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Abstract: Loss of energy, decrement of efficiency, and decrement of the effective diameter of the oil
pipe are among the consequences of scale inside oil condensate transfer pipes. To prevent these
incidents and their consequences and take timely action, it is important to detect the amount of
scale. One of the accurate diagnosis methods is the use of non-invasive systems based on gamma-ray
attenuation. The detection method proposed in this research consists of a detector that receives the
radiation sent by the gamma source with dual energy (radioisotopes 241Am and 133Ba) after passing
through the test pipe with inner scale (in different thicknesses). This structure was simulated by
Monte Carlo N Particle code. The simulation performed in the test pipe included a three-phase flow
consisting of water, gas, and oil in a stratified flow regime in different volume percentages. The
signals received by the detector were processed by wavelet transform, which provided sufficient
inputs to design the radial basis function (RBF) neural network. The scale thickness value deposited
in the pipe can be predicted with an MSE of 0.02. The use of a detector optimizes the structure, and
its high accuracy guarantees the usefulness of its use in practical situations.

Keywords: scale layer thickness; three-phase flow; volume fraction independent; RBF neural network;
gas-oil-water separation

1. Introduction

In the oil industry, scale formation inside the transmission pipes causes major problems.
The formation of scales makes the internal cross-section of the pipe smaller and reduces
the fluid flow, and failure to identify this problem causes malfunctions in pumps and
related equipment, emergency shutdowns, damage to oil equipment, increased repair
costs, and reduced efficiency. Researchers who considered it necessary to have accurate
detection systems to detect the amount of scale inside the pipe always used gamma
ray attenuation systems as the gold standard in determining the various parameters of
multiphase flows [1–8]. In the study [1], an attempt was made to predict the volume
percentage and classification of flow regimes. Using a cesium source, two sodium iodide
detectors, and the test pipe, the researchers implemented a two-phase flow in three regimes,
stratified, annular, and bubbling, and using the information obtained from both detectors as
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input for the radial basis function (RBF) network were able to reach their goal. Roshni et al.
in [2], at the cost of increasing the computational load to the system, were able to increase
the accuracy by using three GMDH networks. Finally, they were able to achieve good
accuracy in determining the volume percentage and detecting the type of flow regimes
in three-phase flows. In 2016, in similar research, a 60Co source and a NaI detector were
used for obtaining the kind of flow patterns and volume percentage, which was met
with low accuracy and unfavorable results due to the lack of extraction of appropriate
characteristics from the received signals [3]. In 2019, authors used Jaya’s optimization
algorithm for predicting the volume percentage of a three-phase flow in the stratified
pattern [4]. Sattari et al. in [5] proposed a structure with a cesium source and two NaI
detectors around the tested pipe to be able to perform volume percentages prediction and
classification of flow regimes with high accuracy. The use of time characteristics and the
correct selection of characteristics, while reducing the computational load, resulted in a
high-precision system. Later research [6] used a GMDH neural network for detecting the
kind of flow patterns and predicting the volume percentage. High accuracy was achieved
in determining volume percentages, but not considering the amount of scale inside the
pipe is one of the gaps in this research. Alamoudi et al. [7] tried for detecting the thickness
of scale in the oil pipe. They simulated a two-phase flow in disparate regimes. They
considered Gamma peak counts of Ba-133 and Cs-137 from the first transmission photon
detector and the total number from the second scattered photon detector as inputs to the
RBF neural network, and they were able to foretell the scale thickness with the RMSE
of less than 0.22. In another study, the researchers simulated a three-phase flow in the
annular pattern by considering the thickness of the scale inside the pipe to inquire into
different volume percentages. Finally, the photopeaks 241Am and 133Ba recorded in two
transmitted detectors were extracted and considered as the input of an RBF neural network.
They predicted the amount of intra-pipe scaling with RMSE of less than 0.09 [8]. In recent
years, many researchers have turned to using an X-ray source instead of gamma in their
structures, the reason for which is to get rid of problems such as the need to use protective
clothing by personnel when working with this device (due to the inability to turn it off) can
be stated. They differentiated the parameters of multiphase flows using X-ray tubes [9–12].
For example, in [9], the aforementioned alternative source was used. The training of two
existing multilayer perceptron (MLP) neural networks in their proposed structure was
also done by the temporal features, which are extracted from the signals received by the
detector. In the research [10], three-phase flows were perused, and three patterns were
simulated in distinct volume percentages. In this research, three RBF neural networks were
trained with the frequency characteristics of the received signals, and the result brought
relatively good accuracy. In Ref. [11], an X-ray tube was used for designing a control system.
Four petroleum products that are mixed two by two with distinct volumes were simulated
with the Monte Carlo N Particle code (MCNP) code. The recorded signals were used as
inputs of three MLP neural networks for predicting the volume ratio of the three products.
Although the introduced method predicted the type and amount of products, the lack of
feature extraction techniques prevented high accuracy. To develop the previous research
(Ref. [11]), Balubaid et al. [12] used wavelet transform for feature extraction, which resulted
in an effective reduction of computational load and increased accurateness. Numerous
studies have been conducted to gauge scale thickness and examine various features [13,14]
with more detectors or higher errors. In this study, inspired by the existing history of
similar studies, an attempt was made to design a high-precision system to acquire the
scale value inside the pipe. For this purpose, a three-phase flow pattern consisting of
water, gas, and oil in distinct volume percentages was simulated. A different value of
scale thickness was considered in each simulation. A dual-energy gamma source (241Am
and 133Ba) and a sodium iodide detector were placed on both sides of a test pipe. From
the signals received from the detector, the wavelet characteristics were extracted. These
extracted characteristics were considered as the inputs of the RBF neural network to obtain
the output, which was the scale thickness inside the pipe. The result of this research is the
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introduction of an effective and accurate method to detect the amount of scale inside the
pipe. The contributions made by this study are as follows:

1. Examining the wavelet transform’s properties and effectiveness in calculating scale
thickness.

2. Using a single detector lowers costs and the structure of the detecting system’s
complexity.

3. Increasing the precision of scale thickness determination by extracting useful features
from received signals.

4. Using the RBF neural network as a fast-learning network to calculate scale thickness.

2. Simulated Detection System

In recent years, researchers have obtained positive results from radiation-based system
simulations with the MCNP code [15–19]. In addition, in this study, the MCNP code has
been used. A dual-energy gamma source, a steel test pipe, and a sodium iodide detector
are the main parts of the proposed structure. The gamma source consists of radioisotopes
241Am and 133Ba, with photon energies of 59 and 356 keV, respectively. In the simulation
of the three-phase flow in the stratified regime, as well as the simulation of the sediment
scale, a test pipe made of steel is used, which has an internal diameter of 10 cm and a
thickness of 0.5 cm. The detector measuring 2.54 cm2 is placed at a distance of 30 cm
from the source with a zero angle to the assumed line of the source to receive the passing
signals. The proposed structure of this study has been validated by the experimental
structure implemented in Ref. [1]. This structure of a three-phase flow is simulated in a
stratified regime consisting of gas, water, and oil in a volume percentage between 10% to
80%. The deposited scale inside the pipe is considered cylindrical and with a thickness
of 0, 0.05, 1, 1.5, 2, 2.5, and 3 cm. The said scale is made of BaSO4 and has a density
of 4.5 g per cubic centimeter. Water, oil, and gas considered in this simulation also had
densities of 1, 0.826, and 0.00125 g per cubic centimeter. In Ref. [1], a two-phase flow
was implemented in the annular regime, and the simulation of the same structure was
performed by the MCNP code. The recorded counts obtained from the detectors of the
simulated structure and the experimental structure were compared. It was observed that
there is an acceptable match between the two. Seven scale thickness values × 36 different
volumetric percentages = 252 simulations were performed. Figure 1 shows the proposed
structure of this study and how this structure reaches the goal of determining the thickness
of the scale. The signals received by the detector are shown in Figure 2. In this figure, the
x-axis shows the thickness of the scale, the y-axis represents the source energy, and the
z-axis represents the amount of intensity absorbed by the detector.
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3. Discrete Wavelet Transform

One of the widely used numerical analyzes is discrete wavelet transform (DWT), in
which the wavelet is sampled discretely. In discrete wavelet transform, in addition to
frequency features, time features are also available, which is its most important advantage
over the Fourier transform. To calculate the DWT of a signal, first, a low-pass filter with
the impulse response g is applied to the signal, resulting in the convolution of the two as
follows [20,21].

y[n] = (x ∗ g)[n] =
∞

∑
k=−∞

x[k]g[n− k] (1)

In addition, simultaneously, another high pass filter (h) decomposes the signal. Figure 3
clearly shows the signal decomposition process. The output of this process is detail
coefficients (output of high-pass filter) and approximate coefficients (output of low-pass
filter). At the output of the filters, as seen from the figure, there is a downsampler with
2 in each step. The downsampled results of the low-pass filter provide the approximation
(A), and the output of the low-pass samplers of the high-pass filter provides the detail
(D). Knowing that at each step, the approximate part can be decomposed over and over
again. In this research, the analysis has continued up to four stages. The wavelet operation
calculates the wavelet coefficients of a separate set of child wavelets for a given mother
wavelet ψ(t). In the case of discrete wavelet transform, the mother wavelet is shifted and
scaled by powers of two [20,21].

ψj,k =
1√
2j

ψ

(
t− k2j

2j

)
(2)

where j denotes the scale parameter and k the shift parameter. Since x(t) is a 2N-length
signal, the wavelet coefficients derived from it may be thought of as the projection of
x(t) onto a wavelet. A member of the above-mentioned discrete wavelet family is a child
wavelet if and only if [20,21]:

γjk =
∫ ∞

−∞
x(t)

1√
2j

ψ

(
t− k2j

2j

)
dt (3)
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Then, j is fixed, and the γjk is obtained only in terms of a function of k. In the above
equation, γjk can be obtained as the convolution of the x(t) with the mother wavelet signal,

h(t) = 1√
2j ψ
(
−t
2j

)
, sampled at points 1, 2j. 2j, . . . , 2N. These are details of discrete wavelet

coefficients at level j. Detail coefficients of the filter bank, therefore, match perfectly to a
wavelet coefficient of a discrete collection of child wavelets for a given mother wavelet
ψ(t), assuming an acceptable choice of h[n] and g[n] (t). From the analyzed signals, the
characteristics of average of a4 and average of d1 to d4 were extracted and used in the
next steps. Since they were originally proposed as useful characteristics in earlier stud-
ies [12,22,23], these features have been utilized to improve the accuracy and structure of
the scale thickness detection system.

4. RBF Neural Network

Neurons, also known as nerve cells, are the smallest components of the human brain
that send and receive signals from the brain. While there are many similarities between
neurons and cells, neurons are completely unique in function and structure. All these
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neurons, which number up to millions, are somehow connected to each other. However,
according to their location and responsibility, neurons have three main parts in terms of size,
shape, and structure: Cell body, axon, and dendrite. Neurons are actually computing units
that have branches called dendrites through which they receive information from other
neurons. The neuron’s center functions as a processing unit, which then sends the processed
data via the axon to neighboring neurons. It all happens biochemically, but researchers have
offered ways to describe this architecture mathematically. Radial basis function networks
are a popular kind of neural network used to solve this problem (RBF). An RBF network is
a kind of convolutional neural network that employs radial basis functions as activation
functions. Having been designed for a broad range of purposes, this network has quickly
become a popular alternative to the more established multi-layer perceptron. To simplify,
RBF employs a three-layer design. There is no processing performed in the input layer since
it is a puller layer. Through a non-linear adaptation between the input space and another
space with higher dimensions, the second layer (the hidden layer) is able to provide more
complex results. The linear output and the final weight total are both generated in the third
layer. Such an output is helpful if RBF is used to approximate the function, however, a
hard limiter or sigmoid function may be applied to the output neurons to generate 1 or 0
if pattern categorization is necessary. RBF’s standout characteristic is the processing that
occurs in the hidden layer. This technique’s fundamental concept was to generate clusters
from preexisting patterns in the input space. The distance from the cluster center may be
calculated if its centers are known. Since this is a non-linear distance measure, the result
obtained will be close to 1 if a pattern is found in the vicinity of the cluster’s center. Outside
of this region, the value drops dramatically. The non-linear function may be expressed in
terms of the radial basis since this area is radially symmetric around the cluster’s center.
Radial basis functions often have the following shape [24]:

ϕ(r) = exp
[
− r2

2σ2

]
(4)

The parameter of r in an RBF is the numeral value of the interval from the center
of the cluster. Equation (4) shows a typical bell curve. Generally, the measured distance
to the cluster center is the Euclidean distance. In the hidden layer, for each neuron, the
coordinates of the cluster center are represented by weights. Therefore, when a neuron
receives an input pattern X, the interval is obtained using the following equation [24]:

rj =

√
n

∑
i=1

(
xi − wij

)2 (5)

This leads to the following output from the j neuron in the hidden layer [24]:

∅j = exp [−
∑n

i=1
(

xi − wij
)2

2σ2 ] (6)

The width or radius of the bell curve is defined by the variable σ and in some cases, it
is appointed only experimentally. The hidden layer of an RBF network has units that have
weights, and these weights represent the cluster center vector. Weights can be obtained
using traditional methods such as the K-Mean algorithm or methods based on the Kohonen
algorithm. In any case, the training is done unsupervised, but the expected number of
clusters (k) is already selected, then these algorithms obtain the best fit for these clusters.
As a strong mathematical tool, numerical computations [25–31] have been used recently for
a variety of engineering challenges, most notably, artificial networks [32–44]. The available
data are split into two groups: training data and test data, in order to address the issue of
over-fitting and under-fitting. The data that the neural network observes and uses to fit
the data is included in the training data. Test data are used to evaluate the effectiveness of
the neural network following the training phase. The planned network will be protected
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against the issues of over-fitting and under-fitting by the neural network’s suitable reaction
to these two sets of data.

5. Result and Discussion

The features introduced in the previous sections were given as inputs to the RBF
neural network so that the output, which is a 1 × 252 matrix determines the thickness
of the scale inside the pipe. Several neural networks were put into practice, each with a
distinct hidden layer of neurons. The structure of the optimal trained network can be seen
in Figure 4. This network has five input neurons and one output neuron, which are the
extracted characteristics and scale thickness value, respectively. Between the input and
output layers, there is a hidden layer with 18 neurons, which is responsible for transferring
the input space to the output space. In order to show the proper functioning of the neural
network, three fit, regression, and error diagrams were drawn for three categories of all
data, training, and testing data in Figure 5. The network output is represented by a blue
line in the fitting diagram, whereas the intended output is represented by a black dashed
line. In this diagram, the horizontal axis represents the data number, while the vertical
axis represents the scale’s thickness. Two MSE and RMSE criteria were taken into account
while calculating the error value of the implemented network. These criterion equations
are as follows:

MSE =
∑N

j=1
(
Xj(Exp)− Xj(Pred)

)2

N
(7)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(8)
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Figure 5. Neural network performance against (a) all data, (b) training data, (c) and test data.

The symbols “X (Exp)” and “X (Pred)” reflect the experimental and predicted (ANN)
values, respectively. N represents the number of data points. The second diagram shows the
desired output as a black line and the neural network’s outputs as blue squares. Regression
diagram is the name given to this illustration. The error figure shows the difference between
the network output and the desired output for each data. Table 1 shows the target value of
the network and the value predicted by the network. In addition, in Table 2, a comparison
is presented in terms of the error rate of the systems introduced in previous research and
the detection system in this research. In this research, due to the correct processing of the
obtained signals and the training of the neural network with effective characteristics, the
error rate has been reported to be significantly low. On the other hand, the effective use
of a detector and the reduction of the number of detectors has led to the optimization of
the structure and the reduction of the construction cost. According to the present study
procedure, the flows through the pipe and the various scale thicknesses inside the pipe
were first simulated using the MCNP code, and the signals picked up by the detectors
were labeled. Then, five characteristics of the average of a4 and average of d1 to d4 were
obtained from the signals of each simulation after the received signals had been processed
using the wavelet transform. The collected characteristics were used to forecast the scale
thickness within the pipe using the RBF neural network. The output of the neural network
was compared with the desired output after training to check that it was operating correctly.
The main limitation of this study is the need to use protective equipment and clothing
when working with radioisotope devices because they have harmful effects on the human
body. Using the features and methodology introduced in this research and investigating the
performance of different neural networks for productivity in future research are strongly
recommended to researchers in this field.
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Table 1. Comparison of target values with neural network outputs.

Train Targets Train Outputs Test Targets Test Outputs

1 3.0000 2.8507 1.5000 1.5502
2 2.5000 2.6358 0 0.0084
3 2.0000 1.9591 1.0000 1.2299
4 2.5000 2.6328 2.5000 2.6055
5 0 0.0246 1.5000 1.4134
6 2.5000 2.6908 2.0000 2.1296
7 0.5000 0.5317 1.0000 0.8584
8 1.0000 0.9959 2.0000 2.2414
9 0.5000 0.5000 2.5000 2.6178
10 3.0000 2.9519 1.5000 1.7279
11 2.0000 2.2706 3.0000 2.8875
12 3.0000 2.9778 0.5000 0.5834
13 2.5000 2.3107 1.0000 0.8300
14 1.0000 1.2258 2.5000 2.5796
15 0.5000 0.5077 3.0000 2.8871
16 0 0.0522 0.5000 0.6381
17 1.0000 0.7109 2.0000 2.2191
18 2.5000 2.3532 0.5000 0.5247
19 0 0.0231 1.5000 1.2896
20 3.0000 3.0335 0.5000 0.6990
21 0 0.0752 1.0000 1.2803
22 2.0000 2.3439 3.0000 2.9794
23 2.5000 2.7286 0.5000 0.5555
24 1.5000 1.5813 2.5000 2.4208
25 3.0000 2.8800 0 0.0852
26 3.0000 2.9935 1.5000 1.5737
27 1.0000 0.8766 2.5000 2.4476
28 2.5000 2.4182 0.5000 0.5218
29 1.0000 1.1707 3.0000 2.8760
30 3.0000 3.0492 1.0000 1.2615
31 0.5000 0.5551 2.5000 2.5231
32 0 −0.1112 0.5000 0.5853
33 1.0000 0.9888 2.0000 1.8922
34 1.5000 1.6268 1.5000 1.4737
35 3.0000 3.0185 1.0000 0.8781
36 1.0000 1.2172 0 −0.1686
37 3.0000 2.9045 2.5000 2.8822
38 2.0000 2.2647 0 −0.0797
39 0 −0.0343 0 −0.2528
40 2.0000 2.0162 2.5000 2.8470
41 0 0.0399 2.5000 2.3918
42 2.0000 2.3730 0 0.0240
43 0.5000 0.6606 1.5000 1.3381
44 0 −0.1847 0.5000 0.6577
45 0 0.1900 2.5000 2.7493
46 0 0.0007 1.5000 1.7535
47 1.5000 1.5749 2.0000 1.8070
48 3.0000 2.8047 2.0000 2.3398
49 0.5000 0.4150 2.0000 2.0685
50 0 0.1194 2.5000 2.7588
51 2.5000 2.5892 1.5000 1.6536
52 2.5000 2.6717 0.5000 0.6614
53 3.0000 2.8893 1.0000 0.8097
54 0 −0.0654 1.5000 1.2968
55 1.5000 1.4104 0 −0.1245
56 0 0.0571 1.0000 0.9329
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Table 1. Cont.

Train Targets Train Outputs Test Targets Test Outputs

57 1.0000 0.7580 0 −0.0362
58 2.0000 2.3764 3.0000 2.8228
59 0 0.0156 1.0000 1.0669
60 3.0000 2.7795 2.0000 1.8055
61 3.0000 3.0747 2.5000 2.6317
62 3.0000 3.0070 0.5000 0.5188
63 1.0000 1.2388 1.5000 1.4472
64 3.0000 3.0872 0.5000 0.6452
65 2.5000 2.4517 1.5000 1.5560
66 2.0000 1.8413 2.0000 1.7887
67 3.0000 2.9910 1.0000 1.0048
68 0.5000 0.4394 1.0000 1.2338
69 0 −0.0480 0.5000 0.6543
70 1.5000 1.4888 1.0000 0.8751
71 2.5000 2.5288 0 −0.1118
72 2.0000 2.0434 1.0000 1.0108
73 1.5000 1.3414 2.0000 1.9147
74 3.0000 2.8135 0.5000 0.5529
75 0.5000 0.4246 2.0000 1.8891
76 0.5000 0.5672 2.0000 2.3440
77 0.5000 0.6651
78 2.5000 2.4111
79 2.0000 1.9201
80 0.5000 0.4180
81 1.5000 1.7401
82 0 0.1030
83 2.0000 2.3196
84 1.0000 0.8052
85 2.5000 2.7879
86 2.0000 1.8781
87 0.5000 0.5666
88 1.5000 1.5677
89 1.0000 1.1954
90 2.5000 2.3980
91 2.0000 2.3241
92 1.5000 1.2039
93 0.5000 0.6220
94 2.5000 2.5530
95 0 −0.0323
96 2.5000 2.4175
97 0.5000 0.3938
98 1.0000 1.0718
99 1.0000 0.7100

100 0.5000 0.6053
101 0 0.0484
102 0.5000 0.6160
103 2.5000 2.3416
104 2.0000 1.8580
105 1.5000 1.6659
106 3.0000 2.9056
107 2.5000 2.3207
108 2.0000 2.0069
109 2.5000 2.3241
110 0.5000 0.5279
111 1.5000 1.6442
112 1.0000 1.0299
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Table 1. Cont.

Train Targets Train Outputs Test Targets Test Outputs

113 0 0.0031
114 0 0.0226
115 0 −0.0417
116 3.0000 2.9503
117 0.5000 0.6860
118 1.5000 1.7487
119 2.0000 1.8221
120 1.0000 0.9477
121 1.0000 1.1897
122 2.0000 1.9254
123 1.5000 1.2626
124 2.0000 2.2340
125 1.5000 1.2649
126 3.0000 2.9737
127 2.0000 1.7831
128 0 −0.0127
129 0.5000 0.6844
130 2.5000 2.6940
131 2.5000 2.4228
132 3.0000 2.8849
133 3.0000 2.7392
134 2.5000 2.3055
135 2.0000 2.2171
136 3.0000 2.8540
137 1.0000 0.8989
138 0 −0.1658
139 1.5000 1.6764
140 1.5000 1.6445
141 3.0000 2.8768
142 0.5000 0.5343
143 1.0000 0.9241
144 1.5000 1.5487
145 1.5000 1.3810
146 3.0000 2.9438
147 3.0000 3.0738
148 1.0000 1.3264
149 0.5000 0.5668
150 1.5000 1.7114
151 2.0000 2.1932
152 2.5000 2.4678
153 0.5000 0.6429
154 1.5000 1.7403
155 1.0000 1.2559
156 2.0000 1.8254
157 0 −0.0976
158 3.0000 2.8746
159 1.0000 0.9637
160 3.0000 3.0812
161 3.0000 2.9221
162 1.0000 1.2994
163 3.0000 2.8575
164 0 0.0467
165 1.5000 1.7537
166 1.5000 1.2195
167 2.5000 2.7950
168 1.5000 1.5556
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Table 1. Cont.

Train Targets Train Outputs Test Targets Test Outputs

169 2.0000 1.7226
170 3.0000 3.0435
171 0.5000 0.4247
172 2.0000 1.6679
173 0 0.0561
174 1.5000 1.7550
175 1.0000 1.0100
176 0 −0.0189

Table 2. A comparison of the accuracy of the proposed detection system and previous studies.

Ref
Number

of
Detectors

Extracted
Features

Source
Type

Type of
Neural

Network

Maximum
MSE

Maximum
RMSE

[6] 1 Time features 137Cs GMDH 1.24 1.11
[5] 2 Time features 137Cs MLP 0.21 0.46

[45] 1 No feature
extraction

60Co GMDH 7.34 2.71

[46] 2 Frequency
features

137Cs MLP 0.67 0.82

[47] 1 No feature
extraction

X-Ray
tube MLP 17.05 4.13

[48] 1 No feature
extraction

137Cs MLP 2.56 1.6

[49] 1

Compton
continuum and

counts under full
energy peaks of

1173 and 1333 keV

60Co RBF 37.45 6.12

[50] 2

full energy peak
(transmission
count), photon

counts of
Compton edge in

transmission
detector, and total

count in the
scattering detector

137Cs MLP 1.08 1.04

[current
study] 1 Wavelet features

Dual-
energy
gamma
source

RBF 0.02 0.15

6. Conclusions

Preventing sudden shutdowns and problems in the operation of oil equipment requires
detecting the amount of scale inside the oil pipes and dealing with it. In this research,
special attention is paid to this need, and an accurate system is used to detect the amount
of sediment inside the pipes based on the gamma-ray attenuation technique to measure
the thickness parameter of the internal scale of the pipe. The proposed structure for the
detection system is simulated using the MCNP code, and a three-phase fluid passage pipe is
tested in the stratified regime where scale is present. The dual energy source emits photons
on the one hand, and the detector collects them on the other hand of the test pipe. The
aforementioned flow was simulated in different volume percentages while different scale
values were investigated. Two hundred fifty-two different conditions, including seven
scale thickness values from 0 to 3 cm and 36 different volume percentages from 10% to
80%, were simulated. The received signals from the detectors finally led to the extraction
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of wavelet features, which were the inputs of the RBF neural network. The value of scale
thickness was also considered as output in the training phase. The designed neural network
had an input layer, a hidden layer, and an output layer, which had 5, 18, and 1 neurons,
respectively. The scale thickness in this neural network was predicted by the designed
RBF neural network with an MSE of 0.02, which is a much smaller error value according
to the results of previous research. Due to its high accuracy, this detection system can be
considered a vital part of oil fluid transfer systems, and its use is strongly recommended to
oil industry managers. Future research in this area is advised to focus on the application
of various neural networks, particularly deep neural networks, in detecting various three-
phase current parameters and analyzing the time and frequency characteristics of the
received signals.

Author Contributions: Funding acquisition, E.E.-Z.; Investigation, T.-C.C. and S.M.A.; Methodology,
A.M.M., A.A.A.-Q., R.M.A.Q. and H.H.A.; Software, A.M.M., A.A.A.-Q., R.M.A.Q. and H.H.A.;
Supervision, E.E.-Z.; Writing—original draft, T.-C.C. and S.M.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research at King Khalid University
(Grant numbers RGP.1/243/42). The authors acknowledge support from the German Research Foun-
dation and the Open Access Publication Fund of the Thueringer Universitaets-und Landesbibliothek
Jena Projekt-Nr. 433052568; the BMBF-Projekt 05P21SJFA2 Verbundprojekt 05P2021 (ErUM-FSP T05).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow

regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 2016, 41, 7438–7444.
[CrossRef]

2. Roshani, M.; Giang, P.; Gholam, H.R.; Robert, H.; Behrooz, N.; Enrico, C.; Ehsan, N. Combination of X-ray tube and GMDH
neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows.
Measurement 2021, 168, 108427. [CrossRef]

3. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H. Investigation of using 60Co source and one detector for determining the flow regime
and void fraction in gas–liquid two-phase flows. Flow Meas. Instrum. 2016, 50, 73–79. [CrossRef]

4. Roshani, G.H.; Karami, A.; Nazemi, E. An intelligent integrated approach of Jaya optimization algorithm and neuro-fuzzy
network to model the stratified three-phase flow of gas–oil–water. Comput. Appl. Math. 2019, 38, 1–26. [CrossRef]

5. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial
intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef]

6. Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH
neural network. Radiat. Phys. Chem. 2020, 171, 108725. [CrossRef]

7. Alamoudi, M.; Sattari, M.A.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E.M. Application of Gamma
Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different
Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [CrossRef]

8. Taylan, O.; Abusurrah, M.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; Roshani, G.H. Proposing an Intelligent Dual-Energy
Radiation-Based System for Metering Scale Layer Thickness in Oil Pipelines Containing an Annular Regime of Three-Phase Flow.
Mathematics 2021, 9, 2391. [CrossRef]

9. Basahel, A.; Sattari, M.A.; Taylan, O.; Nazemi, E. Application of Feature Extraction and Artificial Intelligence Techniques for
Increasing the Accuracy of X-ray Radiation Based Two Phase Flow Meter. Mathematics 2021, 9, 1227. [CrossRef]

10. Taylan, O.; Sattari, M.A.; Essoussi, I.E.; Nazemi, E. Frequency Domain Feature Extraction Investigation to Increase the Accuracy
of an Intelligent Nondestructive System for Volume Fraction and Regime Determination of Gas-Water-Oil Three-Phase Flows.
Mathematics 2021, 9, 2091. [CrossRef]

11. Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Sattari, M.A.; Amiri, S.; Nazemi, E.;
Eftekhari-Zadeh, E.; et al. Simulation Study of Utilizing X-ray Tube in Monitoring Systems of Liquid Petroleum Products.
Processes 2021, 9, 828. [CrossRef]

http://doi.org/10.1016/j.ijhydene.2015.12.098
http://doi.org/10.1016/j.measurement.2020.108427
http://doi.org/10.1016/j.flowmeasinst.2016.06.013
http://doi.org/10.1007/s40314-019-0772-1
http://doi.org/10.1016/j.measurement.2020.108474
http://doi.org/10.1016/j.radphyschem.2020.108725
http://doi.org/10.3390/sym13071198
http://doi.org/10.3390/math9192391
http://doi.org/10.3390/math9111227
http://doi.org/10.3390/math9172091
http://doi.org/10.3390/pr9050828


Separations 2022, 9, 288 15 of 16

12. Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of discrete wavelet transform for feature extraction
to increase the accuracy of monitoring systems of liquid petroleum products. Mathematics 2021, 9, 3215. [CrossRef]

13. Mayet, A.M.; Chen, T.-C.; Alizadeh, S.M.; Al-Qahtani, A.A.; Alanazi, A.K.; Ghamry, N.A.; Alhashim, H.H.; Eftekhari-Zadeh, E.
Optimizing the gamma ray-based detection system to measure the scale thickness in three-phase flow through oil and petrochem-
ical pipelines in view of stratified regime. Processes 2022, 10, 1866. [CrossRef]

14. Mayet, A.M.; Chen, T.-C.; Ahmad, I.; Tag Eldin, E.; Al-Qahtani, A.A.; Narozhnyy, I.M.; Guerrero, J.W.G.; Alhashim, H.H.
Application of neural network and dual-energy radiation-based detection techniques to measure scale layer thickness in oil
pipelines containing a stratified regime of three-phase flow. Mathematics 2022, 10, 3544. [CrossRef]

15. Pelowitz, D.B. MCNP-X TM User’s Manual, Version 2.5.0; LA-CP-05e0369; Los Alamos National Laboratory: Los Alamos, NM,
USA, 2005.

16. Hosseini, S.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Bano, F.; Roshani, G.H. Application of
Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters
Used in Oil and Petrochemical Industries. Polymers 2021, 13, 3647. [CrossRef]

17. Sattari, M.A.; Korani, N.; Hanus, R.; Roshani, G.H.; Nazemi, E. Improving the performance of gamma radiation based two phase
flow meters using optimal time characteristics of the detector output signal extraction. J. Nucl. Sci. Technol. 2020, 41, 42–54.

18. Iliyasu, A.M.; Mayet, A.M.; Hanus, R.; El-Latif, A.A.A.; Salama, A.S. Abd El-Latif, and Ahmed, S. Salama. Employing GMDH-
Type Neural Network and Signal Frequency Feature Extraction Approaches for Detection of Scale Thickness inside Oil Pipelines.
Energies 2022, 15, 4500. [CrossRef]

19. Mayet, A.M.; Salama, A.S.; Alizadeh, S.M.; Nesic, S.; Guerrero, J.W.G.; Eftekhari-Zadeh, E.; Nazemi, E.; Iliyasu, A.M. Applying
data mining and artificial intelligence techniques for high precision measuring of the two-phase flow’s characteristics independent
of the pipe’s scale layer. Electronics 2022, 11, 459. [CrossRef]

20. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005.
[CrossRef]

21. Soltani, S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 2002, 48, 267–277. [CrossRef]
22. Eftekhari-Zadeh, E.; Bensalama, A.S.; Roshani, G.H.; Salama, A.S.; Spielmann, C.; Iliyasu, A.M. Enhanced Gamma-Ray

Attenuation-Based Detection System Using an Artificial Neural Network. Photonics 2022, 9, 382. [CrossRef]
23. Mayet, A.M.; Alizadeh, S.M.; Kakarash, Z.A.; Al-Qahtani, A.A.; Alanazi, A.K.; Alhashimi, H.H.; Eftekhari-Zadeh, E.; Nazemi, E.

Introducing a Precise System for Determining Volume Percentages Independent of Scale Thickness and Type of Flow Regime.
Mathematics 2022, 10, 1770. [CrossRef]

24. Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with Gaussian hidden units as universal approximations.
Neural Comput. 1990, 2, 210–215. [CrossRef]

25. Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design
of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression. IEEE Access 2021, 9,
129207–129217. [CrossRef]

26. Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler.
Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22252. [CrossRef]

27. Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics
suppression using open and short stubs. Frequenz 2020, 74, 169–176. [CrossRef]

28. Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped
resonators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [CrossRef]

29. Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators
using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [CrossRef]

30. Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.B.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a
simple structure using artificial neural network. Frequenz 2022, 76, 255–263. [CrossRef]

31. Khaleghi, M.; Salimi, J.; Farhangi, V.; Moradi, M.J.; Karakouzian, M. Application of artificial neural network to predict load
bearing capacity and stiffness of perforated masonry walls. CivilEng 2021, 2, 48–67. [CrossRef]

32. Dabiri, H.; Farhangi, V.; Moradi, M.J.; Zadehmohamad, M.; Karakouzian, M. Applications of Decision Tree and Random Forest as
Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars.
Appl. Sci. 2022, 12, 4851. [CrossRef]

33. Zych, M.; Petryka, L.; Kępiński, J.; Hanus, R.; Bujak, T.; Puskarczyk, E. Radioisotope investigations of compound two-phase flows
in an open channel. Flow Meas. Instrum. 2014, 35, 11–15. [CrossRef]
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