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Abstract: Honey adulteration with cheap sweeteners such as corn syrup or invert syrup results in
honey of lesser quality that can harm the objectives of both manufacturers and consumers. Therefore,
there is a growing interest for the development of a fast and simple method for adulteration detection.
In this work, near-infrared spectroscopy (NIR) was used for the detection of honey adulteration and
changes in the physical and chemical properties of the prepared adulterations. Fifteen (15) acacia
honey samples were adulterated with glucose syrup in a range from 10% to 90%. Raw and pre-
processed NIR spectra of pure honey samples and prepared adulterations were subjected to Principal
Component Analysis (PCA), Partial Least Squares (PLS) regression, and Artificial Neural Network
(ANN) modeling. The results showed that PCA ensures distinct grouping of samples in pure honey
samples, honey adulterations, and pure adulteration using NIR spectra after the Multiplicative Scatter
Correction (MSC) method. Furthermore, PLS models developed for the prediction of the added
adulterant amount, moisture content, and conductivity can be considered sufficient for screening
based on RPD and RER values (1.7401 < RPD < 2.7601; 7.7128 < RER < 8.7157) (RPD of 2.7601;
RER of 8.7157) and can be moderately used in practice. The R2

validation of the developed ANN
models was greater than 0.86 for all outputs examined. Based on the obtained results, it can be
concluded that NIR coupled with ANN modeling can be considered an efficient tool for honey
adulteration quantification.

Keywords: honey adulteration detection; acacia honey samples; glucose syrup; near-infrared spec-
troscopy; partial least squares modeling; artificial neural network modeling

1. Introduction

Honey is a food product of high value and, because of this, it is increasingly becoming
a target for adulteration. At the global level, two factors are crucial for the authenticity of
honey: production and origin [1]. The main production problems are the contact of bees
with contaminated water, air, and plants and inadequate beekeeping practices, such as
overheating and feeding bees during honey production, for which beekeepers are directly
responsible [2]. This is an indirect way of honey adulteration. This approach negatively
affects the proline content, sugar content, and mineral content in honey [3]. Furthermore,
direct adulteration includes the addition of cheap sweeteners such as starch (corn) syrup
and invert syrup (syrup containing glucose and fructose) to honey, resulting in honey of
lesser quality [4]. Despite being performed for short-term financial gain, adulteration can
harm the objectives of both manufacturers and consumers [5].

As the adulterating substances include characteristic ingredients of honey, it is dif-
ficult to identify adulterations [6]. As stated by Naila et al. [7], the detection and quan-
tification of honey adulteration by the addition of different sugars are traditionally per-
formed by highly sophisticated analytical methods such as high-performance liquid chro-
matography (HPLC), gas chromatography (GC), isotope ratio mass spectroscopy (IRMS),
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high-performance anion exchange chromatography with pulsed amperometric detection
(HPAEC-PAD), or stable carbon isotopic ratio mass spectrometry. Considering the com-
plexity of the above-mentioned methods, researchers have lately focused on spectroscopic
methods [8] such as visible spectroscopy (VIS), near-infrared spectroscopy (NIRS), mid-
infrared spectroscopy (MIR), and fluorescence coupled with chemometrics [9]. For example,
Rios-Corripio et al. [10] presented an efficient application of attenuated total reflectance-
Fourier transform infrared (ATR-FTIR) spectroscopy and partial least squares (PLS) mod-
eling to study honey adulteration with standard sugar solutions (glucose, fructose, and
sucrose) and with cheap syrups (corn, inverted, and cane sugar). Başar and Özdemir [8]
also applied ATR-FTIR coupled with genetic-algorithm-based inverse least squares and par-
tial least squares for the calibration of corn syrup, beet sugar, and water addition to honey.
Furthermore, Kumaravelu and Gopal [11] used NIRS and chemometrics to detect the Jagger
adulterants in honey, while Skaff et al. [1] applied near- and mid-infrared spectroscopy
and Principal Component Analysis (PCA) for classification of honey samples adulterated
with glucose, fructose, sucrose, and high-fructose corn syrup. Elhamdaoui et al. [9] applied
Fourier transform mid-infrared (FT-MIR) spectroscopy with PCA and hierarchical cluster
analysis (HCA) for quantitative discrimination of honey samples adulterated with sugar
syrup. There are also examples of the efficient usage of combined VIS and NIR spectra
(VIS–NIR) for analysis of honey adulteration: (i) Ferreiro-González et al. [12] used VIS–NIR
spectra in combination with HCA, PCA, and linear discriminant analysis (LDA) for the
discrimination of honey adulterated with high-fructose corn syrup; (ii) Valinger et al. [13]
applied UV–VIS–NIR spectra coupled with PLS and artificial neural networks (ANNs) for
quantification of honey adulteration with high-fructose syrup; (iii) Raypah et al. [14] used
VIS–NIR spectra coupled with PCA and PLS for discrimination and quantification of honey
adulteration with distilled water, apple cider vinegar, and high-fructose syrup.

As described, most of the suitable dealings with honey adulteration are focused on the
development of tools for fast and efficient discrimination of the adulterated samples and
for quantification of added adulterants. However, there is limited information about the
physical and chemical properties of honey samples after adulteration [13]. Therefore, the
aim of this work was to develop PLS and ANN models for the detection and quantification
of acacia honey adulteration with glucose syrup, and also to develop PLS and ANN models
to describe the physical (adulterant content, moisture content, conductivity, and total color
change) and chemical (total phenolic content (TPC) and antioxidant activity measured by
the Ferric Reducing Antioxidant Power method (FRAP) were used for quantitative analysis)
characteristics of pure honey samples and prepared adulterations.

2. Materials and Methods
2.1. Materials
2.1.1. Honey Samples and Adulterant

Fifteen (15) samples of acacia (Robinia pseudoacacia) honey from the Krapina-Zagorje
County region (in the northwest of Croatia) provided by members of the Krapina Bee-
keepers’ Association, from 2018, were investigated in this study. Glucose syrup (Food
Colours, Piotrkow Trybulski, Poland) was used as the adulterant. All samples (honey and
adulterant) were kept in glass vials in the dark at room temperature. All analyses were
performed in 2018, when samples were gathered.

2.1.2. Chemicals

TPTZ (2,4,6-Tris(2-pyridyl)-s-triazine), gallic acid (98%), and iron (II) sulphate heptahy-
drate were obtained from Sigma-Aldrich Chemie (Steinheim, Germany). Hydrochloric acid
(30%), iron (III) chloride hexahydrate, and sodium carbonate were from Gram-Mol d.o.o.
(Zagreb, Croatia). Sodium acetate trihydrate was from J.T. Baker (Deventer, The Nether-
lands). Folin–Ciocalteu reagent was obtained from Kemika d.d. (Zagreb, Croatia), while
acetic acid was from T.T.T. d.o.o. (Sveta Nedjelja, Croatia). Chemicals were of analytical
reagent grade.
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2.2. Methods
2.2.1. Preparation of Honey Adulterations

Glucose syrup and 15 samples of pure honey were combined in weight ratios of
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% to create honey adulterations as
previously described by Ferreiro-González et al. [12]. Pure honey (adulterated 0%) and
pure glucose syrup (adulterated 100%) were included in the analysis. In all, 165 samples
were created (11 different ratios per each sample). After the adulterant was added, the
samples were maintained at 35 ◦C for 24 h while periodically being manually mixed to
ensure homogeneity prior to testing.

2.2.2. Moisture Content

A refractometer [13] was used to test the moisture content (ATC, Eustisa, FL, USA).
The results of the triplicate moisture content measurements were presented as the average
value ± standard deviation.

2.2.3. Conductivity

Using a Seven Compact conductometer (Mettler Toledo, Schwerzenbach, Switzerland),
the conductivity of samples of pure honey and prepared adulterated samples was evaluated.
Aqueous solutions of the honey samples were made by combining 2 g of the sample with
8 mL of distilled water at room temperature for conductivity measurements [13]. Triplicate
conductivity measurements were presented as the average value ± standard deviation.

2.2.4. Color Measurements

The color of all samples (pure honey samples as well as prepared adulterations and
pure honey) was determined using a PCE-CSM3 colorimeter (PCE Instruments, Meschede,
Germany) [13]. Based on the color information (Hunter’s color coordinates were used) of
pure honey samples (for each individual sample) as the reference, the total color change
(4E) (Equation (1)) was determined to characterize how the color of the honey samples
changed when different amounts of adulterant were added.

∆E =

√
(L− L0)

2 + (a− a0)
2 + (b− b0)

2 (1)

where L0, a0, and b0 values were determined for pure honey samples (control samples) and L, a,
and b values were determined for the prepared adulterations. The color measurements were con-
ducted in triplicate, and the results were expressed as the average value ± standard deviation.

2.2.5. Total Polyphenolic Content Measurement

Using a customized approach proposed by Beratta et al. [15], the total polyphenolic
content of the pure honey samples and honey adulterations was assessed spectrophotomet-
rically using the Folin–Ciocalteu reagent and a honey sugar analog of honey served as the
control sample. A sugar analog of honey made of fructose (40%), glucose (30%), maltose
(2%), and sucrose (2%) was used to decrease potential interference of the primary sugar
elements in honey with the analytical procedure. In addition, 30% aqueous solutions of
pure honey and honey adulterations were used for TPC measurements.

The following ingredients were combined and stirred for two minutes: 100 µL of honey
aqueous solution (30%), equal to 10 mg of pure honey; 1 mL of 10% Folin–Ciocalteu reagent
solution; 1 mL of 7.5% sodium carbonate solution. After being kept in the dark for 30 min,
the absorbance of the prepared samples was measured at 760 nm. TPC was calculated as
mg of gallic acid (GAE) per kilogram of honey. TPC measurements were performed in
triplicate and the results were expressed as the average value ± standard deviation.
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2.2.6. Antioxidant Activity Measurement by the Ferric Reducing Antioxidant
Power Method

The FRAP method was used to quantitatively evaluate the antioxidant activity (AOX)
of the pure honey samples and honey adulterations in accordance with the approach
described by Benzie and Strain [16]. In addition, 50 µL of 30% honey aqueous solution
and 450 mL of 37 ◦C-heated FRAP reagent were combined. Then, 0.3 mol/L of acetate
buffer, 0.01 mol/L of TPTZ solution, and 0.02 mol/L of an aqueous solution of iron (III)
chloride hexahydrate were previously mixed in a ratio of 10:1:1 to obtain the FRAP reagent.
After being kept in the dark for 10 min, the produced samples’ absorbances were measured
at 593 nm. A sugar analog of the honey was used as the blank sample. The antioxidant
activity of the samples was expressed as mmol of FeSO4·7H2O of a 30% honey aqueous
solution. Measurements were performed in triplicate and results were expressed as the
average value ± standard deviation.

2.2.7. NIR Spectra Measurement

NIR spectra were gathered using the NIR spectrophotometer NIR-128L-1.7-USB/6.25/50 µm
(Control Development, South Bend, IN, USA) with a halogen light source (HL-2000) and installed
Control Development software Spec32 (v.1.32, Control Development, South Bend, IN, USA). Spec-
tra were gathered in the wavelength range of 904–1699 nm. For every sample, three consecutive
spectra were recorded across the entire spectral range.

2.2.8. Statistical Analysis

Average values and standard deviations were estimated using Statistica v.13.0 software
(Tibco, Palo Alto, CA, USA)

2.2.9. NIR Spectra Pre-Processing and Data Modeling

Pre-processing of NIR spectra in the wavelength ranges of 904–962 nm and 1400–1699 nm
was performed using the Unscrambler software (Version X 10.1. CAMO AS, Oslo, Nor-
way). The efficiency of the following pre-processing methods was tested using: (i) raw
spectra, (ii) first-order Savitzky–Golay derivative (SG1), (iii) standard normal variate (SNV),
(iv) multiplicative scatter corrections (MSCs), (v) first-order Savitzky–Golay derivative fol-
lowed by standard normal variate (SG1 + SNV), and (vi) first-order Savitzky–Golay derivative
followed by multiplicative scatter corrections (SG1 + MSC). After pre-processing, Principal
Component Analysis (PCA) was performed using the Unscrambler software in order to find
similarities and differences across samples.

The potential of using Partial Least Squares (PLS) regression models for the prediction
of adulterant content, moisture content, conductivity, total color change, total phenolic con-
tent, and antioxidant activity measured by the FRAP method of pure and adulterated honey
samples based on NIR spectra in the wavelength range of 904–962 nm and 1400–1699 nm
was estimated using the Unscrambler X software. Raw and pre-processed spectra were ana-
lyzed separately. The performance of the developed models was estimated based on: (i) the
coefficients of determination for calibration (R2

cal) and cross-validation (R2
cval), (ii) root-

mean-square error for calibration (RMSEC) and cross-validation (RMSECV), (iii) standard
error for calibration (SEC) and cross-validation (SECV), (iv) average value of the difference
between predicted and measured values (Bias), and (v) ratio of predicted deviation (RPD)
and range error ratio (RER).

2.2.10. Artificial Neural Networks Modeling

Based on the PLS performance, an optimal pre-processing method was selected for
artificial neural network modeling using Statistica v.13.0 software (Tibco, Palo Alto, CA,
USA). Multiple-Layer Perceptron networks (MLP networks), which include an input layer, a
hidden layer, and an output layer, were developed to simultaneously predict: (i) adulterant
content, moisture content, and total color change; (ii) conductivity, total polyphenolic
content, and antioxidant activity measured by the FRAP method of pure honey samples
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and the prepared adulteration based on the NIR spectra. ANN models include five neurons
in the input layer, each representing one of the first five PCA variables. The first five
principal components, which together represent more than 99.99% of data variability, were
used as the ANN inputs. Identity, Logistic, Hyperbolic tangent, and Exponential were
among the options selected at random to serve as the hidden activation function and output
activation function. For the hidden layer, the MLP chooses a random number of neurons
between 3 and 11.

ANN modeling was performed using data matrix dimensions of 165 × 8: 165 rows
representing 15 pure honey samples, 135 honey adulterations, and 15 pure adulterant
samples. Here, 8 columns included 5 PCA coordinates (factors) and 3 columns included
the analyzed model outputs. Data were randomly divided by the software into three
groups for the ANN modeling: 70% for network training, 15% for network testing, and
15% for model validation. There were 1000 networks created for each group of outputs.
The back-error propagation approach was used for ANN training. The performance of the
proposed ANN models was estimated based on R2 and Root-Mean-Squared Error (RMSE)
values for training, test, and validation.

3. Results and Discussion
3.1. Effect of the Adulterant Addition on Physical and Chemical Properties of the Honey Samples

According to the European Commission [17], the European Union is the second world
producer of honey, with an average production of around 218,000 t in 2021, which is a slight
decrease compared to 2018 when 238,000 t was produced. The year 2018 was selected as
the samples analyzed in this work originated from 2018. Croatia contributed 7400 t of total
EU honey production in 2018 [17]. In this work, acacia honey samples were adulterated
and analyzed because they are the most abundant type of honey in the northwest part
of Croatia.

In this work, moisture content, conductivity, total color change, total phenolic con-
tent, and antioxidant activity measured by the FRAP method of acacia honey samples
adulterated with glucose syrup were analyzed (Figure 1). The results showed that the
average moisture content of pure honey samples was 16.93 ± 0.67% (Figure 1a). Similar
results were presented by Denžić Lugomer et al. [18] for Croatian acacia honey (mois-
ture content 16.40 ± 1.11%) and Uršulin-Trstenjak et al. [19] for acacia honey from the
northwest part of Croatia (moisture content 16.78 ± 1.03%). The addition of glucose
syrup reduced the moisture content slightly to around 13.40 ± 0.71% when 90% of the
adulterant was added. As presented in Figure 1b, the addition of glucose syrup reduced
the conductivity from 170.77 ± 17.82 µS/cm (0%) to 17.83 ± 0.09 µS/cm (100%) with an
almost linear trend, opposite to the results obtained by Valinger et al. [13] where the
addition of high-fructose syrup to acacia honey resulted in a conductivity increase. For
Croatian acacia honey samples analyzed by Uršulin-Trstenjak et al. [19], the conductivity
was 150.00 ± 30.00 µS/cm, and for acacia honey samples analyzed by Šarić et al. [20], the
conductivity was 200.00 ± 59.00 µS/cm. Yakubu et al. [21] described conductivity as a
frequently used method in routine honey quality control and it is considered an effec-
tive standard for assessment of the botanical origin and purity of honey. In addition,
Kropf et al. [22] stated that the bright color of honey corresponds to lower conductivity in
comparison to dark-colored honeys, which is in agreement with the results presented in
this work.
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Figure 1. Average values of physical and chemical properties of pure honey samples and prepared
glucose syrup adulterations: (a) moisture content, (b) conductivity, (c) total color change, (d) total
phenolic content, and (e) antioxidant activity measured by FRAP method.

The addition of glucose syrup results in samples lightening, i.e., an increase in L
coordinate compared to pure honey samples. The total color change (Figure 1c) increased
from 0.7 (10% of adulterant) to 2.28 (90% of adulterant) with an increasing amount of
adulterant added to the sample.

Color assessment of honey based on visual comparison or spectrophotometric measure-
ments has been widely utilized as an additional method for determination of the botanical



Separations 2022, 9, 312 7 of 15

origin of the honey [23] and can represent a good method of preliminary control of honey
adulteration. Consumers place a high value on the appearance of honey. Honey’s color is a
sensory feature that changes across different varieties of honey and is affected by chemical
factors such as mineral concentration and polyphenol level [24]. Furthermore, analysis of
the chemical properties (TPC and AOX) of the prepared adulterants revealed that the addi-
tion of adulterant had a negative effect on both TPC and FRAP (Figure 1d,e). The chemical
compositions of honey vary significantly depending on the source of flora from which honey
is collected and the geographical structure [25]. Previously analyzed acacia honey samples
from Croatia measured different concentrations of TPC and AOX depending on the year
and region. For example, Krpan et al. [26] obtained TPC = 43.55 ± 6.45 mgGAE/kg and
FRAP = 72.87 ± 15.44 µM Fe(II) for acacia samples from Northwest Croatia. Šarić et al. [27]
obtained TPC = 86.26 ± 8.34 mgGAE/kg for acacia honey from Northwest Croatia, while
Bešlo et al. [28] measured TPC = 186 ± 36 mgGAE/kg for acacia honey samples from East
Croatia. The results confirm the statement that the physicochemical parameters of honey,
such as pH, water content, sugar composition, color, acidity, and electrical conductivity,
represent quality indicators that characterize each individual variety of honey as well as
the origin and season [29].

3.2. NIR Spectra of Honey Aduterations

Near-infrared spectra of pure honey samples and all prepared adulterants were
recorded in the wavelength range from 904 to 1699 nm. Raw spectra of all samples are
present at Figure 2a. Spectra analysis was performed using the wavelength range from 904
to 962 nm and from 1400 to 1699 nm, corresponding to the C-H third overtone and water
first overtone, respectively. The effect of the NIR spectra pre-processing methods on the
sample grouping was analyzed. As mentioned before, the (i) first-order Savitzky–Golay
derivative, (ii) standard normal variate, (iii) multiplicative scatter corrections, (iv) first-
order Savitzky–Golay derivative followed by standard normal variate, and (v) first-order
Savitzky–Golay derivative followed by multiplicative scatter corrections were used. It
can be noticed that MSC pre-treatment (Figure 2b) ensured the samples grouping in three
groups as follows: (i) pure honey samples, (ii) adulterations, and (iii) pure adulterant.
Furthermore, it can be observed that the first two PC contributed to over 90% of the total
variance. The wavelengths that contributed the most to the first three principal components
are shown in Figure 2c. Adulterations were prepared using 15 different honey samples
and, therefore, it was not possible for PCA to discriminate the amount of adulteration in
all parallels (Figure 2b). To overcome that problem, the average spectra for each specific
amount of adulterant were calculated, as previously described by Ferreiro-Gonzelez et al.
(2018), where the average UV–VIS–NIR spectra were used for detection of honey adulter-
ation. The PCA of the average NIR spectra pre-processed using the MSC method is given
in Figure 2d. The specific grouping of the samples with an increase in the amount of added
adulterant can be noticed. It can be seen that the addition of even 10% of the adulterant
had a significant effect on the sample position on the PC score plot. As for the individual
samples (Figure 2b), the first two PCs for average spectra contributed to around 99% of
the total variance. The wavelengths that contributed the most to the first three principal
components of the average NIR spectra are shown in Figure 2e. The presented results
indicate that NIR spectra coupled with PCA can be used for honey sample adulteration
detection and are consistent with the available literature. For example, El Orche et al. [30]
presented an efficient application of fluorescence spectroscopy and PCA for discrimination
of the three oil classes, Vitalis et al. [31] applied PCA for analysis of NIR spectra for adulter-
ated tomato paste, while Bodor et al. [32] analyzed the effect of the heat treatment on the
spectral patterns of the unifloral honeys using PCA.
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Figure 2. (a) NIR spectra of pure honey samples and prepared glucose syrup adulterations (N = 160);
(b) PCA score plot of NIR spectra after MSC pre-processing (o—0% of adulterant; o—10–90% of
adulterant; o—100% of adulterant); (c) PCA loading plot after NIR spectra MSC pre-processing;
(d) PCA score plot of average NIR spectra by adulterant amount after MSC pre-processing; (e) PCA
loadings of average NIR spectra after MSC pre-processing.
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3.3. PLS Modeling of Honey Adulteration Properties

Given that the addition of adulterants to food products lowers their quality and
can harm human health [33], it is critical to have an efficient tool that can distinguish
the adulterated product from the unadulterated and quantify the amount of the added
adulterant. In this work, PLS regression was used to quantify the adulteration of the honey
samples based on the NIR spectra and to quantify the effect of the adulterant addition
on physical and chemical properties of the samples prepared with glucose syrup as the
adulterant. PLS is a method that increases the correlation between spectral data and the
parameters to be quantified. PLS latent variables (LVs) indicate significant changes in the
spectral data while also being significant in the assessment of the important parameters [34].
PLS models were developed using preselected NIR spectra ranges and using different
spectra pre-processing methods. When working with NIR spectra, random noise and
systematic variations in the base line can cause problems during analysis, but they can
be overcome by different pre-processing techniques such as SNV, MSC, and SG [35]. The
models developed in this work were evaluated using cross-validation. The best model
among the created models was chosen using the coefficient of determination (R2), standard
error of calibration (SEC), and standard error of cross-validation (SECV). The model selected
as the best, based on the cross-validation, was further used for the prediction of the analyzed
variable value using an independent set of data. The results of PLS models for prediction
are given in Table 1.

Table 1. Applicability of PLS models for prediction of honey adulteration and physical and chemical
properties of pure honey samples and prepared glucose syrup adulterations based on different NIR
spectra pre-treatments (selected PLS models are marked bold).

Property Pre-Treatment R2
cal RMSEC R2

cval RMSECV R2
pred RMSEP Bias RPD RER

A
m

ou
nt

of
ad

ul
te

ra
nt

No 0.8530 12.1806 0.8068 14.1580 0.8238 13.2365 −0.1931 2.3925 7.5549
SG 0.8276 13.1927 0.7431 16.0956 0.0169 57.0295 25.5142 0.5553 1.7535
SNV 0.8505 12.2854 0.8286 13.3238 0.8302 12.9964 −0.2964 2.4367 7.6944
MSC 0.8978 10.1552 0.8557 12.2011 0.8660 11.4736 0.7141 2.7601 8.7157
SG-SNV 0.8418 12.6388 0.7743 15.4918 0.0950 14.3069 23.2721 2.2135 6.9896
SG-MSC 0.8464 12.4536 0.7758 15.2649 0.0382 38.8224 40.6612 0.8157 2.5758

m
oi

st
ur

e

No 0.6039 0.7573 0.4609 0.9205 0.6126 0.7638 −0.0020 1.6246 7.2008
SG 0.5405 0.8449 0.4002 0.9761 0.0468 3.7426 3.5347 0.3316 1.4696
SNV 0.6028 0.7855 0.4061 0.9739 0.6201 0.7564 −0.0021 1.6405 7.2713
MSC 0.6517 0.7356 0.5951 0.9729 0.6623 0.7131 0.0039 1.7401 7.7128
SG-SNV 0.5489 0.8372 0.4744 0.9108 0.0459 3.4556 2.9932 0.3591 1.5916
SG-MSC 0.6183 0.7701 0.4762 0.9104 0.1157 17.5681 8.7225 0.0706 0.3131

co
nd

uc
ti

vi
ty No 0.7333 26.4676 0.6667 29.8836 0.7222 25.3602 −0.0427 1.9668 7.3805

SG 0.7218 27.0330 0.6375 31.2293 0.0388 46.8494 −4.6610 1.0647 3.9951
SNV 0.7284 26.7088 0.6987 28.5952 0.7193 25.4936 0.1399 1.9565 7.3418
MSC 0.7274 26.7563 0.6791 29.2807 0.7162 25.6356 0.0891 1.9457 7.3012
SG-SNV 0.7099 27.6011 0.6201 32.0004 0.0216 61.8526 23.4137 0.8064 3.0261
SG-MSC 0.7393 26.1659 0.65 30.4876 0.0537 47.0045 11.1163 1.0612 3.9820

to
ta

lc
ol

ou
r

ch
an

ge

No 0.2487 0.7078 0.1696 0.7539 0.1013 0.9191 −0.1642 0.9756 4.1257
SG 0.2332 0.7151 0.2175 0.7415 0.0697 1.2607 −0.8317 0.7113 3.0078
SNV 0.3222 0.6723 0.2257 0.7347 0.2098 0.8631 −0.1888 1.0389 4.3934
MSC 0.3213 0.6728 0.2292 0.7359 0.2101 0.8631 −0.1893 1.0389 4.3934
SG-SNV 0.2297 0.7167 0.1875 0.7401 0.0183 1.6852 1.3988 0.5321 2.2501
SG-MSC 0.2300 0.7166 0.1877 0.7395 0.0645 4.3454 1.3222 0.2064 0.8726

TP
C

No 0.5787 15.1062 0.4016 18.1346 0.3308 19.8989 0.3618 1.1656 5.3772
SG 0.6161 14.4203 0.4465 17.4767 0.1807 26.8291 2.6712 0.8645 3.9882
SNV 0.5868 14.9603 0.4047 18.2062 0.2115 20.3965 0.2148 1.1372 5.2460
MSC 0.5876 14.9465 0.3661 18.6234 0.3191 20.3672 0.3109 1.1388 5.2535
SG-SNV 0.6255 14.2430 0.4104 18.1452 0.1710 26.5735 3.9364 0.8729 4.0266
SG-MSC 0.5664 15.3244 0.3751 18.9777 0.2241 26.6504 2.9317 0.8703 4.0149

FR
A

P

No 0.4515 7.6689 0.3940 8.7829 0.5015 7.7951 −0.3005 1.4192 6.2365
SG 0.3941 8.5729 0.3303 9.1163 0.0236 20.1556 −16.7923 0.5489 2.4119
SNV 0.5154 7.6670 0.4063 8.3726 0.4829 7.9384 −0.2364 1.3936 6.1239
MSC 0.6068 6.9056 0.4746 8.1335 0.4032 8.8715 −0.5949 1.2470 5.4798
SG-SNV 0.5023 7.7691 0.3812 8.7352 0.0277 37.8779 22.7238 0.2921 1.2834
SG-MSC 0.5050 7.7483 0.4014 8.5661 0.0804 25.0587 19.6255 0.4415 1.9400

As indicated in Table 1, some of the used pre-processing methods improved the
results of PLS modeling when compared to raw spectra, while others did not contribute
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to the model performance. For prediction of the added adulterant amount, moisture
of the samples, and total color change, the best performance was obtained using the
multiplicative scatter corrections (MSCs). Raw spectra were the best selection for prediction
of conductivity, total phenolic content, and antioxidant activity as determined by the FRAP
method. Results also showed that the highest R2

pred was obtained for the PLS model
developed for the prediction of the amount of the adulterant. The PLS model selected
for prediction of the adulterant amount achieved R2

cal of 0.8978, RMSEC of 10.1552%,
R2

cval of 0.8557, RMSECV of 12.2011%, R2
pred of 0.8660, RMSEP of 11.4736%, Bias of

0.7141, RPD of 2.7601%, and RER of 8.7157%. Oppositely, the lowest R2
pred of 0.2101 was

obtained for the PLS model developed for prediction of the total color change. The PLS
model selected for prediction of the total color change achieved R2

cal of 0.3213, RMSEC
of 0.6728, R2

cval of 0.2292, RMSECV of 0.7359, R2
pred of 0.2101, RMSEP of 0.8631, Bias

of −0.1893, RPD of 1.0389, and RER of 4.3934. In comparison to the results presented
by Valinger et al. [13], it can be noticed that PLS modeling was more efficient for the
prediction of honey adulteration properties prepared with high-fructose syrup. The RPD
and RER statistics were also considered in the external validation set in order to evaluate the
prediction models’ usability on an independent dataset. According to Parrini et al. [36], the
model can be considered sufficient for screening if RPD is between 1.5 and 2.5. Moreover,
RER values between 3 and 10 and higher than 10 indicate moderate and good practical
utility, respectively [37]. Based on those ranges, the PLS model for prediction of the amount
of added adulterant (RPD of 2.7601; RER of 8.7157), the model for prediction of the moisture
content (RPD of 1.7401; RER of 7.7128), and the model for prediction of the conductivity
(RPD of 1.9668; RER of 7.3805) can be considered sufficient for screening and can be
moderately used in practice. Other developed PLS models achieved even lower values for
RPD and RER and can be considered as nonreliable and should be improved.

Based on available literature data, NIR spectroscopy coupled with PLS modeling has
been extensively used for fast and efficient food adulteration detection. Pereira et al. [38]
proposed PLS models for the detection of simulated goat milk adulteration with cow milk
and quantification of the fat and protein content in the samples based on NIR spectra.
Similarly, Mabood et al. [39] developed a PLS model that achieved an R2 of 94% and an
RMSEC of 1.10% for the quantification of camel milk adulteration with goat milk in the
range from 0% to 20%. Basri et al. [40] employed PLS regression for the detection and
quantification of palm oil adulteration with lard based on NIR and obtained an R2 of
approximately 0.99. Furthermore, Alamprese et al. [34] applied PLS to discriminate the
adulteration of minced beef with turkey meat using FT-NIR. Cocchi et al. [41] explored the
possibility of using NIR to quantify the degree of adulteration of durum wheat flour with
common wheat flour. Amirvaresi et al. [42] and Shawky et al. [43] utilized PLS regression
for estimation of the adulteration in saffron samples based on NIR and MIR spectroscopy,
while Genis et al. [44] developed PLS using NIR spectra to predict green pea and spinach
adulteration rates with R2 and root-mean-square error of prediction (RMSEP) values, which
were found to be 0.9957 and 7.87 for green pea and 0.9968 and 4.69 for spinach, respectively.
Wang et al. [45] developed a PLS regression model using raw NIR spectra for detection of
quinoa flour adulteration by wheat flour.

3.4. ANN Modeling of Honey Adulteration Properties

Partial Least Squares linear regression models are not always successful in accurately
predicting parameters that are not connected to a particular compound or class of related
compounds (e.g., different sugar molecules for sweetness), but rather to a complex com-
bination of factors (e.g., water content) [46]. In these situations, it has been demonstrated
that using nonlinear models such as artificial neural networks (ANNs) to create the best
possible prediction model is preferable [13,47,48]. In this work, two types of ANNs were
developed. The first one was for simultaneous prediction of the amount of adulterant,
moisture content, and total color change, while the second was for simultaneous prediction
of conductivity, TPC, and FRAP. ANN output variables were grouped according to the re-
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sults of PLS modeling where MSC pre-treatment of NIR spectra ensured the best prediction
of adulterant, moisture content, and total color change, while the prediction of conductivity,
TPC, and FRAP was the most efficient using raw NIR spectra. Selected networks are given
in Table 2.

Table 2. Characteristics of ANNs selected for prediction of honey adulteration and physical and
chemical properties of pure honey samples and prepared glucose syrup adulterations based on
different NIR spectra pre-treatments (selected ANN models are marked bold).

Property/
Pre-Treatment MLP Training Perf./

Training Error
Test Perf./
Test Error

Validation Perf./
Validation Error

Hidden
Activation

Output
Activation

Amount of
adulterant-

moisture-total
colour change/

MSC

MLP 5-4-3 0.9434
0.1503

0.9306
1.9238

0.9232
1.9672 Exponential Exponential

MLP 5-10-3 0.9440
0.0858

0.9340
0.1142

0.9247
0.1186 Exponential Identity

MLP 5-7-3 0.9422
0.1112

0.9297
0.1476

0.9203
0.2004 Exponential Exponential

MLP 5-9-3 0.9617
0.1092

0.9354
0.1304

0.9056
0.1888 Exponential Exponential

MLP 5-8-3 0.9625
0.0748

0.9215
0.0777

0.9202
0.0851 Tanh Identity

conductivity
TPC-FRAP/

No

MLP 5-5-3 0.8120
1.5222

0.8086
1.5611

0.7243
1.5771 Logistic Identity

MLP 5-5-3 0.8222
1.4466

0.8104
1.5394

0.7384
1.5773 Tanh Identity

MLP 5-11-3 0.8104
1.4836

0.8298
1.5460

0.7268
1.6095 Logistic Identity

MLP 5-6-3 0.7968
1.5257

0.8427
1.5606

0.7303
1.5814 Logistic Logistic

MLP 5-9-3 0.8401
1.4883

0.8323
1.5301

0.7254
1.5553 Logistic Exponentail

The ANNs applicability was estimated based on the coefficients of determination for
training, test, and validation and the root-mean-square errors for training, test, and validation.
It can be noticed that ANNs developed for the prediction of conductivity, TPC, and FRAP
achieved a higher R2 and lower RMSE at all three levels compared to ANNs for the predic-
tion of adulterant, moisture content, and total color change. The optimal ANN architecture
was selected by also taking into account the number of neurons in the hidden layer (fewer
neurons in hidden layer mean simpler network). For simultaneous prediction of the amount
of adulterant, moisture content, and total color change of pure honey samples and prepared
adulterations, MLP 5-8-3 was selected. The selected ANN was characterized by 5 neurons
in the input layer, 8 neurons in the hidden layer, and 3 neurons in the output layer. The
hidden activation function was Tanh, while the output activation function was the Iden-
tity function. R2

training was 0.9625, RMSEtraining was 0.0748, R2
test was 0.9215, RMSEtraining

was 0.0777, R2
validation was 0.9202, and RMSEvalidation was 0.0551 for the described ANN.

MLP 5-9-3 was selected for the simultaneous prediction of conductivity, TPC, and FRAP
of pure honey samples and prepared adulterations. The selected ANN was characterized
by 5 neurons in the input layer, 9 neurons in the hidden layer, and 3 neurons in the output
layer. The hidden activation function was the logistic function, and the output activation
function was the exponential function. The described ANN achieved R2

training of 0.8401,
RMSEtraining of 1.4883, R2

test of 0.8323, RMSEtraining of 1.5301, R2validation of 0.7254, and
RMSEvalidation of 1.5553. As presented in Table 3 and in Figure 3, the first ANN was the most
efficient for the prediction of adulterant amount (R2

training = 0.9991, RMSEtraining = 1.2010%,
R2

test = 0.9987, RMSEtraining = 1.4554%, R2
validation = 0.9987, and RMSEvalidation = 1.9674%)

(Figure 3a), while the second ANN was the most efficient for the prediction of conductivity
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(R2
training = 0.9396, RMSEtraining = 19.7537 µS/cm, R2

test = 0.9130, RMSEtest = 20.9560 µS/cm,
R2

validation = 0.8994, and RMSEvalidation = 21.4561 µS/cm) (Figure 3d).

Table 3. Correlation coefficients of ANN models.

ANN Output R2
training

RMSEtraining

R2
test

RMSEtest

R2
validation

RMSEvalidation

MLP 5-4-3

amount of adulterant 0.9991
1.2010

0.9987
1.4554

0.9987
1.9674

Moisture 0.9116
0.2087

0.9072
0.5663

0.8503
0.6017

total colour change 0.9505
0.2364

0.9431
0.3623

0.9261
0.5244

MLP 5-4-3

Conductivity 0.9396
19.7537

0.9130
20.9560

0.8994
21.4561

TPC 0.7234
16.3911

0.7152
16.4769

0.5639
17.7901

FRAP 0.8604
5.2505

0.8156
6.5094

0.6726
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Figure 3. Comparison between observed and predicted ANN models: (a) amount of adulter-
ant, (b) moisture content, (c) total colour change, (d) conductivity, (e) total phenolic content, and
(f) antioxidant activity measured by the FRAP method. (o—experimental data).



Separations 2022, 9, 312 13 of 15

Comparing the obtained results with those achieved using PLS modeling, it can
be noticed that ANN modeling was more efficient for prediction of adulterated honey
properties based on NIR spectra, which was also previously presented by Son et al. [49] for
rice sample analysis, Basile et al. [46] for grape texture prediction, and by Chen et al. [50]
for identification of tea varieties.

4. Conclusions

The applicability of NIR spectroscopy was assessed for the detection and quantification
of honey adulteration and analysis of the physical and chemical properties of prepared adul-
terations. Multiplicative scatter corrections of NIR spectra resulted in a distinctive grouping
of samples in pure honey samples, honey adulterations, and pure adulteration in the PCA
score plot. PLS models created for prediction of the amount of added adulterant, moisture
content, and conductivity can be considered adequate for screening and have a limited
practical application. Furthermore, the developed ANN models achieved R2

validation over
0.86 for all analyzed outputs (adulterant content, moisture content, conductivity, total color
change, total phenolic content, and antioxidant activity measured by the FRAP method)
and can be considered as an efficient tool for honey adulteration quantification.
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Development of near infrared spectroscopy models for the quantitative prediction of olive leaves bioactive compounds content.
Chem. Biochem. Eng. Q. 2018, 32, 535–543. [CrossRef]

49. Son, S.; Kim, D.; Choi, M.C.; Lee, J.; Kim, B.; Choi, C.M.; Kim, S. Weight interpretation of artificial neural network model for
analysis of rice (Oryza sativa L.) with near-infrared spectroscopy. Food Chem. X 2022, 15, 100430. [CrossRef]

50. Chen, Q.; Zhao, J.; Liu, M.; Cai, J. Nondestructive identification of tea (Camellia sinensis L.) varieties using FT-NIR spectroscopy
and pattern recognition. Czech J. Food Sci. 2008, 26, 360–367. [CrossRef]

http://doi.org/10.3390/foods10081865
http://www.ncbi.nlm.nih.gov/pubmed/34441641
http://doi.org/10.1016/j.lwt.2020.109427
http://doi.org/10.1016/j.foodchem.2016.11.109
http://doi.org/10.1016/j.saa.2016.09.028
http://doi.org/10.1016/j.talanta.2005.08.005
http://doi.org/10.1016/j.foodchem.2020.128647
http://doi.org/10.1016/j.lwt.2020.109032
http://doi.org/10.1016/j.lwt.2020.110008
http://doi.org/10.1016/j.foodcont.2022.108970
http://doi.org/10.3390/foods11030281
http://www.ncbi.nlm.nih.gov/pubmed/35159433
http://doi.org/10.1016/j.saa.2022.120860
http://doi.org/10.15255/CABEQ.2018.1396
http://doi.org/10.1016/j.fochx.2022.100430
http://doi.org/10.17221/1125-CJFS

	Introduction 
	Materials and Methods 
	Materials 
	Honey Samples and Adulterant 
	Chemicals 

	Methods 
	Preparation of Honey Adulterations 
	Moisture Content 
	Conductivity 
	Color Measurements 
	Total Polyphenolic Content Measurement 
	Antioxidant Activity Measurement by the Ferric Reducing Antioxidant Power Method 
	NIR Spectra Measurement 
	Statistical Analysis 
	NIR Spectra Pre-Processing and Data Modeling 
	Artificial Neural Networks Modeling 


	Results and Discussion 
	Effect of the Adulterant Addition on Physical and Chemical Properties of the Honey Samples 
	NIR Spectra of Honey Aduterations 
	PLS Modeling of Honey Adulteration Properties 
	ANN Modeling of Honey Adulteration Properties 

	Conclusions 
	References

