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Abstract: The aerosol constituents generated from JUUL Menthol pods with 3.0% and 5.0% nicotine
by weight (Me3 and Me5) are characterized by a non-targeted approach, which was developed to
detect aerosol constituents that are not known to be present beforehand or that may be measured
with targeted methods. Three replicates from three production batches (n = 9) were aerosolized
using two puffing regimens (intense and non-intense). Each of the 18 samples were analyzed by gas
chromatography electron ionization mass spectrometry and by liquid chromatography electrospray
ionization high-resolving power mass spectrometry. All chemical constituents determined to differ
from control were identified and semi-quantified. To have a complete understanding of the aerosol
constituents and chemistry, each chemical constituent was categorized into one of five groups: (1) fla-
vorants, (2) harmful and potentially harmful constituents, (3) leachables, (4) reaction products, and
(5) chemical constituents that were unable to be identified or rationalized (e.g., chemical constituents
that could not be categorized in groups (1–4). Under intense puffing, 74 chemical constituents were
identified in Me3 aerosols and 68 under non-intense puffing, with 53 chemical constituents common
between both regimens. Eighty-three chemical constituents were identified in Me5 aerosol using
an intense puffing regimen and seventy-five with a non-intense puffing regimen, with sixty-two
chemical constituents in common. Excluding primary constituents, reaction products accounted
for the greatest number of chemical constituents (approximately 60% in all cases, ranging from
about 0.05% to 0.1% by mass), and flavorants—excluding menthol—comprised the second largest
number of chemical constituents (approximately 25%, ranging consistently around 0.01% by mass).
The chemical constituents detected in JUUL aerosols were then compared to known constituents
from cigarette smoke to determine the relative chemical complexities and commonalities/differences
between the two. This revealed (1) a substantial decrease in the chemical complexity of JUUL aerosols
vs. cigarette smoke and (2) that there are between 55 (Me3) and 61 (Me5) unique chemical constituents
in JUUL aerosols not reported in cigarette smoke. Understanding the chemical complexity of JUUL
aerosols is important because the health effects of combustible cigarette smoke are related to the
combined effect of these chemical constituents through multiple mechanisms, not just the effects of
any single smoke constituent.

Keywords: JUUL; aerosol; non-targeted analysis; chemical characterization; ENDS; e-cigarette;
GC–MS; LC–HRMS

1. Introduction

Smoking combustible cigarettes (CC) is the number one cause of preventable death [1]
and their prolific use has a dramatic negative impact on public health. While no tobacco
product is safe, the FDA established the Comprehensive Plan for Tobacco, which de-
scribes nicotine delivery through the perspective of a continuum of risk, with combustible
cigarettes at the highest-risk end and nicotine replacement therapies at the lowest-risk end
of the continuum. This perspective is based in large part on evidence and understand-
ing that nicotine is not responsible for serious disease and death in cigarette smokers [2].
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The serious disease and premature death that result from cigarette smoking is due to the
combination of thousands of other chemical constituents known to be in cigarette smoke,
including the chemicals on the FDA’s established list of 93 harmful or potentially harmful
constituents (HPHCs) recognized in tobacco products [3], that are responsible for causing
over 8 million deaths each year and 30% of cancer-related deaths overall [4,5].

In contrast to CCs, electronic nicotine delivery systems (ENDS) were designed to use
a combustion-free delivery mechanism. ENDS generally consist of a battery, a heating
element and a reservoir for storing nicotine-containing liquid. The chemical composition of
CC smoke has been well studied [6] and much is known about the harmfulness of smoking
CCs [1]. Studies have indicated that ENDS use is less harmful than CC smoking [7–11] but
there are still questions about the potential harmfulness of ENDS aerosols. These questions
are rooted in the fact that much of our understanding regarding the harmfulness of cigarette
smoking is founded on an understanding of the chemical constituents which are produced
during combustion in the production of mainstream smoke. The processes associated with
combustion produce degradation of the tobacco plant materials, paper, and non-tobacco
ingredients. Because of this, the smoke generated from combustion is a complex mixture of
more than 5000 chemical constituents, including carcinogenic, mutagenetic and respiratory
toxicants [6,12–19]. However, these processes associated with combustion are not found in
aerosols from e-liquids, so it is not surprising that ENDS aerosols have been reported to
contain greatly reduced amounts of combustion byproducts. Nevertheless, the question of
additional potentially harmful constituents in ENDS aerosols warrants further research, as
it has been reported that flavorants in e-liquids may impact the chemical toxicants present
in the resultant aerosols [20–23]. Others are interested in addressing the concern that there
may be harmful constituents unique to ENDS aerosols—including regulators and public
health organizations. Consistent with this identified interest, on 5 August 2019, the FDA
proposed the addition of 19 ENDS-specific chemicals to the HPHC list [3].

Targeted aerosol analysis methods have provided a valuable understanding of ENDS
aerosol chemistry; these targeted chemical constituents in ENDS aerosols have been well
studied. However, there are limitations associated with these targeted methods in that
such analyses are limited to what is known about the chemical constituents of interest
beforehand [22,24–33]. Resultantly, these methods leave unsampled portions of the aerosol,
which causes blind spots in the characterization of the aerosol’s chemical constituents,
especially when the composition may change as a result of flavorants. Several research
groups [34–36] have published studies on the non-targeted analysis (NTA) of aerosols from
combustible and heated tobacco products [34–36] and ENDS aerosols [35,37–43]. In order
to better understand the flavor-dependent chemical composition of menthol flavored ENDS
aerosols vs. our previously published work on tobacco-flavored E-liquids [39], we applied a
non-targeted analysis approach developed to capture, detect, identify, and semi-quantitate
chemical constituents with a broad range of properties, including polar and non-polar
chemical constituents [44]. Our key objectives in this study were to (1) detect chemical
constituents not included in the FDA’s established or proposed list of HPHCs, (2) evalu-
ate chemical constituents present in menthol-flavored JUUL aerosols vs. our previously
published work on tobacco-flavored JUUL aerosols [39], (3) provide semi-quantitative
information on the chemical constituents detected, and (4) evaluate the complexity and
commonalities of JUUL aerosols compared to cigarette smoke [6]. Non-targeted analyses
have been previously shown to be well-suited, and are widely accepted, for analysis of
complex matrices, including tobacco smoke [45–54]. Our non-targeted analysis included
a set of two complementary non-targeted methods. The GC-EI-MS method [55] was de-
veloped to be suitable for volatile and higher-polarity (see supplemental information for
details on the polar column used in the GC-EI-MS analysis) chemical constituents, and
the LC-HRMS method [39] was developed to be suitable for less-volatile and less-polar
chemical constituents (see supplemental information for details on the reversed phase
column used in the LC-HRMS analysis).
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2. Materials and Methods

As previously described [39], two semi-quantitative non-targeted analytical methods
were implemented to provide a more complete list of aerosol chemical constituents. These
NTA methods were developed for the detection and identification of chemical constituents
from covering a wide range of chemical space (Figure 1). The LC-HRMS system consisted
of a Q-Exactive Orbitrap mass spectrometer (Thermo, Waltham, MA) coupled to a Vanquish
Horizon-Class liquid chromatograph with an autosampler and heated column compart-
ment (Thermo). Sample introduction and chromatographic separation was performed on
100 nL of sample using a Waters BEH C18 (2.1 × 100 mm, 1.7 µm) column with a mobile
phase gradient. Full scan data were collected across M/Z 60–800 at resolving power 140,000.
Data-dependent MS/MS fragments were generated by collision of 3 arbitrary energies
and mass spectra were collected from M/Z 60–800 with a resolving power of 17,500. The
GC-MS systems consisted of an Agilent 7890GC/5977MSD gas chromatograph equipped
with an electron ionization source. The separation was performed on 1 uL of sample using
a Restek Stabilwax (30 m × 0.25 mm × 0.25 µm) column with a Restek (5 m) integra guard
column, using an oven program and an inlet split ratio of 5:1. Full scan data were collected
across M/Z 35–450 at unit resolving power. Fragments were generated using electron
impact ionization at 70 eV. The Supplemental Tables S1–S3 contain full details on the LC
and MS instrument parameters.
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Figure 1. Chemical space which the NTA methods were developed to cover.

To prevent artifacts and reduce sample bias, samples were analyzed without sample
clean-up (absent of any matrix removal steps). This approach minimized sample manipula-
tion and potential analyte loss. This approach was used to capture a full range of diverse
chemical constituents. Aerosol-relevant constituents were differentiated from room air con-
trols based on the analysis of three collection replicates from each of the three production
batches (n = 9) of sample and three replicates of room air controls [39].

Except for those chemical constituents, some of which were HPHCs, which were
quantitated using targeted analytical methods and as published by Chen et al. [56], all
chemical constituents detected in the aerosols were identified and assigned an identification
confidence and were categorized (Table 1) as previously described [39]. The chemical
constituents that were detected and were contained in the flavor library of the Flavor Extract
Manufacturers Association (FEMA) [57] were assigned as flavorants. Chemical constituents
found in the FDA’s Tobacco Products and Tobacco Smoke: Established List [3] and were
not detected by Chen et al. [58] were assigned as HPHCs. Chemical constituents known to
migrate from packaging materials of consumer products [59,60]—such as a siloxane—were
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assigned as leachables. Chemical constituents proposed to form from chemical reactions,
except when the product is an HPHC, were assigned as reaction products (Figure 2). All
other chemical constituents that were not able to be identified or rationalized were assigned
to group 5.

Table 1. Classification of chemical constituent origin identification.

Group Number Group Definition

1 Flavorant
2 HPHC
3 Leachable
4 Reaction Product
5 Unidentified/Unrationalized Chemical Constituent
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Figure 2. Example of proposed chemical pathway rationalizing the formation of a reaction product,
2,3-dihydroxypropyl benzoate.

In line with the previously published work and in line with recommendations from
the FDA in the final rule on premarket tobacco product applications for ENDS, intense and
non-intense puffing parameters were used to generate aerosols from the JUUL system as
previously described (Table 2) [39,61]. Puffing count was determined from an end-of-life
(EOL) study. EOL is the total number of machine puffs required for the depletion of a JUUL
pod. Similar to the approach by Belushkin et al. [62], puff count was set to achieve 85–90%
of total aerosol yield for both puffing regimens.

Table 2. Parameters of aerosolization.

Group Puff Volume (mL) Duration (s) Puff Interval (s) Puff Count

Me3
intense 110 6 30 180

non-intense 55 3 30 330

Me5
intense 110 6 30 210

non-intense 55 3 30 340

3. Results

All chemical constituents from LC–HRMS with a p-value less than 0.05 [63] were
reported. As reported previously, for GC–MS NTA results, all chemical constituents
determined to be different from the control were reported [39,55]. Due to their high
concentrations—making amount estimation unreliable—and because these compounds
were reported by Chen et al. [56], nicotine, PG, VG, and benzoic acid amounts are not
reported here. Quantitative values for these major constituents can be found in Chen
et al. [56]. Nornicotine, beta nicotyrine, menthol, myosmine, and diethylene glycol, which
were detected in the NTA, are not reported because they were quantitated and published in
a separate study [56]. As glycidol is known to form from thermal degradation of glycerol
under GC inlet temperatures of 260 ◦C [64], and as this compound was reported using
targeted methods [56], it has been excluded from the NTA results. For a complete list of all
detected compounds see Supplemental Tables S4–S11.
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3.1. Menthol 3.0% Nicotine (Me3)

In total, 74 chemical constituents were detected in the Me3 aerosol collected using
intense puffing parameters, and 68 chemical constituents were detected using non-intense
puffing parameters. All detections for Me3 aerosol (using both puffing parameters) using
LC–HRMS and GC–MS are shown in Supplementary Tables S1–S4. Six chemical con-
stituents were detected in both GC-EI-MS- and LC-HRMS-based NTA methods, namely
hydroxyacetone, 1-(1-methyl-5-(pyridine-3-yl)-1H-pyrrol-2-yl) propan-2-one isomer 1 and
isomer 2, N,2,3-trimethyl-2-isopropylbutamide, caffeine, and (Z)-beta-damascone for both
intense and non-intense aerosol samples. Because GC–EI-MS is less susceptible to analyte-
specific ionization suppression or enhancement, when compared to LC-ESI-HRMS in
instances when both LC–HRMS and GC–MS detected the same chemical constituent, the
GC–MS-estimated amounts were used for the calculations in Tables 3 and 4, Tables 7 and 8.

Table 3. Summary of non-targeted analyses of Me3 aerosol constituents detected by GC and/or LC
NTA methods using the intense puffing regimen.

Group
Number Group Name Average Mass

(µg/g)
Average %

Aerosol Mass

Number of
Chemical

Constituents

% Number of
Chemical

Constituents

1 Flavorants 179.2 1.79 × 10−2 22 30
2 HPHCs 1.1 1.10 × 10−4 1 1
3 Leachables 49.1 4.91 × 10−3 8 11
4 Reaction Products 493.6 4.94 × 10−2 41 55
5 Not Rationalized 4.6 4.60 × 10−4 2 3

Total 7.28 × 102 7.28 × 10−2 74 100

Table 4. Summary of non-targeted analyses of Me3 aerosol constituents detected by GC and/or LC
NTA methods using the non-intense puffing regimen.

Group
Number Group Name Average Mass

(µg/g)
Average %

Aerosol Mass

Number of
Chemical

Constituents

% Number of
Chemical

Constituents

1 Flavorant 197 1.97 × 10−2 20 29.5
2 HPHCs 1.3 1.30 × 10−4 1 1.5
3 Leachables 36.9 3.69 × 10−3 6 9
4 Reaction Products 497 4.97 × 10−2 40 58.5
5 Not Rationalized 17 1.70 × 10−3 1 1.5

Total 7.49 × 102 7.49 × 10−2 68 100

Figure 3 presents a summary of the constituents in the Me3 intense and non-intense
aerosol detected by NTA on a percent basis for each group described in Table 1. In generat-
ing Figure 3, the higher concentration of all duplicate chemical constituents detected in both
puffing regimes was used, and any unique chemical constituents from each puffing regime
were reported. The five groups described in Table 1 represent about 0.07% of the total
aerosol mass. The remaining mass consisted of the major components PG, VG, nicotine,
benzoic acid, and the chemical constituents, some of which were HPHCs, which were
targeted and published by Chen et al. [56].

Table 3 presents a summary of the number of constituents and their mass percent
for the Me3 intense puffing regimen. Reaction products made up 55% of the number of
chemical constituents identified. However, reaction products contributed to less than one-
tenth of one percent (0.05%) of the total aerosol mass. Flavorants(excluding methanol)made
up 30% of the total number of chemical constituents and 0.018% of the aerosol. Leachables
contributed 10% of the total number of chemical constituents and a small percentage of the
total aerosol mass (0.0049%). HPHCs in intense Me3 aerosols were not detected by this NTA
methodology, but have been reported by our group using targeted analysis elsewhere [56].
There was much less chemical complexity detected for M3 aerosols vs. CC smoke. This is
mostly because many chemical constituents are byproducts which are formed during the



Separations 2022, 9, 367 6 of 17

combustion of tobacco plant materials and paper. Only 0.0005% of the total aerosol mass
was unable to be identified or rationalized (group 5).
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Table 4 presents a summary of the number of constituents and their mass percent for
the Me3 non-intense puffing regimen data. Reaction products made up 59% of the number
of chemical constituents identified. However, reaction products contributed to less than
one percent (0.05%) of the total aerosol mass. Flavorants made up about 30% of the total
number of chemical constituents and 0.019% of the aerosol mass. Leachables contributed
9% of the chemical constituents by count and a small percentage by mass (0.0037%). HPHCs
in Me3 non-intense aerosols were not detected by this NTA methodology, but have been
reported by our group using targeted analysis of Me3 elsewhere [56]. Only 0.0017% of the
total aerosol mass was unable to be identified or rationalized (group 5).

As summarized in Table 5, 53 common chemical constituents were determined using
the LC and/or GC NTA methods for each group under both puffing regimes’ chemical
constituent. There were 21 chemical constituents identified only in the intense puffing
regimen (30% of 74 chemical constituents), and there were 15 chemical constituents identi-
fied only in the non-intense puffing regimen (21% of 68 chemical constituents). Therefore,
the total number of chemical constituents in Me3 was determined to be 89 (53 common
identifications + 21 only detected in intense + 15 only detected in non-intense). For a list
of chemical constituents used to generate Table 5 organized by group, see Supplemental
Tables S11 and S12. Excluding those compounds targeted and published by Chen et al. [56]
and nicotine, benzoic acid, PG, and VG, the chemical constituents reported here make
up approximately 0.073% and 0.075% of the aerosol mass under intense and non-intense
puffing conditions, respectively.

The number of chemical constituents detected using the LC and/or GC NTA methods
from non-intense puffing was slightly lower than the number of chemical constituents detected
using the intense regimen. However, the average mass under non-intense puffing was higher
than the intense regimen. Approximately 25% of the mass was attributed to flavorants, making
this category represent the second highest percentage by mass and by number of chemical
constituents. Considering both puffing regimens, there were nine chemical constituents
categorized as leachable. Most of the chemical constituents determined to be reaction products
were associated with PG-, VG- or nicotine-related degradation.
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Table 5. Summary of non-targeted analyses of Me3 aerosol constituents detected by GC and/or LC
NTA methods using both puffing regimens.

Group Number Group Name
Intense Number

of Chemical
Constituents

Non-Intense
Number of
Chemical

Constituents

Number of
Common
Chemical

Constituents

Average Mass
(µg/g) Intense

Average Mass
(µg/g) Non-Intense

1 Flavorant 22 20 19 179.2 197
2 HPHCs 1 1 1 1.1 1.3
3 Leachables 8 6 5 49.1 36.9
4 Reaction Products 41 40 28 493.6 497
5 Not Rationalized 2 1 0 4.6 17

Total 74 68 53 7.28 × 102 7.49 × 102

A global compilation of the approximately 5000 chemical constituents in CC smoke
catalogued by Rodgman and Perfetti [6] was compared to the 89 chemical constituents
(53 common identifications + 21 unique identifications in intense + 15 unique identifications
in non-intense) detected in the Me3 aerosol. This comparison was carried out using CAS
numbers, which means that (1) unless a chemical constituent in the JUUL aerosols was fully
identified and had a CAS number, it was treated as if it were exclusive to JUUL aerosol,
and (2) we make no claim as to their concentration in CCs and only report their estimated
amount in the JUUL aerosols. Of the 89 chemical constituents detected in Me3, 34 were
common with CC smoke and 55 were exclusive to Me3 (Supplemental Table S9). Of the
55 chemical constituents, 24 were termed exclusive to Me3 due to lack of CAS number
and 13 were classified as nicotine degradants. Table 6 summarizes the total number and
aerosol mass represented by each group of the 55 exclusive chemical constituents in Me3
aerosol. The highest number of chemical constituents exclusive to Me3 aerosols were
reaction products. A complete list of all chemical constituents either common with or
exclusive from CC smoke is presented in Supplementary Table S9.

Table 6. Number of chemical constituents detected using the LC and/or GC NTA methods which are
exclusive to JUUL Me3 aerosol compared to cigarette smoke.

Group Name
Number of Chemical

Constituents Unique to Me3
Aerosol

% Average Aerosol Mass (µg/g)

Flavorant 7 9.94 × 10-03
HPHCs ND * ND *

Leachables 7 5.05 × 10−3

Reaction Products 38 4.34 × 10−2

Not Rationalized 3 2.16 × 10−3

Total 55 6.05 × 10−2

* ND = Not detected.

3.2. Menthol 5.0% Nicotine (Me5)

Eighty-three chemical constituents were detected using the LC and/or GC NTA
methods in intense Me5 aerosols and seventy-four were detected in non-intense aerosols.
The complete list of aerosol constituents detected in Me5 aerosols (intense and non-intense)
using LC–HRMS and GC–MS are shown in Supplementary Tables S5–S8.

Considering both intense and non-intense data, a comparison of LC–HRMS and GC–
MS results indicates that six chemical constituents were detected in both analyses, namely
hydroxyacetone, N,2,3-trimethyl-2-isopropylbutamide, caffeine, 1-(1-methyl-5-(pyridin-3-
yl)-1H-pyrrol-2-yl) propan-2-one isomer 1&2, and (Z)-beta-damascone.

Table 7 presents a summary of the number of constituents and their mass percent
for the Me5 intense puffing regimen. Reaction products made up 58% of the number of
chemical constituents identified. However, reaction products contributed to less than one-
tenth of one percent (0.07%) of the total aerosol mass. Flavorants—excluding methanol—
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made up 25% of the total number of chemical constituents and 0.02% of the aerosol.
Leachables contributed to 10% of the total number of chemical constituents and a small
percentage of the total aerosol mass (0.0036%). There was one HPHC (phenol) detected
for the intense Me5 aerosol using these NTA methods which was not reported by Chen
et al. [56]. Only 0.0007% of the total aerosol mass was placed into group 5. There was much
less chemical complexity detected for M3 aerosols vs. CC smoke. This is mostly because
many chemical constituents are byproducts which are formed during the combustion of
tobacco plant materials and paper. Only 0.0007% of the total aerosol mass was unable to be
identified or rationalized (group 5).

Table 7. Summary of non-targeted analyses in Me5 aerosol detected by GC and LC NTA methods
using the intense puffing regimen.

Group
Number Group Name Average Mass

(µg/g)
Average %

Aerosol Mass

Number of
Chemical

Constituents

% Number of
Chemical

Constituents

1 Flavorants 204.2 2.04 × 10−2 21 25
2 HPHCs 1.9 1.90 × 10−4 1 1
3 Leachables 35.5 3.55 × 10−3 8 10
4 Reaction Products 709.1 7.09 × 10−2 49 58
5 Not Rationalized 7 7.00 × 10−4 4 6

Total 9.58 × 102 9.58 × 10−2 83 100

Table 8 presents a summary of the number of constituents and their mass percent
for Me5 non-intense puffing regimen data. Reaction products contributed to 64% of the
number of chemical constituents identified. However, reaction products contribute less
than one percent (0.06%) of the total aerosol mass. Flavorants contributed to about 25%
of the total number of chemical constituents and 0.018% of the aerosol mass. Leachables
contributed to 5% of the chemical constituents by count and a small percentage by mass
(0.0015%). There was one HPHC (phenol) detected for the non-intense Me5 aerosol using
these NTA methods. Only 0.0001% of the total aerosol mass was placed into group 5.

Table 8. Summary of non-targeted analyses in Me5 aerosol detected by GC and LC NTA methods
using the non-intense puffing regimen.

Group
Number Group Name Average Mass

(µg/g)
Average %

Aerosol Mass

Number of
Chemical

Constituents

% Number of
Chemical

Constituents

1 Flavorants 184.4 1.84 × 10−2 22 29
2 HPHCs 1.6 1.60 × 10−4 1 1
3 Leachables 15.2 1.52 × 10−3 3 5
4 Reaction Products 620.7 6.21 × 10−2 48 64
5 Not Rationalized 1.3 1.30 × 10−4 1 1

Total 8.23 × 102 8.23 × 10−2 75 100

Figure 4 presents a summary of the constituents in the intense and non-intense Me5
aerosol detected by NTA on a percent basis for each group described in Table 1. In gener-
ating Figure 3, the higher concentration of all duplicate chemical constituents detected in
both puffing regimes was used and any unique chemical constituents from each puffing
regime were reported. The five groups described in Table 1 represent about 0.1% of the total
aerosol mass. The remainder consisted of the major components PG, VG, nicotine, benzoic
acid, and the chemical constituents, some of which were HPHCs, which were targeted and
published by Chen et al. [56].
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As summarized in Table 9, a comparison of intense and non-intense puffing shows the
effect of puffing regime on the generation of chemical constituents not reported by Chen
et al. [56]. A total of 83 chemical constituents were identified using the LC and/or GC NTA
methods in the intense aerosol data, while fewer (75) constituents were identified in the non-
intense aerosol data. The decrease in the number of chemical constituents correlates with a
decrease in the total mass of chemical constituents identified in the NTA, 957.7 µg/g versus
823.2 µg/g, in the intense versus non-intense aerosol results. A decrease in the generation
of reaction products, which includes unknown nicotine-related chemical constituents,
accounts for the reduction in the number and mass of the chemical constituents in the non-
intense compared to the intense puffing regime. Sixty-two common chemical constituents
were determined for each group under both puffing regimes’ chemical constituents. There
were 21 unique identifications (25% of 83 chemical constituents) for intense and 13 unique
identifications (17% of 75 chemical constituents) for non-intense aerosol data. Therefore,
the total number of chemical constituents in Me5% at T = 0 was determined to be 97 (61
common identifications + 22 unique identifications in intense + 14 unique identifications
in non-intense). For a list of chemical constituents detected in each analysis, see the
Supplemental Materials.

In summary, the chemical constituents detected using the LC and/or GC NTA meth-
ods accounted for less than 0.1% of the total aerosol mass in both intense and non-intense
aerosols, as determined by this NTA methodology. The total number of chemical con-
stituents detected using non-intense collections was lower than that of the intense col-
lections. Most of the mass detected was comprised of flavorants and reaction products.
Additionally, the majority of reaction products were involved in either PG-, VG-, or nicotine-
related degradation. There were four chemical constituents categorized as leachable under
either puffing regimen. The small number of remaining chemical constituents could not be
placed into one of these categories.
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Table 9. Summary of non-targeted analyses of Me5 aerosol constituents detected by GC and/or LC
NTA methods using both puffing regimens.

Group Number Group Name
Intense Number

of Chemical
Constituents

Non-Intense
Number of
Chemical

Constituents

Number of
Common
Chemical

Constituents

Average Mass
(µg/g) Intense

Average Mass
(µg/g) Non-Intense

1 Flavorants 21 22 20 204.2 184.4
2 HPHCs 1 1 1 1.9 1.6
3 Leachables 8 3 2 35.5 15.2
4 Reaction Products 49 48 38 709.1 620.7
5 Not Rationalized 4 1 0 7 1.3

Total 83 75 61 9.5 × 102 8.23 × 102

As with Me3, the 97 chemical constituents detected using the LC and/or GC NTA meth-
ods in the aerosol of Me5 were compared to the approximate 5000 chemical constituents in
CC smoke catalogued by Rodgman and Perfetti. This comparison was performed using
CAS numbers, which means that (1) unless a chemical constituent from the NTA was fully
identified, it was labeled to be exclusive to JUUL aerosol, and (2) we make no claim as to
their concentration in CCs and only report their estimated amount in the JUUL aerosols.
Of the 97 chemical constituents detected in Me5, 36 were found to be in common with
cigarette smoke and 61 were labeled as exclusive to Me5. Table 10 summarizes the to-
tal number represented by each group of the 61 exclusive chemical constituents in Me5
aerosol (Supplemental Table S10). Of the 43 reaction products exclusive to JUUL aerosols,
22 were nicotine degradants and 18 were without known structures. A complete list of all
chemical constituents either in common with or exclusive from CC smoke is presented in
Supplemental Tables S12 and S13.

Table 10. Chemical constituents exclusive to JUUL Me5 aerosol compared to cigarette smoke.

Group Name Intense Number of Chemical
Constituents

% Average Aerosol Mass
(µg/g)

Flavorants 7 9.06 × 10−3

HPHCs 0 0
Leachables 7 3.32 × 10−3

Reaction Products 43 5.67 × 10−2

Not Rationalized 4 7.20 × 10−4

61 6.98 × 10−2

4. Discussion

Overall, the two non-targeted methods employed in these experiments detected
89 (Me3) and 97 (Me5) chemical constituents (excluding PG, VG, nicotine, benzoic acid,
and the chemical constituents which were targeted and published by Chen et al. [56]).
Flavorants contributed approximately 25%, and reaction products, including nicotine-
related degradants, contributed about 75% of the aerosol mass detected. A small amount
of remaining mass consisted of E&L, HPHCs, and group 5 chemical constituents. Overall,
the total mass of the five groups accounted for less than 0.1% of the total aerosol mass,
with flavorants and reaction being higher in number mass. More chemical constituents
were present in the 5.0% nicotine concentration product than the 3.0% nicotine product,
and more chemical constituents were identified in aerosols generated with the intense
puffing regimen than the non-intense puffing regimen. There was, however, very little
distinction between the various groups. The consistency observed across nicotine strengths
and puffing parameters in the JUUL system aerosol is in part due to the temperature
regulation [65,66], which makes performing a detailed and reproducible characterization
of the aerosols achievable.
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In a collaborative study to address the effectiveness of various approaches to non-
targeted methods, the US EPA [67] performed a study using 1269 unique substances from
EPA’s ToxCast library. Samples spiked with these substances were sent to a cross-section of
government, university and private labs to be tested using various NTA methods, namely
GC-EI-MS, LC-MS with positive mode (+ESI) and LC-MS with negative mode (−ESI). The
outcome of these studies showed that 195 of the chemical constituents were not detected
by any methods and only 75 were detected exclusively by LC-MS −ESI. The other 999
chemical constituents were detected by either LC-MS +ESI or GC-EI-MS. This study strongly
indicates that the two most robust non-targeted approaches are GC-EI-MS and LC-MS
(+ESI). Resultantly, we employed the two complimentary techniques of GC-EI-MS [55] and
LC-HRMS +ESI [39]. These techniques were developed to be orthogonal to each other in
order to detect the largest range of chemical constituents possible. The GC–MS method
uses a polar column for retention of volatile and polar chemical constituents [55]. The LC–
HRMS method uses a reversed-phase column for the retention of non/semi-polar chemical
constituents and is amenable to detection of larger-molecular-weight chemical constituents,
including extractable and leachable compounds (Figure 1). These approaches estimate the
amount of each chemical constituent detected by comparison to an internal standard in
a semi-quantitative fashion. As is the case with all methods, there are limitations with
these non-targeted methods, and not all chemical constituents present in the aerosol (e.g.,
metals and chemicals that require specialized detection approaches, such as carbonyls) are
detectable under these methods. For example, to cover a broad range of chemical properties,
the GC NTA method was developed to be complimentary to the LC NTA. Therefore, the
GC method employed a Stabilwax column. The use of a Stabilwax column precludes
the characterization of some low-molecular-weight, low-polarity compounds. One such
low-molecular-weight and non-polar compound, which is known to be present in these
JUUL aerosols but was not detected using these NTA methods, is formaldehyde. However,
formaldehyde has been quantified using targeted methods and these results have been
published as part of a separate study by Chen et al. [56]. Other such low-molecular-weight
and low-polarity compounds, such as 1,3-butadiene, benzene, acrolein, acetaldehyde, and
toluene, were not detected in the NTA analysis and correspondingly not detected in the
targeted work by Chen et al. [56], but have been detected in ENDS products not addressed
in this work.

A challenging aspect of NTA comes from defensibly and reliably distinguishing be-
tween background and sample-relevant peaks. This owes to the fact that relying only on
background subtraction to determine which chemical constituents are sample-relevant in
non-targeted analyses where molecular ions are monitored, as is the case for LC-HRMS
approaches [68], is not sufficient. In these cases, robust approaches are necessary to extract
the relevant information from the vast amount of data generated from non-targeted analy-
ses [69], and sample-relevant chemical constituents must be determined using advanced
approaches, such as multivariant techniques. This is necessary because chemical contami-
nants that are captured by blanks vary across data sets, which can lead to misassignment
as sample-relevant chemical constituents [68].

There is still significant debate about background subtraction and/or control differen-
tiation [39,70–72] and how it should or should not be applied to the NTA of ENDS aerosols.
It should be noted that background subtraction in GC-EI-MS analyses is substantially differ-
ent from background subtraction in LC-HRMS. In approaches where multi-ion spectra are
undergoing deconvolution, as is the case in GC-EI-MS, software packages use peak picking
algorithms (e.g., Mass Hunter) which require that a minimum number of associated ions in
the mass spectrum rise and fall in intensity and with the same retention times to form a
peak together. This alone eliminates many of the sources of false positives, which result
from several causes including instrument and random noise. These intermittent signals
often do not meet the deconvolution criteria for GC-EI-MS. However, for LC-HRMS +ESI,
when molecular parent ions are being measured under soft ionization conditions (e.g., LC-
HRMS), there is no deconvolution; the detection of a m/z alone is sufficient to be reported
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by the software. This is relevant because even without any sample being introduced to
a high-resolving-power mass spectrometer, there are hundreds (if not thousands) of ions
detected. This can be further complicated when work is performed in urban areas with high
levels of air pollution, where a wide range of chemicals, including chemicals that overlap
with the FDA’s HPHC list, are commonly found in ambient air [73,74]. Therefore, special
consideration was given to possible experimental artefacts often present in non-targeted
LC-HRMS data sets, many of which are introduced as part of the sample preparation
process itself [68]. Aerosol collection controls are necessary to identify which chemical
constituents arise from the ENDS aerosols as opposed to those derived from the sample
preparation process (e.g., pipette tips, vials, tubing, room air, etc.) or room air. Because of
this contamination from ambient air, the routine collection of puffing machine room air
blanks are needed to distinguish between collection artifacts and sample-related detections.

Erroneous detections are often reported when care is not taken to eliminate them in a
defensible manner. This contributes to the need for advanced data extraction techniques
when molecular ions are being monitored, such as in the case of LC-HRMS ESI. To address
these known challenges, differential analyses based on nine (n = 9) collection replicates
of each of the nicotine strengths (3.0% and 5.0%) and each collection condition (intense
and non-intense) were used to characterize chemical constituents differing from collection
blanks. This method relies on the application of statistical tools to extract the relevant
information from a large and highly complex dataset [67,68]. Due to the large number
of variables in non-targeted analyses relative to the number of samples, these tools are
imperative to avoid misinterpretation of instrument and collection artifacts as sample-
relevant chemical constituents [75]. LC–HRMS and GC-EI-MS data were collected and
processed according to previously reported methods [39,55]. An internal standard was used
to provide an estimation of the amount of each chemical constituent detected in these non-
targeted methods. However, these non-targeted methods are semi-quantitative. For non-
targeted methods, the addition of more internal standards, unless they are analogues (e.g.,
isotopologues) of the chemical constituent of interest, will not permit precise quantitation
of the chemical constituents detected. This is due to the fact that there are many factors that
impact chemical constituent ionization efficiency [76]. This is an important limitation of
NTA to be understood; otherwise, non-targeted data are at risk of being over-interpretated.

Low injection volumes are helpful in preserving peak shape and alleviating situations
where the analyte would be competing for ionization with the matrix [77]. This is especially
important in non-targeted methods where there is no matrix removal step in the sample
preparation. Low injection volume also allows a method to be applied to a range of
matrices, e.g., Virginia Tobacco- and Menthol-flavored aerosols. There is a balance to find in
non-targeted methods with respect to injection volume. Too large a volume will cause peak
broadening and instrument contamination, while too low a volume will reduce sensitivity.
In this LC-HRMS method, we found that our chosen 100 nL injection volume was suitable
for a wide range of e-liquids and aerosol flavor systems.

Evaluating aerosols from e-liquids with different flavor systems is important in gaining
a better understanding of the chemical composition from the resulting aerosol. Likewise,
measuring only chemical constituents that are found in cigarette smoke leaves a gap in
the assessment of ENDS aerosols [78,79]. Therefore, an important way to use non-targeted
data is to leverage them so that a global comparison can be performed; in this case, the
relevant comparison is against CC smoke. In addition to the specific links between HPHCs
and tobacco related diseases, it is known that there are additional risks related to the
chemical complexity of CC smoke [19]. Furthermore, it is well established that the chemical
complexity of CC smoke makes it difficult to determine the active constituents responsible
for all the tobacco-related health risks of smoking. An important component of the negative
health effects of CC smoke is related to the combined effect of these chemical constituents
through multiple mechanisms rather than just the effects of a single smoke constituent,
indicating that the chemical complexity by itself contributes to the harmfulness of cigarette
smoke [80]. Therefore, in addition to holistic evaluation for reasons associated with the
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flavor components (in this case menthol), understanding the chemical complexity of JUUL
aerosols in relation to CC smoke may aid in determining the relative potential health risks
of using JUUL as an alternative to smoking for smokers who have not yet quit. Given
that (1) JUUL aerosols are fundamentally different to cigarette smoke in part because of
the difference in the regulated electronic heating of the JUUL device [65,81–83] versus the
high-temperature combustion of a CC, and (2) there is no tobacco plant material—excluding
tobacco-derived [pharmaceutical grade] nicotine—nor paper in JUUL products, much less
chemical complexity is observed.

The comparison of aerosol constituents detected using NTA to the list of chemical con-
stituents in cigarette smoke catalogued by Perfetti and Rodgman [6] resulted in 55 unique
identifications out of 89 total chemical constituents in Me3 and 61/97 in Me5. Although the
NTA methods applied here were developed to be effective and comprehensive based on the
results of the EPA collaborative study to evaluate non-targeted method performance [67],
no methodology can detect all chemicals. Nevertheless, based on the results of the non-
targeted methods used in this study, it was determined that the JUUL Menthol aerosols
studied here are approximately 50-fold less complex when compared to cigarette smoke.
The present study helps construct a more complete appraisal of the full chemical space of
JUUL Menthol aerosols to complement the previous non-targeted and targeted analyses of
JUUL Virginia Tobacco aerosols [56].
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