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Abstract: This study aims to screen and characterize the protective effect of polysaccharides from
Portulaca oleracea L. (POP) against H2O2-stimulated osteoblast apoptosis in vivo and in vitro. The
enzymes viscozyme, celluclast, α-amylase, and β-glucanase were used to extract POPs. Among all
enzyme-assisted POPs, the first participating fraction of viscozyme extract POP (VPOP1) exhibited
the highest antioxidant activity. Hoechst 33342 and acridine orange/ethidium bromide staining and
flow cytometry of MC3T3 cells revealed that VPOP1 inhibited apoptosis in a dose-dependent manner.
Moreover, VPOP1 increased the expression levels of heme oxygenase-1 (HO-1) and NADPH quinine
oxidoreductase 1 (NQO1) and decreased the expression levels of nuclear factor (erythroid-derived
2)-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) in H2O2-induced cells compared
with their controls. The results of an in vivo experiment show that VPOP1 significantly reduced
reactive oxygen species generation and lipid peroxidation in zebrafish at 72 h post-fertilization and
promoted bone growth at 9 days post-fertilization. Furthermore, VPOP1 was identified via 1-phenyl-
3-methyl-5-pyrazolone derivatization as an acidic heteropolysaccharide comprising mannose and
possessing a molecular weight of approximately 7.6 kDa. Collectively, VPOP1 was selected as a
potential anti-osteoporotic functional food because of its protective activity against H2O2-induced
damage in vitro and in vivo.

Keywords: oxidative stress; osteoporosis; Portulaca oleracea L.; polysaccharide; viscozyme

1. Introduction

With the intensification of global aging, osteoporosis (OP) has gradually become an
international research hotspot [1]. OP is a systemic metabolic disease characterized by bone
mass reduction, bone microstructure destruction, and bone fragility increase [2]. Bone loss is
related to a lack of estrogen [3], and age-related OP is closely related to oxidative stress [4].
Bone growth and maintenance require mesenchymal stem cells (MSCs) for osteogenic
differentiation [5]. MSCs undergo metabolic switches such as reduced glycolysis and
increased mitochondrial respiration to ensure adequate energy supply for differentiation [6].
In cells, mitochondrial electron transport is the main mechanism for reactive oxygen
species (ROS) production [7]. Hence, an increase in mitochondrial metabolism is usually
accompanied by an increase in endogenous ROS. During normal metabolism, ROS can be
scavenged by antioxidants [8]. However, oxidative stress occurs when ROS production is
not counterbalanced by the antioxidant activity of cells [9]. Oxidative stress can decrease
osteoblast (OB) activity, induce OB apoptosis to accelerate bone flow, and promote osteoclast
(OC) differentiation to disrupt bone homeostasis [10]. The current treatment for OP is
estrogen therapy, but it has several non-skeletal adverse consequences [11]. Recent studies
have strongly recommended the use of extracts from natural products to prevent OP, as the
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antioxidant activities of these extracts have been reported to reduce oxidative damage to a
certain extent and improve the symptoms of OP [12].

With its tenacious vitality, Portulaca oleracea L. (POL) is distributed in tropical and
subtropical regions [13]. POL is an edible plant used as a folk medicine to treat a wide
range of ailments in several countries [14]. The major bioactive components of POL are
proteins, polysaccharides, flavonoids, alkaloids, and vitamins [15,16]. Conventional extrac-
tion techniques have reduced extraction yield due to compounds bound to the cell wall.
Various extraction strategies, such as enzyme-assisted extraction, have been employed
to maximize the extraction efficiency of bioactive macromolecules [17]. Enzyme-assisted
extraction releases intracellular components by disrupting plant cell walls. [18]. α-Amylase
can improve the liberation of non-extractable polyphenols and increase extract yield [19].
Enzymes serve several functions in the recovery of polysaccharides [20]. Hydrolysate of
viscozyme exerts high peroxide-free radical scavenging activity [21]. The internal sites of
the polysaccharide chain will be randomly attacked by cellulase to generate small oligosac-
charides of varied lengths. [22] Therefore, the embedded molecules are more easily released.
The enzyme-assisted degradation of cell walls increases the yield of polysaccharide extrac-
tion [23]. Moreover, polysaccharides from POL (POPs) can scavenge superoxide anion.
However, POL has many components and exerts complex pharmacological effects, and
its pharmacologic anti-osteoporotic mechanism has yet to be elucidated. Therefore, in
this study, the anti-osteoporotic activities of four enzyme-extracted POPs were screened
and characterized.

2. Materials and Methods
2.1. Polysaccharides Extracted from POL

Four different enzymes, including viscozyme, celluclast, α-amylase, and β-glucanase,
were employed for polysaccharide extraction. POL was purchased from a pharmacy
in Changchun, Jilin Province, China. POL was sun-dried and ground, then soaked in
petroleum ether for 24 h. The defatted powder was suspended in 95% ethanol for 24 h
to remove any pigment and small molecules. The ethanol was removed using a vacuum
evaporator. Subsequently, the dried powder was mixed with 1% enzyme and suspended
in deionized water at a ratio of 1:15 (g mL−1). In order to avoid the protein being highly
insoluble and hindering the release of biomolecules [24], various enzymes were selected to
obtain the optimum pH. The optimum pH of viscozyme and celluclast was 4.5, and that of
α-amylase and β-glucanase was 6.0. Therefore, the mixture was divided into four flasks, in
which the pH was adjusted to 4.5, 4.5, 6.0, and 6.0, respectively, by diluted HCl and NaOH.
Viscozyme- and celluclast-assisted aqueous extraction was agitated for 8 h at 50 ◦C, whereas
α-amylase- and β-glucanase-assisted aqueous extraction was agitated for 8 h at 60 ◦C. The
particles were removed using a large-scale filter. Four enzymes in the supernatants were de-
natured by incubating the mixture at 100 ◦C for 20 min. The supernatants were treated with
Sevag reagent to remove proteins [25], and then the collected supernatants were regarded
as crude POP. Step gradient alcohol precipitation was performed to obtain POPs [26]. The
crude POP was gradually precipitated by approximately 30%, 60%, 80%, and 90% ethanol,
and the four fractions were denoted as “POP1”, “POP2”, “POP3”, and “POP4”.

2.2. Survival Rate and ROS Detection

Mouse OB cell line MC3T3-E1 was purchased from the American Type Culture Col-
lection. Depending on the different degrees of influence on the cell state, the appropriate
concentration was screened and determined as the modeling concentration; POPs with
different concentrations were used to intervene in the damaged cells. A colorimetric 3-(4,5)-
dimethylthiahiazo(-z-y1)-2,5-diphenytetrazoliumromide (MTT; Solarbio, Beijing, China)
assay was carried out to detect cell viability in H2O2-stimulated MC3T3 cells [27]. A density
of 1 × 104 cells well−1 MC3T3 cells were seeded in 96-well plates. Upon reaching 80%
confluence, the cells were added to increasing concentrations (12.5–100 µg mL−1) of POPs,
and then treated with H2O2 for 24 h. Subsequently, each plate was added to 50 µL of PBS
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solution with 2 mg mL−1 of MTT. Following incubation for 3 h, the medium was gently
removed, and precipitate was dissolved in 200 µL of dimethyl sulfoxide. The absorbance
was obtained with a microplate reader at 540 nm. Cell survival rate was calculated as a
percentage of formazan absorption in the control cells.

Determination of intracellular ROS levels in MC3T3 cells was performed using a
DCFH-DA probe [28]. The cells seeding and sample treating were the same by cell viability
assay. After being treated with H2O2, the cells were treated with 10 µL of DCFH-DA
(0.5 mg mL−1) after 3 h of incubation. A fluorescence microscope was used to detect the
cell fluorescence intensity. Excitation and emission wavelength were operated at 485 nm
and 530 nm, respectively.

2.3. Hoechst 33342 and Acridine Orange/Ethidium Bromide Staining

Hoechst 33342 and acridine orange/ethidium bromide (AO/EB) staining are mor-
phological probes to reveal apoptotic changes in cells. A density of 1 × 105 cells mL−1

MC3T3 cells was pre-seeded in 12-well culture plates, and H2O2-induced cells were added
to increasing concentrations of POPs and incubated for 24 h. Controls were not treated
with POPs and H2O2. For Hoechst 33342 staining, each plate was added to 10 µL of
Hoechst 33342 (1 mg mL−1) solution for 10 min at room temperature in the dark. For acri-
dine orange/ethidium bromide (AO/EB) staining, 10 µL of AO/EB (100 µg mL−1) was added
to each well for 10 min at room temperature in the dark, and then washed with PBS three
times. The image was then captured under a fluorescence microscope (Nikon, Tokyo, Japan).

2.4. Flow Cytometry Analysis

MC3T3 cells were seeded at a density of 2 × 105 cells mL−1 in 6-well culture plates
and then added to indicated concentrations of POPs. Following a 24 h incubation, the
culture medium was rinsed by pre-cooled PBS. The cell pellet was suspended in 1× binding
buffer. The cells were continuously stained with PI and Annexin V-FITC (Becton Dickinson,
Frankly Lakes, NJ, USA) for 15 min in the dark. Samples were analyzed within 1 h after
staining. Cells were analyzed using a flow cytometer system (FlowSight, Merck Millipore,
Seattle, WA, USA) and data were analyzed using the IDEAS (FlowSight, Merck Millipore,
Seattle, WA, USA).

2.5. Western Blot Analysis

A density of 2 × 106 cells mL−1 MC3T3 cells was seeded in 6-well culture plates for
24 h incubation. The H2O2-induced MC3T3 cells were added to increasing concentrations
of POPs and then collected after 24 h. The cells were suspended and homogenized in lysis
buffer for 1 h. Then, the suspension was centrifuged to remove the pellet. A BCA kit (Sole-
bao, Beijing, China) was employed to detect protein content. Polyacrylamide gels (10%)
were loaded with 20 µg of protein from each sample treated with lysis buffer. Different
molecular weights of protein were separated by electrophoresis. The separated protein
bands were subsequently transferred onto a nitrocellulose membrane. Then, blocking
buffer blocked the membrane for 3 h at room temperature. The membrane was incu-
bated with primary antibodies at 4 ◦C for 8 h, followed by secondary antibodies at room
temperature for 3 h. All immunoblots were processed using the Chemiluminescence Sub-
strate Kit (Biosharp, Beijing, China) and visualized through chemiluminescence imaging
(Tanon 5200, Shanghai, China). Band intensities were measured using ImageJ software
(National Institutes of Health, Bethesda, MD, USA).

2.6. Analysis of Zebrafish Embryos

AB wild-type zebrafish (Danio rerio) were obtained from EzeRinka Biotechnology
Co., Ltd. (Nanjing, China). Zebrafish were incubated in a water tank at 28.5 ◦C with a
light/dark cycle of 14/10 h, and fed three times a day with live brine shrimp (Artemia).
Embryos were obtained from natural spawning. The embryos were collected and incubated
in E3 medium. The levels of H2O2-induced ROS and lipid peroxidation in the embryos
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were evaluated. Each group was randomly set with fifteen embryos into 6-well plates at
7 h post-fertilization (hpf). The embryos were added to concentrations of POPs followed
by H2O2 treatment. Fresh medium was added every 24 h until the third day. Fluorescent
probes, DCFH-DA and diphenyl-1-pyrenylphosphine, were used to detect ROS production
and lipid peroxidation, respectively. The microscopic fluorescence images of the embryos
were obtained under a fluorescence microscope (Nikon, Tokyo, Japan).

Each group was randomly set with fifty embryos into Petri dishes at 5 hpf. The
embryos were added to H2O2 and POPs at 7 hpf and collected at 72 hpf. The collected
embryos were homogenized with lysis buffer, and subsequently for Western blot analysis.

Bone development in the larval stage of zebrafish was visualized using the fluorescent
chromophore calcein. The embryos were added to increasing concentrations of POPs
and then incubated for 1 h. A fresh medium of H2O2 was added to each well containing
5-day post-fertilization (dpf) embryos. Fresh culture medium was added after every 24 h of
incubation and then transferred onto 24-well plates at 9 dpf. After adding calcein-containing
solution (2 mg mL−1), the embryos were incubated in the dark at room temperature for
5 min and then washed with E3 water until colorless. After zebrafish staining, images of
the embryos were obtained under a fluorescence microscope (Nikon, Tokyo, Japan).

2.7. Molecular Weight of POPs

High-performance liquid chromatography and gel permeation chromatography (HPLC-
GPC) were employed to determine the molecular weight (Mw) of POPs. Dextran standards
and POPs were dissolved in 0.7% sodium sulfate solution at a concentration of 10 mg mL−1

and analyzed on an LC-2030C 3D Series HPLC (Shimadzu Corporation, Kyoto, Japan)
system equipped with a RID (RID-20A) and a Sepex SRT SEC-100 column (7.8 × 300 mm,
5 µm). The column was maintained at 35 ◦C. The 0.7% sodium sulfate solution was used as
the mobile phase at a flow rate of 0.5 mL min−1. A total of 10 µL of sample was injected.
The Mw ranges of dextran standards are from 100 Da to 100,000 Da, analyzed by Agilent
Chem Station GPC Data Analysis Software (Rev. A.02.01, Agilent Technologies, Palo Alto,
CA, USA). The Mw of POPs was calculated and compared with that of dextran standards.

2.8. Monosaccharide Composition of POPs

The monosaccharide composition of POPs was determined using the HPLC method
of PMP [29]. Briefly, 2 mol L−1 trifluoroacetic acid (2 mL) was added to the polysaccharide
sample in a small ampoule, which was then kept in full nitrogen atmosphere for 8 h at
100 ◦C. The residue was mixed with 1 mL of methanol, then dried by nitrogen stream.
The above procedure was repeated five times. The dried residue dissolved in 10 mL of
distilled water. The aqueous solution of hydrolyzed polysaccharide or monosaccharide
standard mixture was mixed with 5 mL of 0.3 mol L−1 sodium hydroxide. The mixture
was treated with a 0.5 mol L−1 methanolic solution (6 mL) of PMP and well mixed. The
mixture was incubated at 70 ◦C for 1 h, then neutralized with 0.3 mol L−1 hydrochloric acid.
Extraction was performed three times with an equal volume of chloroform. The aqueous
solution was collected and allowed to stand overnight. Following filtration, the aqueous
solution was analyzed by HPLC instrument (Agilent1260, Agilent Technologies, Palo Alto,
CA, USA) equipped with a Diamonsil C18 analytical column (250 × 4.6 mm, 5 µm). The
PMP derivatives were eluted with mobile phases A and B at a flow rate of 0.9 mL min−1. A
total of 10 µL of sample was injected. Mobile phase A contained phosphate buffer (pH 6.8)
and acetonitrile in a ratio of 85:15 (v/v, %). Mobile phase B contained PBS (pH 6.8) and
acetonitrile in a ratio of 60:40 (v/v, %). The column was maintained at 35 ◦C, and UV
absorbance was set up at 250 nm. A linear gradient was used as follows: 0–10 min, 8% A/B;
10–40 min, 8–13% A/B; 40–51 min, 13–20% A/B; 51–52 min, 0% A/B; and 52–60 min, 0% B.
The monosaccharide composition of POPs was compared with standards.

Standard monosaccharides (mannose, glucuronic acid, fucose, arabinose, xylose, galac-
tose, galacturonic acid, rhamnose, and glucose) and dextran standards (1000, 5000, 12,000,
and 150,000 Da) were purchased from Sigma-Aldrich Co., St Louis, MO, USA.
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2.9. Statistical Analysis

Experiments in this study were performed in triplicate. Data are expressed as
mean ± standard deviation (SE), and statistical analysis was performed using Excel and
Origin 8.0 software. Means in GraphPad prism 5 were subjected to one-way ANOVA.
Means of parameters were analyzed using Student’s t-test. * p < 0.05, ** p < 0.01, and
*** p < 0.001 were regarded as significant differences.

3. Results
3.1. Separation and Protective Effect of POPs

POPs extracted using the enzymes viscozyme, celluclast, α-amylase, and β-glucanase
were denoted as “VPOP”, “CPOP”, “α-POP”, and “β-POP”, respectively. Fourteen dif-
ferent POPs were extracted, including 30% ethanol-precipitated polysaccharides (VPOP1,
α-POP1, and CPOP1), 60% ethanol-precipitated polysaccharides (VPOP2, α-POP2, CPOP2,
and β-POP2), 80% ethanol-precipitated polysaccharides (VPOP3, α-POP3, and CPOP3),
and 90% ethanol-precipitated polysaccharides (VPOP4, α-POP4, CPOP4, and β-POP4).
The yields of viscozyme-, celluclast-, α-amylase-, and β-glucanase-assisted extract were
12.15 ± 1.31%, 25.35 ± 1.69%, 13.78 ± 1.78%, and 11.64 ± 0.96%, respectively. The yields
obtained from step gradient ethanol precipitation were inversely related to fractions. For
instance, the first fraction of VPOP1 gave the highest yield, which was 14.42%.

The results show that 0.4 mM and 0.5 mM H2O2 significantly decreased cell viability
compared with the blank group (Figure 1a) and increased cellular ROS levels (Figure 1b).
H2O2 can cause acute oxidative damage and induce ROS overproduction. In addition,
0.4 mM H2O2 was selected as the final concentration for simulating oxidative stress. The
four enzyme-assisted extracted polysaccharides improved cell viability in a dose-dependent
manner. Initially, different concentrations of POPs were added to the cells for evaluating
the cytotoxicity of POPs using an MTT assay (Figure 1c). Cytotoxicity screening showed
that 14 fractions had survival rates above 80% at the indicated concentration. Hence, these
concentrations, ranging from 12.5 µg mL−1 to 100 µg mL−1, were selected for further inves-
tigation. VPOP1, VPOP2, β-POP2, and α-POP3 improved cell viability to varying degrees
compared with the model group (Figure 1d) and significantly decreased intracellular ROS
levels (Figure 1e). Among all extracts, VPOP1 showed the strongest protective effect on
H2O2-induced MC3T3 cells.

3.2. Apoptotic Morphology of MC3T3 Cells

Hoechst 33342, a blue fluorescent dye, enters normal cell membranes in small amounts,
causing them to stain a low blue color. For apoptotic cells, Hoechst 33342 entered apoptotic
cells more than normal cells. Hence, the fluorescence intensity in apoptotic cells was
stronger than that in normal cells. As shown in Figure 2a, the control group showed an
intact nuclear morphology, whereas apoptotic body formation was clearly identified in the
H2O2-treated MC3T3 cells. VPOP1 significantly inhibited the formation of apoptotic bodies,
and the inhibitory effect was stronger with the increase in the treatment concentration.
This indicated that VPOP1 could inhibit the formation of apoptotic bodies by remarkably
reducing the total cellular ROS levels.

AO/EB staining was performed to characterize cell morphology. As shown in Figure 2b,
fragmented green patches of early apoptotic cells were observed in the control, H2O2-
treated, and VPOP1 groups. The control group showed a large number of viable cells with
green homogeneous nuclei, whereas apoptotic body formation was clearly identified in
the H2O2-treated group. Apoptotic bodies (necrotic cells) appeared homogenously red
and showed damaged cytoplasmic membranes. In addition, late apoptotic cells with green
and orange or orange particulate matter were observed in the model group and the low-
concentration VPOP1 group. Furthermore, VPOP1 remarkably reduced the formation of
apoptotic bodies in a dose-dependent manner.
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Figure 1. Protective effect against H2O2−induced damage in MC3T3 cells of POPs. Compared with
the control group, the viability of cells damaged by different concentrations of H2O2 (a) and the effect
of different concentrations of H2O2 on the ROS level of cells (b). Cytotoxicity experiment of POPs
on MC3T3 cells (c). Compared with the model group, the effect of purslane polysaccharide on the
survival rate of damaged cells (d) and the effect on the level of ROS in damaged cells (e). Graphical
representations are means ± SE based on three replications. * p < 0.05, ** p < 0.01 and *** p < 0.001
indicate that the values were significantly different from those for the control or H2O2−treated group.
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Figure 2. Protective effect of VPOP1 on apoptotic body formation induced by H2O2 in MC3T3 cells.
Apoptotic body formation was observed using a fluorescence microscope after Hoechst 33342 staining
(a) and acridine orange/ethidium bromide (AO/EtBr) staining (b) after 48 h incubation. Arrows
point to apoptotic bodies, which decreased with increasing concentration of VPOP1. Flow cytometry
analysis of VPOP1 on the nuclear morphology in MC3T3 cells. Cells were stained with propidium
iodide and Annexin V−FITC (c). Experiments were performed in triplicate and the data are expressed
as the mean ± SE. * p < 0.05 and ** p < 0.01 were considered as significant compared to the control.

The apoptosis of cells treated with increasing concentrations (25–100 µg mL−1) of
VPOP1 was detected using flow cytometry to further evaluate the protective effect of
VPOP1 on H2O2-induced MC3T3 apoptosis. As shown in Figure 2c, the occurrence of
events in the early apoptotic cells (the lower right quadrant R4) and late apoptotic cells (the
upper right quadrant R5) markedly decreased with increasing VPOP1 concentration. These
results are consistent with the cell staining data presented above.
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3.3. VPOP1 against Oxidative Stress via the Nrf2/Keap1 Pathway

The nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated
protein 1 (Keap1) signaling pathway is the direct downstream pathway of ROS and reg-
ulates the transcription of ARE-dependent genes to maintain cellular redox homeostasis.
As shown in Figure 3a, the expression of Nrf2 and Keap1 was inhibited during H2O2-
induced oxidative stress. However, the expression levels of these proteins significantly
increased after treatment with increasing concentrations (25–100 µg mL−1) of VPOP1.
Heme oxygenase-1 (HO-1) and NADPH quinine oxidoreductase 1 (NQO1) are key genes in
the Nrf2/ARE pathway. The expression levels of NQO1 and HO-1 significantly increased
in the H2O2-induced group but dose-dependently decreased in the VPOP1 group.
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Figure 3. Protective effects of VPOP1 against oxidative stress via the Nrf2−Keap1 pathway. Western
blot analyses of MC3T3 cells for measuring the expression of Nrf2, Keap1, HO−1and NQO1 (a).
Western blot analysis of Keap1, HO−1 and NQO1 in the tissues of H2O2−induced zebrafish treated
with the different concentrations of VPOP1 for 72 h and untreated controls (b). The “+” indicates
that MC3T3 cells or zebrafish embryos were H2O2−induced, while the “-” indicates that the samples
were not treated with VPOP1 or H2O2. Experiments were performed in triplicate and the data are
expressed as the mean ± SE. * p < 0.05, ** p < 0.01 and *** p < 0.001 indicate that the values were
significantly different from those for the control or H2O2−treated group.

The Nrf2/Keap1 system is not only present in mammals but also in zebrafish with
similar functions. The optimal H2O2 concentration in zebrafish was selected as 3 mM.
As shown in Figure 3b, declined expression of Keap1 and elevated expression of HO-1
and NQO1 proteins were found in the H2O2-exposed groups compared with the control.
However, the protein expression in the VPOP1 group was consistent with that in the control
group. These results show that VPOP1 can resist apoptosis by regulating the Nrf2-Keap1
pathway to exert an anti-osteoporotic effect.



Separations 2022, 9, 128 9 of 15

3.4. Protective Effect of VPOP1 against H2O2-Treated Zebrafish Embryonic (72 hpf) and Larvae (9 dpf)

As shown in Figure 4a,b, high ROS and lipid peroxidation levels were observed in
the H2O2-exposed embryos compared with the control. However, the ROS production
and lipid peroxidation levels in the larvae significantly decreased following treatment
with VPOP1 prior to H2O2 treatment. Treatment of the zebrafish embryos with VPOP1
inhibited ROS production and lipid peroxidation in a concentration-dependent manner.
These results indicate that VPOP1 markedly decreased oxidative stress in the H2O2-exposed
zebrafish embryos.

Zebrafish embryos of 9 dpf were immersed in a calcein solution and observed under a
fluorescence microscope (Nikon, Tokyo, Japan) to test whether VPOP1 and H2O2 could
affect the bone structure of zebrafish embryos. The vertebrae of the H2O2-exposed zebrafish
embryos were clearly narrower and had lower fluorescence intensity than those of the
controls (Figure 4c). Fluorescence intensity increased in the VPOP1-treated group compared
with the H2O2-treated group. The results demonstrate that H2O2 exposure inhibited bone
growth and development. Moreover, treatment with different concentrations of VPOP1
ameliorated the situation in a concentration-dependent manner.

3.5. Chemical Composition of VPOP1

The macromolecular characteristics of VPOP1 were determined using HPLC-GPC
with an Mw of approximately 7.6 kDa (40.0236%) and a low polydispersity index (Table 1).
The Mw range of VPOP1 accounted for 21.4236% in the low-Mw polysaccharide standard
(Mw ≈ 492) and for 27.6988% in the high-Mw polysaccharide standard (Mw ≈ 62526).

Table 1. Molecular weight distribution of VPOP1.

Mw Mn Composition (%) PDI (Mw/Mn)

62,526 40,342 27.6988 1.5499
7655 7363 40.0236 1.0397
3644 3420 10.2537 1.0655
1533 1525 0.6003 1.0052
492 373 21.4236 1.3190

Mw: weight−average molecular weights; Mn: number−average molecular weights; Composition: the proportion
of molecular weight (%).

The monosaccharide standards and the PMP-derivatized VPOP1 were analyzed using
HPLC. The derivatives of mannose, rhamnose, glucuronic acid, galacturonic acid, glu-
cose, xylose, galactose, arabinose, and fucose showed absorption peaks at 13.120, 16.678,
21.075, 25.187, 30.560, 34.898, 35.640, 38.224, and 42.174 min, respectively (Figure 5a). The
chromatographic peaks of standards indicated that VPOP1 comprised mannose, rham-
nose, galacturonic acid, galactose, and arabinose (Figure 5b), with the substance ratio of
1:0.219:0.403:0.185:0.233, respectively (Table 2).

Table 2. The ratio of the amount of monosaccharide in VPOP1.

Monosaccharide A A′ m/(umol·L−1) R1/2

Mannose 9489.649 1195.765 42.670 1
Rhamnose 4989.372 2618.684 46.830 0.219

Galacturonic acid 10811.697 4052.162 35.590 0.403
Galactose 11670.812 5856.281 57.780 0.185
Arabinose 15805.226 5884.442 61.870 0.233

A: Monosaccharide peak area in mixed standard solution. A′: Monosaccharide peak area in the VPOP1. Results
are given as the R1/2 based on a formula: R1/2 = (A2/m2)/(A1/m1) × (A′1/A′2). For a specific element, 1 and 2
were considered the values of mannose and other polysaccharides, respectively.
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Figure 4. Protective effects of VPOP1 against the H2O2−induced zebrafish model. The microscopic
fluorescence images of the embryos 72 hpf and relative fluorescence intensities indicate the ROS levels
(a) and lipid peroxidation level (b) in the embryos stained with DCFH−DA and DPPP. Visualization
of calcified axial skeletal structures in developing zebrafish embryos. The microscopic fluorescence
images of the embryos at 9dpf and relative fluorescence intensities indicate the calcification initiation
site of the vertebrae stained with calcein (c). Experiments were carried out in triplicate, and the
results are represented as means ± SE. * p < 0.05, ** p < 0.01 and *** p < 0.001 indicate that the values
were significantly different from those for the control or H2O2−treated group.
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4. Discussion

The root cause of OP is the disruption of OB and OC homeostasis. ROS overproduction
triggers oxidative stress, which inhibits bone resorption. This process leads to the disruption
of homeostasis and bone remodeling. A multitude of studies reported that oxidative stress
is associated with the occurrence of OP [30], which may trigger the apoptosis, necrosis,
or autophagy of OB cells [31]. H2O2 diffuses across biological membranes and induces
the apoptosis of various types of cells [32], which eventually initiates or aggravates the
pathogenesis of OP. In the present study, treatment of OB with H2O2 reduced cell viability
with subsequent increases in intracellular ROS generation and apoptosis compared with the
controls. Increasing studies have shown that antioxidant phytochemicals confer protection
against H2O2-induced OB apoptosis [33]. Moreover, in agreement with previous reports, the
cytoprotective capabilities of POPs are primarily due to their anti-oxidative properties [13].
Therefore, the protective effects of POPs inhibiting OB apoptosis by ameliorating oxidative
stress were explored in the current study.

The available literature suggests that the master eukaryotic redox-active factor Nrf2
plays an essential role in the cellular defense against inflammatory and oxidative stress-
induced OP [34]. The amino-terminal Neh2 domain in the six functional Neh domains of
Nrf2 controls the binding of Keap1. Oxidative stress generated during H2O2 conditions
may switch on electrophiles and oxidants. Electrophiles can modify the reactive cysteines of
Keap1 and lead to Keap1 inactivation and Nrf2 stabilization [35]. However, Nrf2 is released
after dissociation from Keap1, and then enters the nucleus and binds to a consensus
sequence [36]. In normal organisms, Nrf2 binds to Keap1 and exists in the cytoplasm.
Under H2O2 induction, the body produces oxidative stress. The phosphorylation of Nrf2
or modification of the –SH group in Keap1 not only releases Nrf2 from Keap1, but also
promotes Nrf2 to enter the nucleus to bind Maf protein. After binding proteins, AREs
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are activated and promote the transcription of HO-1 and NQO-1 [37]. In addition, in
primary cells with high HO-1 expression, the expression of microRNAs and regulated
mRNAs changes, which can be associated with apoptosis-induced cell death [38]. This
study used MC3T3 cells to evaluate the antioxidant effect of POP on H2O2-induced cell
death. VPOP1 treatment not only increased cell viability but also reduced ROS production
in H2O2-induced MC3T3 cells. Staining and flow cytometry results show that VPOP1
regulated the apoptosis of MC3T3 cells in a dose-dependent manner. These phenomena
clearly exhibited their protective effects against oxidative damage. Furthermore, VPOP1
treatment notably enhanced Nrf2 transcriptional activity and thus further promoted Keap1
protein expression, which contributed to the suppression of apoptosis in MC3T3 cells.
Interestingly, HO-1 and NQO1 protein expression was significantly upregulated in the
H2O2-induced group compared with the control group. The H2O2-induced group showed
low expression of Nrf2 and Keap1 and high expression of HO-1 and NQO-1, which was
consistent with the above result. We conjecture that the antioxidant properties of VPOP1
inhibit the formation of electrophiles and promote the expression of Nrf2 and Keap1. In
addition, VPOP1 can reduce the binding of Nrf2 to ARE and the protein expression of HO-1
and NQO1.

In pharmacological studies, zebrafish is routinely used for screening in predictive
toxicology [39]. We also tested our hypothesis using zebrafish embryos as an in vivo
model system. The mRNA levels of genes for NQO1 and HO-1 increased, whereas Keap1
decreased in the treated groups compared with their controls. The increase in Keap1
protein levels in the VPOP1-treated fish confirmed its key regulatory role in H2O2-induced
oxidative stress. Furthermore, VPOP1 inhibits H2O2-induced ROS production and lipid
peroxidation in zebrafish. Lipid peroxidation is usually triggered by excess ROS, and
H2O2 can induce lipid peroxidation in cells [40]. Lipid peroxidation is a chain reaction
in which lipids react with free radicals, and lipid hydroperoxides and peroxy fatty acid
free radicals generated during this process attack different biomolecules. The attacked
biomacromolecules induce corresponding physicochemical changes, and eventually cause
damage [41]. VPOP1 showed a strong protective effect on ROS production and lipid
peroxidation in H2O2-treated zebrafish embryos. The larval-stage zebrafish were stained
with calcein to confirm whether VPOP1 can alleviate OP caused by oxidative damage. After
entering the zebrafish, calcein can bind to the calcified bone matrix in the bones, producing
strong green fluorescence. Therefore, calcein can be used to mark zebrafish’s osteogenic
bone structure, and it is the best stain for living zebrafish bone [42]. The present results
show that treatment with different concentrations of VPOP1 ameliorated the H2O2-exposed
inhibited bone growth and development in a concentration-dependent manner. These
results suggest that VPOP1 exerts a protective effect against oxidative-stress-induced OP.

In the process of cellulase-assisted polysaccharide extraction, the internal sites of
polysaccharide chains are attacked to generate small oligosaccharides with varied lengths.
Hence, the entrapped molecules are easily released, thereby increasing the yield [22]. Fur-
thermore, the high antioxidant activity of polysaccharides by viscozyme-assisted extraction
can be attributed to the polysaccharide chains containing more galactose sugars and man-
nose [21]. In our study, the polysaccharides obtained from POL using different enzymes
were characterized. Among four enzyme-assisted extractions, cellulase-assisted extraction
had the highest yield. The viscozyme-assisted POP extracts exhibited high antioxidant
activity. In addition, the conventional method for obtaining polysaccharides from plant
species is water extraction and alcohol precipitation, and step-type alcohol precipitation is
rarely used in the purification of polysaccharides [43]. Hence, in this study, the polysaccha-
rides of different fractions were extracted by step gradient ethanol precipitation. VPOP1
and VPOP2 with different MW distributions obtained by step gradient ethanol precipitation
showed higher activities than the other extracts. VPOP1 was an acidic heteropolysaccha-
ride comprising mannose. The composition of VPOP1 (Mw = 7.6 kDa) confirmed that
small-molecule polysaccharide fractions of POL can be developed as natural antioxidants
for the treatment of free-radical-related diseases [44].
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Experiments using MC3T3 cells and zebrafish embryos demonstrated the antioxidant
activity of POP. VPOP1 reduces H2O2-induced oxidative stress in MC3T3 and zebrafish
at concentrations ranging from 25 to 100 µg mL−1, thereby reducing apoptosis through
mitochondria-mediated apoptotic pathways. These effects are carried out by activating the
Nrf2/keap1 antioxidant pathway. The results show that POPs exerted protective effects and
inhibited OB apoptosis by ameliorating oxidative stress. However, future research should
conduct in-depth investigations to elucidate the causal relationship between oxidative
stress and OP.

5. Conclusions

Among four enzyme-assisted extractions, cellulase-assisted extraction had the highest
yield. VPOP1 with strong anti-osteoporosis activity was screened as an acidic heteropolysac-
charide comprising mannose. VPOP1 protected osteoblasts from oxidative damage in vivo
and in vitro by regulating the Nrf2-Keap1 pathway. Hence, low-Mw VPOP1 from POL can
be developed as a potential anti-osteoporotic functional food.
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