BSA or Lys/MMA/EGDMA/NMP CA Surface grafting Cell broth HPLC-UV 2.39–4.23/
- 4–9 [66]

Kaempferol Kaempferol/4-VP/EGDMA/ACN PPSU Phase inversion - UV 4.12 - [68]

Quercetin Quercetin/HEMA-MAH/EGDMA/
isopropyl alcohol - In situ polymerization - UV 30.6/- - [69]

Polyphenols Quercetin/AN/EGDMA/ACN CA In situ polymerization
(embedded membrane)

Lemon,
orange and
onion peels

HPLC-UV - - [22]

2-AP: 2 aminopyridine; 4-VP: 4-vinyl pyridine; Ars: artemisinin; AM: acrylamide, AN: acrylonitrile; APTES: 3-amino-propyltriethoxysilane; BSA: bovine serum albumin; CMPSf:
chloromethylated polysulfone; DMAc: N,N-dimethylacetamide; DMAEMA: dimethylaminoethlyl methacrylate; EtOH: Ethanol; GO: graphene oxide; HEMA: hydroxyethyl methacrylate;
IF: imprinting factor; L-glu: L-glutamic acid; Lys: lysine; MAH: N-methacryloyl-(L)-histidine; MAP: N-methacryloyl-(L)-phenylalanine methyl ester; MBA: N,N-methylenebis(acrylamide);
MMA: methyl methaacrylate; MTrp: N-methacryloyl-l-tryptophan methylester; MWCNT: multi-walled carbon nanotube; NMP: N-methyl-2-pyrrolidone; PBI: polybenzimidazole; PBS:
Phosphate Buffer Solution; pDA: polydopamine; PPSU: polyphenylene sulfone; PSF: permselectivity factor; PSf: polysulfone; PVP: polyvinyl pyrrolidone; SAg: sodium alginate; SAN:
styrene-acrylonitrile; SF: selectivity factor; TEOS: tetraethyl orthosilicate; VAMIM: 1-vinyl-3-(2-Amino-2-oxoethyl)imidazolium chloride.
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Table 3. Recent applications of MIMs in separation processes in environmental field.

Analyte(s) Template/Monomer/
Crosslinker/Solvent Substrate Imprinting Technique Matrix Determination

Technique IF/SF PSF Referemce

Pb2+ Pb(NO2)3/PAA/GLA/H2O PVA In situ polymerization
(embedded membrane) - ICP-OES 1.25/ 70 - [70]

Li+ Li+/12C4, MAA, EGDMA/ACN PES Surface grafting - ICP-OES 2.55/1.85–2.07 7.39–9.86 [71]
Eu3+ Eu3+/NIPAm, Am/EGDMA/ACN RCM Surface grafting - ICP-OES 4.09/1.45–1.82 3.34–3.82 [72]
2,4-D 2,4-D/MAA/TRIM/DMAc PSf Phase inversion - UV -/12.96 1.7 [73]

2,4-D 2,4-D/N-vinylimidazole/EGDMA/
MeOH:water - In situ polymerization Water UV 1.1–3.1/

2.35–2.74 - [74]

Phenol Phenol/MAA/TRIM/ACN PSf Phase inversion - UV 1.08/3.57 - [75]
BPA BPA/MMA/EGDMA/n-octane PP Plasma-induced grafting - UV 2.9–9/- 32.2-78.3 [76]

4-Nitrophenol 4-Nitrophenol/-/GLA/PEG CS In situ polymerization Water HPLC-UV 1.52/2.46–16.19 - [77]
m-Cresol m-Cresol/APTES/TEOS/EtOH RCM Surface grafting - HPLC-UV 3.07/4.41–5.41 13.17–15.44 [78]

Xylene isomers 1,2-dihydroxybenzene
/-/LiCl/DMAc CM Phase inversion - UV -/4.24–7.15 - [80]

PAHs Anthracene/MAA/EGDMA/ACN CA Phase inversion - HPLC-UV -/5–18.8 - [81]

Naphthalene Naphthalene/-/DMF PSf Phase inversion Wastewater
streams UV 1.28/2.27 - [79]

PCBs Anthracene/MAA/EGDMA/ACN PSf Phase inversion Water CG-TOF-MS - 8.23–10.3 [82]
DBTu DBTu/PMMA/CHCl3 - In situ polymerization - UV 2.60–3.0/- - [83]
RhB RhB/MAA/EGDMA/ACN LDH-based material Surface grafting Water UV 2.83/8.8–27.3 - [84]
MB MB/MAA/MBA/THF PSf Phase inversion - UV - 2.83–2.91 [85]

Norfloxacin Norfloxacin/Am/EGDMA/EtOH TiO2@GO/PVDF Surface grafting Water UV 5.73/5.45–7.35 6.25 [86]

TC TC/MAA, Am/EDGMA/EtOH ACNPs@
CA/CS Surface grafting Water HPLC-UV 3.3–3.6/3.4 2.4 [87]

12C4: 12-crown-4; BPA: bisphenol A; DBTu: dibenzothiophene; GLA: glutaraldehyde; LDH: layered double hydroxides; MB: Methylene blue; NIPAm: N-isopropylacrylamide; NPs:
nanoparticles; PAA: polyacrylic acid; PCB: Polychlorinated biphenyl; PEG: poly ethylenglycol; PMMA: poly(methyl methacrylate); PVA: poly(vinyl alcohol); RCM: regenerated cellulose
membrane; RhB: rhodamine B; TC: tetracycline; THF: tetrahydrofuran; TRIM: trimethylolpropane trimethacrylate.
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5. Conclusions

The recent advances of combination of molecular imprinting and membrane technology to prepare
MIMs with affinity properties for sample treatment and separation processes were reviewed here.
Compared with traditional application of imprinted materials in sample treatment and other areas,
which involve the use of imprinted polymer particles, MIMs offer several benefits. These materials take
advantage of features of membrane separation technology (such as continuous operation, low energy
consumption, and high efficiency of transport), which make them more convenient and robust to
operate in the clean-up procedure and industrial separation processes. Besides, the MIMs provide
larger specific surface area with relatively high imprinting sites per unit mass, less consumption of
chemical reagents and reduction of sample treatment time. A variety of MIM synthesis procedures
were employed such as in situ polymerization, phase inversion and surface imprinting, being this latter
strategy a popular and convenient technique due its flexibility, easy accessibility of the recognition sites
and favorable binding kinetics. Because of their versatility, several applications of MIMs comprising
sample pretreatment field as well as separation/purification processes of different targets (such as
drugs, pollutants, proteins, among others) were described.

Despite the great application potential of these materials, we are aware that there are still great
challenges for their further development. For instance, one of them is to achieve a homogeneous
distribution of imprinted recognition sites, which has a relevant influence on the selectivity and
adsorption capacity of final MIMs. Hence, the thickness homogeneity of the MIP layer on MIMs is a
non-negligible factor that would need more consideration, and more research toward the controllable
synthesis of MIMs would be desirable. Imprinting polymerization method is a key factor affecting the
imprinting effect. As we mentioned above, the preparation of MIMs based on diverse polymerization
methods can be accomplished. However, some harsh reaction conditions and long polymerization
time can cause damage of membranes in terms of physicochemical properties or microstructures,
thus affecting the final performance of MIMs. In this sense, novel fabrication strategies (for example,
click chemistry) with mild and simple conditions are desired for the preparation of MIMs. It can be
expected that the improvement of imprinting polymerization methods will significantly facilitate the
in-depth research and wide applications of MIMs. Also, other great challenge for research in this field
is the production of MIMs with virus, which could be used in diagnosis and therapeutic treatments.

In summary, all the developments in MIMs that are expected to happen in the future will positively
aid both to enhance the use of these materials in analytical chemistry, biotechnology, health care,
environmental protection, and industrial development areas as well as to expand its applications to
other fields in the upcoming years.

Author Contributions: All authors participated in the bibliographic review, manuscript writing and revision.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by project RTI2018-095536-B-I00 (Ministry of Science, Innovation and
Universities, Spain).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev.
2016, 45, 2137–2211. [CrossRef]

2. Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and
highlighted applications. Chem. Soc. Rev. 2011, 40, 2922. [CrossRef]

3. Mayes, A.G.; Whitcombe, M.J. Synthetic strategies for the generation of molecularly imprinted organic
polymers. Adv. Drug Deliv. Rev. 2005, 57, 1742–1778. [CrossRef]

4. Cieplak, M.; Szwabinska, K.; Sosnowska, M.; Chandra, B.K.C.; Borowicz, P.; Noworyta, K.; D’Souza, F.;
Kutner, W. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting.
Biosens. Bioelectron. 2015, 74, 960–966. [CrossRef]

http://dx.doi.org/10.1039/C6CS00061D
http://dx.doi.org/10.1039/c0cs00084a
http://dx.doi.org/10.1016/j.addr.2005.07.011
http://dx.doi.org/10.1016/j.bios.2015.07.061


Separations 2020, 7, 69 24 of 28

5. Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive solid
phase microextraction. TrAC Trends Anal. Chem. 2019, 118, 793–809. [CrossRef]

6. Sari, E.; Üzek, R.; Merkoçi, A. Paper Based Photoluminescent Sensing Platform with Recognition Sites for
Tributyltin. ACS Sens. 2019, 4, 645–653. [CrossRef] [PubMed]

7. Yang, S.; Wang, Y.; Jiang, Y.; Li, S.; Liu, W. Molecularly imprinted polymers for the identification and
separation of chiral drugs and biomolecules. Polymers 2016, 8, 216. [CrossRef] [PubMed]

8. Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews.
J. Sep. Sci. 2013, 36, 609–628. [CrossRef]

9. Gilart, N.; Borrull, F.; Fontanals, N.; Marcé, R.M. Selective materials for solid-phase extraction in environmental
analysis. Trends Environ. Anal. Chem. 2014, 1, e8–e18. [CrossRef]

10. Schirhagl, R. Bioapplications for molecularly imprinted polymers. Anal. Chem. 2014, 86, 250–261. [CrossRef]
11. Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest applications of molecularly

imprinted polymers for extraction of contaminants from environmental and food matrices: A review.
Anal. Chim. Acta 2017, 974, 1–26. [CrossRef] [PubMed]

12. Madikizela, L.M.; Ncube, S.; Chimuka, L. Recent Developments in Selective Materials for Solid Phase
Extraction. Chromatographia 2019, 82, 1171–1189. [CrossRef]

13. Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. TrAC-Trends
Anal. Chem. 2019, 118, 574–586. [CrossRef]
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59. Odabaşı, M.; Uzun, L.; Baydemir, G.; Aksoy, N.H.; Acet, Ö.; Erdönmez, D. Cholesterol imprinted
composite membranes for selective cholesterol recognition from intestinal mimicking solution. Colloids Surf.
B Biointerfaces 2018, 163, 266–274. [CrossRef]

60. Niesa, J.; Ulianas, A. Design and characterization of membrane molecularly imprinted polymer (MIP) as
cholesterol absorbent. J. Phys. Conf. Ser. 2020, 1481, 012031. [CrossRef]

61. Zhou, Z.; Cui, K.; Mao, Y.; Chai, W.; Wang, N.; Ren, Z. Green preparation of d-tryptophan imprinted self-
supported membrane for ultrahigh enantioseparation of racemic tryptophan. RSC Adv. 2016, 6, 109992–110000.
[CrossRef]

62. Gao, B.; Cui, K.; Li, Y. Preparation of molecule imprinted membrane of single enantiomer of amino acid with an
innovative strategy and study on its chiral recognition and resolution properties. J. Chem. Technol. Biotechnol.
2017, 92, 1566–1576. [CrossRef]

http://dx.doi.org/10.1016/j.jlumin.2018.12.026
http://dx.doi.org/10.1016/j.talanta.2019.02.096
http://www.ncbi.nlm.nih.gov/pubmed/30952293
http://dx.doi.org/10.1016/j.cej.2016.04.121
http://dx.doi.org/10.1002/jssc.201701216
http://dx.doi.org/10.1016/j.msec.2016.02.023
http://dx.doi.org/10.1002/app.43405
http://dx.doi.org/10.1016/j.reactfunctpolym.2018.02.012
http://dx.doi.org/10.1016/j.cej.2016.07.089
http://dx.doi.org/10.1016/j.seppur.2018.11.042
http://dx.doi.org/10.1016/j.memsci.2018.02.043
http://dx.doi.org/10.1039/D0NJ01836H
http://dx.doi.org/10.1016/j.jhazmat.2016.10.030
http://www.ncbi.nlm.nih.gov/pubmed/27776858
http://dx.doi.org/10.1002/app.42350
http://dx.doi.org/10.1016/j.colsurfb.2017.12.033
http://dx.doi.org/10.1088/1742-6596/1481/1/012031
http://dx.doi.org/10.1039/C6RA23555G
http://dx.doi.org/10.1002/jctb.5261


Separations 2020, 7, 69 27 of 28

63. Luo, Z.; Du, W.; Guo, P.; Zheng, P.; Chang, R.; Wang, J.; Zeng, A.; Chang, C.; Fu, Q. A porous hybrid imprinted
membrane for selectively anchoring target proteins from a complex matrix. RSC Adv. 2015, 5, 72610–72620.
[CrossRef]

64. Demir, E.F.; Özçalışkan, E.; Karakaş, H.; Uygun, M.; Aktaş Uygun, D.; Akgöl, S.; Denizli, A. Synthesis and
characterization of albumin imprinted polymeric hydrogel membranes for proteomic studies. J. Biomater. Sci.
Polym. Ed. 2018, 29, 2218–2236. [CrossRef] [PubMed]

65. Fan, J.-P.; Zhang, F.-Y.; Yang, X.-M.; Zhang, X.-H.; Cao, Y.-H.; Peng, H.-L. Preparation of a novel
supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein
recognition and permselectivity. J. Appl. Polym. Sci. 2018, 135, 46740. [CrossRef]

66. Xie, W.; Wang, H.; Tong, W.; Sankarakumar, N.; Yin, M.; Wu, D.; Duan, X. Specific purification of a single
protein from a cell broth mixture using molecularly imprinted membranes for the biopharmaceutical industry.
RSC Adv. 2019, 9, 23425–23434. [CrossRef]

67. El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol.
2009, 44, 2512–2518. [CrossRef]

68. Huang, Z.; Zhang, P.; Yun, Y. Preparing molecularly imprinted membranes by phase inversion to separate
kaempferol. Polym. Adv. Technol. 2017, 28, 373–378. [CrossRef]

69. Türkcan, C.; Somtürk, B.; Özdemir, N.; Özel, M.; Çatalkaya, R.; Aktaş Uygun, D.; Uygun, M.; Akgöl, S.
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