NATURAL FREQUENCIES OF BEAM-MASS SYSTEMS IN TRANSVERSE MOTION FOR DIFFERENT END CONDITIONS

H. R. Öz^{*} and E. Özkaya^{**}

*Department of Mechanical Engineering, University of Gaziantep, 27310 Gaziantep, Turkey. hroz@gantep.edu.tr **Department of Mechanical Engineering, Celal Bayar University, 45140 Muradiye, Manisa, Turkey. erdogan.ozkaya@bayar.edu.tr

Abstract-In this study, an Euler-Bernoulli type beam carrying masses at different locations is considered. Natural frequencies for transverse vibrations are investigated for different end conditions. Frequency equations are obtained for two and three mass cases. Analytical and numerical results are compared with each other. **Keywords-** beam vibrations, concentrated masses.

1. INTRODUCTION

Transverse vibrations of beam-mass systems have been investigated by many researchers. Approximate and exact analysis were used to calculate the natural frequencies. The effects of mass, rotary inertia and springs were investigated [1-7]. Gürgöze and Batan [8] considered the numerical solution of the transcendental frequency equation. The characteristic equation was obtained using Rayleigh-Ritz method [9] and free vibrations were analyzed using Laplace transform and Rayleigh-Ritz method [10]. Maurizi and Belles [11] compared two fundamental theories of beam vibrations. Chai and Low [12] investigated the natural frequencies of a beam with a mass near the beam's ends. Low et al. [13] found that the results of experiments and the theory did not match well for beams of large slenderness ratio for centre loaded beams. Hamdan and Abdel Latif [14] compared Rayleigh-Ritz, Galerkin, Finite Elements and Exact solutions and showed finite elements method was preferable due to numerical stability and accuracy and these methods had a reasonably good accuracy and convergence rate for small attached inertia values. Özkava et al. [15] analyzed nonlinear free and forced vibrations of a beam-mass system by considering five different sets of boundary conditions by considering the effects of the location and the magnitude of the mass on the natural frequencies. Different assumed shape functions to obtain the kinetic and potential energies of the three classical beams carrying a concentrated mass were presented [16,17]. Low et al. [18] presented both experimental and theoretical results using Rayleigh-Ritz procedure and showed that the correlation between theory and experiments was much improved when stretching effects were included. Auciello and Nole [19] determined the free vibration frequencies of a beam composed of two tapered beam sections with different physical characteristics with a mass at its end. Özkaya and Pakdemirli [20] obtained the frequencies for the clamped-clamped beam with mass and searched approximate solutions for free and forced non-linear vibrations using a perturbation method. The solutions were compared with the results of both analytical and artificial neural network method [21]. Naguleswaran [22] presented the frequency equations for all the combinations of the classical boundary conditions and for various magnitudes and positions of a single particle mass. Öz [23] and Özkaya [24] calculated the frequencies of a beam carrying mass using FEM and analytical methods,

and compared with other solutions. Turhan [25] considered the problem with a single mass for various classical end conditions using approximate methods and showed that resulting formulae can be put in reasonably simple forms in the special cases where the beam is symmetrically supported.

In this study, an Euler-Bernoulli type beam carrying masses on different locations is considered. Natural frequencies for transverse vibrations are investigated for different end conditions. Analytical and numerical results are compared with each other.

2. EQUATIONS OF MOTION

In this section, equations of motion for different cases will be derived. The Lagrangian of the system consisting of n masses can be written as follows

$$\pounds = \frac{1}{2} \sum_{m=0}^{n} \int_{x_{m}}^{x_{m+1}} \rho A \dot{w}_{m+1}^{*}^{2} dx^{*} + \frac{1}{2} \sum_{m=1}^{n} M_{m} \dot{w}_{m}^{*2} (x_{m}, t^{*}) - \frac{1}{2} \sum_{m=0}^{n} \int_{x_{m}}^{x_{m+1}} E I w_{m+1}^{*^{*}}^{2} dx^{*}, x_{0} = 0, \ x_{n+1} = L \ (1)$$

where *n* denotes number of concentrated masses, ρA is the mass per unit length of the beam, w_{m+1} is the displacement of the different portions of the beam which are separated by concentrated masses, M_m is the concentrated mass at location m, *EI* is the flexural rigidity of the beam, (\cdot) and ()' are derivatives with respect to time and spatial variables. The first two terms in equation (1) are the kinetic energies of the beam and concentrated masses respectively, the last term is the elastic energy due to bending of the beam.

Invoking Hamilton's principle

$$\delta \int_{t_1}^{t_2} \pounds dt^* = 0 \tag{2}$$

and substituting the Lagrangian from equation (1), performing the necessary algebra, we finally obtain the following set of linear differential equations

$$\rho A \ddot{w}_{m+1}^* + E I w_{m+1}^{*''} = 0 \qquad m = 0, 1, 2...n$$
(3)

In equation (3), the number of equations is n+1. The boundary conditions are as follows Simple-simple ends: $w_1^*(0,t^*) = 0$, $w_1^{*''}(0,t^*) = 0$, $w_{n+1}^*(L,t^*) = 0$, $w_{n+1}^{*''}(L,t^*) = 0$ (4)

Fixed-fixed ends:
$$w_1^*(0,t^*) = 0, \ w_1^{*'}(0,t^*) = 0, \ w_{n+1}^*(L,t^*) = 0, \ w_{n+1}^{*'}(L,t^*) = 0$$
 (5)

Simple-fixed ends:
$$w_1^*(0,t^*) = 0, \ w_1^{*'}(0,t^*) = 0, \ w_{n+1}^*(L,t^*) = 0, \ w_{n+1}^{*'}(L,t^*) = 0$$
 (6)

Fixed-free ends:
$$w_1^*(0,t^*) = 0$$
, $w_1^*(0,t^*) = 0$, $w_{n+1}^{*^*}(L,t^*) = 0$, $w_{n+1}^{*^*}(L,t^*) = 0$ (7)
General end conditions for masses are as follows

$$w_{p}^{*}(x_{p}^{*},t^{*}) = w_{p+1}^{*}(x_{p}^{*},t^{*}), \quad w_{p}^{*'}(x_{p}^{*},t^{*}) = w_{p+1}^{*'}(x_{p}^{*},t^{*}), \quad w_{p}^{*''}(x_{p}^{*},t^{*}) = w_{p+1}^{*''}(x_{p}^{*},t^{*}), \quad (8)$$

$$EIw_{p}^{*}(x_{p}^{*},t^{*}) - EIw_{p+1}^{*}(x_{p}^{*},t^{*}) - M_{p}\ddot{w}_{p}^{*}(x_{p}^{*},t^{*}) = 0, \quad p = 1,2,...n$$

Dimensionless parameters are introduced

$$x = \frac{x^{*}}{L}, \quad w_{p} = \frac{w_{p}^{*}}{L}, \quad \eta_{p} = \frac{x_{p}^{*}}{L}, \quad t = \frac{t^{*}}{L^{2}}\sqrt{\frac{EI}{\rho A}}, \quad \alpha_{p} = \frac{M_{p}}{\rho AL}$$
(9)

where α_p is the ratio of concentrated masses to the mass of the beam. R is the radius of inertia. Also $\eta_0 = 0$, $\eta_{n+1} = 1$. After inserting non-dimensional parameters, we obtain the equations of motion and boundary conditions for masses as follows

$$\ddot{w}_{m+1} + w_{m+1}^{iv} = 0$$
 m=0,1,2,...n (10)

$$w_{p}(\eta_{p},t) = w_{p+1}(\eta_{p},t), \quad w_{p}'(\eta_{p},t) = w_{p+1}'(\eta_{p},t), \quad w_{p}''(\eta_{p},t) = w_{p+1}''(\eta_{p},t)$$
(11)

$$W_{p}(\eta_{p},t) - W_{p+1}(\eta_{p},t) - \alpha_{p} \ddot{W}_{p}(\eta_{p},t) = 0$$

One can assume

These equations will be solved analytically for different end conditions and masses in the next section.

3. ANALYTICAL SOLUTION

$$w_{m+1} = Y_{m+1}(x)e^{i\omega t} + cc$$
(12)

for the solution of equation (10), where cc stands for complex conjugate and ω is the natural frequency of the vibrations. Inserting equation (12) into equation (10),

$$Y_{m+1}^{i\nu} - \omega^2 Y_{m+1} = 0 \tag{13}$$

is obtained. The end conditions are as follows

- Simple-simple ends: $Y_1(0) = Y_1^{"}(0) = 0$, $Y_{n+1}(1) = Y_{n+1}^{"}(1) = 0$ (14)
- Fixed-fixed ends: (15)
- $Y_{1}(0) = Y'_{1}(0) = 0, \qquad Y_{n+1}(1) = Y'_{n+1}(1) = 0$ $Y_{1}(0) = Y''_{1}(0) = 0, \qquad Y_{n+1}(1) = Y'_{n+1}(1) = 0$ Simple-fixed ends: (16)
- $Y_1(0) = Y'_1(0) = 0$, $Y''_{n+1}(1) = Y''_{n+1}(1) = 0$ Fixed-free ends: (17)

The boundary conditions for concentrated masses are as follows

$$Y_{p}(\eta_{p}) = Y_{p+1}(\eta_{p}), \qquad Y_{p}'(\eta_{p}) = Y_{p+1}(\eta_{p}), \qquad Y_{p}''(\eta_{p}) = Y_{p+1}''(\eta_{p}),$$

$$Y_{p}'''(\eta_{p}) - Y_{p+1}''(\eta_{p}) - \alpha_{p}\omega^{2}Y_{p}(\eta_{p}) = 0$$
(18)

The solution for equation (13) yields the mode shapes

$$Y_{m+1} = C_{m+1,1}\sin(kx) + C_{m+1,2}\cos(kx) + C_{m+1,3}\sinh(kx) + C_{m+1,4}\cosh(kx)$$
(19)

where $k = \sqrt{\omega}$. If the assumed solution (19) is arranged using the end conditions in equations (13)-(17), then frequency equations are obtained for each end conditions. Frequency equations were given for a single mass (n=1) and for some end conditions in references [15, 20, 21, 23]. For a simple- simple beam with two concentrated masses, the frequency equation is

$$-2\alpha_{1}\alpha_{2}k^{2} \{\cos(1+\eta_{1}-\eta_{2})k - \cos(-1+\eta_{1}+\eta_{2})k\} \cosh(1+\eta_{1}-\eta_{2})k + \cosh(-1+\eta_{1}+\eta_{2})k \{2\alpha_{1}\alpha_{2}k^{2}\cos(1+\eta_{1}-\eta_{2})k - 2\alpha_{1}\alpha_{2}k^{2}\cos(-1+\eta_{1}+\eta_{2})k\} + \cosh(k-2\eta_{1}k)\{-\alpha_{1}\alpha_{2}k^{2}\cos(k+\alpha_{1}\alpha_{2}k^{2}\cos(k-2\eta_{2}k))\} + \cosh(k-2\eta_{2}k)\{-\alpha_{1}\alpha_{2}k^{2}\cos(k+\alpha_{1}\alpha_{2}k^{2}\cos(k-2\eta_{1}k))\} + k\cosh(k+2\alpha_{1}\alpha_{2}k^{2}\cos(k-\alpha_{1}\alpha_{2}k^{2}\cos(k-2\eta_{1}k)) - \alpha_{1}\alpha_{2}k\cos(k-2\eta_{2}k) + 4\alpha_{1}\sin k + 4\alpha_{2}\sin k\} + \sinh k \{4\alpha_{1}k\cos k + 4\alpha_{2}k\cos k - 4\alpha_{1}k\cos(k-2\eta_{1}k) - 4\alpha_{2}k\cos(k-2\eta_{2}k) + 16\sin k + \alpha_{1}\alpha_{2}k^{2}\sin(1+2\eta_{1}-2\eta_{2})k + \alpha_{1}\alpha_{2}k^{2}\sin(k-2\eta_{1}k) - \alpha_{1}\alpha_{2}k^{2}\sin(k-2\eta_{1}k) + \alpha_{1}\alpha_{2}k^{2}\sin(k-2\eta_{2}k)\} + \sin k\{-\alpha_{1}\alpha_{2}k^{2}\sinh(1+2\eta_{1}-2\eta_{2})k - \alpha_{1}\alpha_{2}k^{2}\sinh(k-2\eta_{1}k) + \alpha_{1}\alpha_{2}k^{2}\sinh(k-2\eta_{1}k) - 4\alpha_{2}k\cosh(k-2\eta_{1}k) + \alpha_{1}\alpha_{2}k^{2}\sinh(k-2\eta_{1}k) - 4\alpha_{2}k\cosh(k-2\eta_{2}k)\}$$

$$(20)$$

For a simple- fixed beam with two concentrated masses, the frequency equation is $-4\alpha_{2}k\cos k\cosh(k-2\eta_{2}k)+\alpha_{1}\alpha_{2}k^{2}\cosh(1+2\eta_{1}-2\eta_{2})k\sin k$ + $\sin(1+\eta_1-\eta_2)k\{2\alpha_1\alpha_2k^2\cosh(1+\eta_1-\eta_2)k-2\alpha_1\alpha_2k^2\cosh(-1+\eta_1+\eta_2)k\}$ + $\sin \eta_2 k \{-4\alpha_1 \alpha_2 k^2 \cosh(2\eta_1 - \eta_2)k + 4\alpha_1 \alpha_2 k^2 \cosh(\eta_2 k)\}$ + $\sin(-1+\eta_1+\eta_2)k\{2\alpha_1\alpha_2k^2\cosh(1+\eta_1-\eta_2)k-2\alpha_1\alpha_2k^2\cosh(-1+\eta_1+\eta_2)k\}$ $-\alpha_1\alpha_2k^2\cosh(k-2\eta_2k)\sin(k-2\eta_2k)+\cosh k\{4\alpha_1k\cos(k-2\eta_2k)+4\alpha_2k\cos(k-2\eta_2k)\}$ $-16\sin k - 2\alpha_1\alpha_2k^2\sin k - \alpha_1\alpha_2k^2\sin(1+2\eta_1-2\eta_2)k + 2\alpha_1\alpha_2k^2\sin(k-2\eta_2k)\}$ $-\alpha_1 k \cosh(k - 2\eta_1 k) \{4 \cos k + \alpha_2 k [-2 \sin k + \sin(k - 2\eta_2 k)]\} + \{16 - 2\alpha_1 \alpha_2 k^2\} \cos k \sinh k$ + $\sinh k \{\alpha_1 \alpha_2 k^2 \cos(1 + 2\eta_1 - 2\eta_2)k + 2\alpha_1 \alpha_2 k^2 \cos(k - 2\eta_1 k) + 4\alpha_1 k \sin(k - 2\eta_1 k)\}$ $+4\alpha_{2}k\sin(k-2\eta_{2}k)$ - $8k\sin k\sinh k(\eta_{1}+\eta_{2})$ + $16\alpha_{1}k\sin k\eta_{1}\sinh k\eta_{1}$ $-\alpha_1\alpha_2k^2\cos k \sinh(1+2\eta_1-2\eta_2)k + \sinh(1+\eta_1-\eta_2)k\{2\alpha_1\alpha_2k^2\cos(1+\eta_1-\eta_2)k\}$ $-2\alpha_1\alpha_2k^2\cos(-1+\eta_1+\eta_2)k$ } + sinh η_2k { $-4\alpha_1\alpha_2k^2\cos(2\eta_1-\eta_2)k + 4\alpha_1\alpha_2k^2\cos\eta_2k$ $+16\alpha_{1}k\sin\eta_{2}k$ + sinh(-1+ η_{1} + η_{2})k { $2\alpha_{1}\alpha_{2}k^{2}\cos(1+\eta_{1}-\eta_{2})k$ $-2\alpha_{1}\alpha_{2}k^{2}\cos(-1+\eta_{1}+\alpha_{2})k\}+\sinh(k-2\eta_{1}k)\{-\alpha_{1}\alpha_{2}k^{2}\cos(k-2\eta_{2}k)+4\alpha_{1}k\sin k\}$ + sinh $(k-2\eta_{k})$ {- $\alpha_{1}\alpha_{2}k^{2}$ cos $(k-2\eta_{1}k)$ + 2 $\alpha_{1}\alpha_{2}k^{2}$ cosk+4 $\alpha_{2}k$ sink} (21)

The symbolic calculations for 3 and more masses are very difficult. That's why numerical methods will be better for calculating frequencies of beams having 3 or more concentrated masses. The frequencies calculated with equations (20) and (21) and Finite Element Methods (FEM) [23] will be given in the next section.

4. NUMERICAL SOLUTIONS

Numerical values for the natural frequencies for the first five modes will be given in this section. In Tables 1-8, the first five frequencies are presented for simple-simple, fixed-fixed, simple-fixed and fixed-free boundary conditions. The frequencies are calculated for beams having two and three masses from equations (20) and (21) for analytical and from equations in reference [23] for FEM solutions. Analytical and FEM results are close to each other as shown in the tables. It is difficult to find the frequency

equations (determinants) for three and more concentrated mass systems, that's why the numerical solutions will be simpler and faster for these cases.

α_1, α_2	η_{l},η_{2}	ω_l	ω_l	ω_2	ω_2	ω_3	ω_3	ω_4	ω_4					
		Exact	FEM	Exact	FEM	Exact	FEM	Exact	FEM					
1,1	0.1,0.3	6.1182	6.1182	26.5060	26.5457	55.4118	55.4118	99.0970	99.0971					
1,1	0.5,0.7	4.7297	4.7314	25.1279	25.1281	60.8832	60.8833	141.289	141.2894					
1,10	0.1,0.3	2.5095	2.5094	26.0754	26.0754	51.0693	51.0693	94.5054	94.5055					
1,10	0.5,0.7	2.3875	2.3867	17.9251	17.9250	59.5695	59.5696	136.993	136.9939					
10,1	0.1,0.3	4.5140	4.5139	18.5627	18.5627	38.5780	38.5779	96.6938	96.6938					
10,1	0.5,0.7	2.0777	2.0771	22.0363	22.0366	54.6468	54.6468	140.866	140.8656					
10,10	0.1,0.3	2.3567	2.3569	16.2569	16.2569	29.9752	29.9753	92.8631	92.8630					
10,10	0.5,0.7	1.6769	1.6739	9.8120	9.8114	53.5165	53.5165	136.5350	136.5348					

Table 1. Natural frequencies of a simple-simple beam with two masses

Table 2. Natural frequencies of a simple-simple beam with three masses

~ ~ ~		6	0	0	6	6	0	6	6
$\alpha_1, \alpha_2, \alpha_3$	η_1, η_2, η_3	ω_l	ω_l	ω_2	ω_2	ω_3	ω_3	ω_4	ω_4
		Exact	FEM	Exact	FEM	Exact	FEM	Exact	FEM
1,1,1	0.1,0.4,0.8	5.1305	5.1303	18.9150	18.9150	40.6683	40.6683	101.949	101.9495
1,1,10	0.1,0.4,0.8	3.0114	3.0114	11.7311	11.7311	39.4456	39.4456	98.7132	98.7132
1,10,1	0.1,0.4,0.8	2.1818	2.1819	17.1861	17.1866	37.3559	37.3559	99.3226	99.3224
10,1,1	0.1,0.4,0.8	4.1416	4.1416	13.0206	13.0203	25.9585	25.9585	99.4389	99.4389
10,10,10	0.1,0.4,0.8	1.8639	1.8640	6.67504	6.6752	14.1606	14.1606	93.7742	93.7744
1,1,1	0.2,0.5,0.7	4.4113	4.4106	18.2005	18.2003	39.1895	39.1894	137.980	137.9803
1,1,10	0.2,0.5,0.7	2.3503	2.3519	13.4689	13.4689	35.0008	35.0009	134.77	134.7699
1,10,1	0.2,0.5,0.7	2.0482	2.0485	18.1854	18.1855	29.3781	29.3781	137.958	137.9582
10,1,1	0.2,0.5,0.7	2.8578	2.8574	10.7711	10.7708	35.3795	35.3794	137.274	137.2738
10,10,10	0.2,0.5,0.7	1.5399	1.5449	6.3834	6.3845	13.5785	13.5790	134.252	134.2524

Table 3. Natural frequencies of a fixed-fixed beam with two masses

α_1, α_2	η_1, η_2	ω_l	ω_l	ω_2	ω_2	ω_3	ω_3	ω_4	ω_4	
		Exact	FEM	Exact	FEM	Exact	FEM	Exact	FEM	
1,1	0.1,0.4	12.3268	12.3268	51.0975	51.0974	74.7559	74.7559	148.3840	148.3835	
1,1	0.5,0.8	11.2458	11.2456	35.0097	35.0094	78.6324	78.6324	170.7570	170.7589	
1,10	0.1,0.4	4.5635	4.5636	49.9799	49.9800	71.6430	71.6430	147.5960	147.5945	
1,10	0.5,0.8	7.4207	7.4212	18.7562	18.7561	76.8184	76.8184	166.6700	166.6706	
10,1	0.1,0.4	11.5266	11.5265	25.8796	25.8800	57.3110	57.3095	143.2110	143.2112	
10,1	0.5,0.8	4.2764	4.2760	33.2652	33.2653	75.4796	75.4797	169.0700	169.0685	
10,10	0.1,0.4	4.5279	4.5280	24.4679	24.4680	53.6742	53.6742	143.0190	143.0191	
10,10	0.5,0.8	4.0362	4.0361	12.4227	12.4216	74.1371	74.1370	164.5810	164.5808	

Table 4. Natural frequencies of a fixed-fixed beam with three masses

$\alpha_1, \alpha_2, \alpha_3$	η_1,η_2,η_3	ω_l	ω_l	ω_2	ω_2	W3	ω_3	ω_4	ω_4
		Exact	FEM	Exact	FEM	Exact	FEM	Exact	FEM
1,1,1	0.1,0.4,0.8	11.7922	11.7922	30.7215	30.7211	67.7822	67.7822	110.967	110.9672
1,1,10	0.1,0.4,0.8	7.63826	7.6387	17.1981	17.1982	66.3658	66.3658	105.849	105.8486
1,10,1	0.1,0.4,0.8	4.5411	4.5410	28.6699	28.6697	66.8277	66.8276	107.863	107.8624
10,1,1	0.1,0.4,0.8	11.1358	11.1357	24.0862	24.0862	34.1821	34.1820	105.604	105.6039
10,10,10	0.1,0.4,0.8	4.29001	4.2895	10.8779	10.8765	25.0046	25.0046	97.4892	97.4891
1,1,1	0.2,0.5,0.7	9.8651	9.8652	28.388	28.3881	47.2248	47.2249	170.693	170.6932
1,1,10	0.2,0.5,0.7	5.2111	5.2099	20.5397	20.5397	42.5816	42.5815	170.676	170.6761
1,10,1	0.2,0.5,0.7	4.1922	4.1927	27.9181	27.9180	39.0948	39.0947	168.932	168.9323
10,1,1	0.2,0.5,0.7	7.1547	7.1546	15.5748	15.5747	41.0639	41.0638	166.417	166.4168
10,10,10	0.2,0.5,0.7	3.4315	3.4318	9.9660	9.9659	15.9884	15.9884	164.119	164.1189

α_l, c	x_2	η_1, η_2	$\eta_2 = \begin{array}{c c} \omega_l & \omega_l \\ Exact & FEM \end{array}$		/ M	ω_2 Exact		ω ₂ FEM		Е	ω ₃ Exact		ω ₃ FEM		ω ₄ Exact		ω ₄ FEM		
1,1	(0.1.0.4	8.0	935	8.0936		35.2747		35.2	2747	60.4	4191	60.	0.4190 14		145.022		145.0226	
1,1	(0.5,0.8	8.4	048	8.404	48 3	32.2827		32.2	2825	58.	.0458 58		.0457 1:		153.725		153.7242	
1,10) (0.1,0.4	3.1	1113 3.1115		15	34.4019		34.4019		56.	0.0053 56		.0054	14	4.673	14	4.673	8
1,10) (0.5,0.8	6.2	6.2389 6.23		87	15.8460		15.8	15.8459		5.2028 55		2027	15	0.501	15	50.500	8
10,1	. (0.1,0.4	5.7	5.7707 5.77		07	18.4	104	18.4	4104	56.	7723	56.	7874	14	1.896	14	1.895	0
10,1	. (0.5,0.8	3.2	3.2258 3.22		56	31.7	872	31.7	7869	53.	3825	53.	.3825	15	3.661	15	53.661	8
10,1	0 (0.1,0.4	2.9	2.9428 2.9		27	13.3	775	13.3	3775	53.	3560	53.	.3560	14	1.793	14	11.794	5
10,1	0 (0.5,0.8	8 3.0904 3		3.09	06	11.9	999	12.0	0000	51.2	2347	51.	2347	15	0.3000	15	50.2992	2
		Table	6.1	Natur	al fi	reque	enci	ies of	`a si	imple-	fix	ed bea	am '	with t	hree	e mas	ses		
α_1, α_2	α_2, α_3	$\eta_1, \eta_2,$	η_3	ω_l		ω_l		ω_2		ω_2		W3		ω_3		ω_4		ω) ₄
			•	Exa	et	FEN	Л	Exa	ct	FEM	1	Exa	et	FEN	1	Exa	et	FE	Μ
1,1,1		0.1,0.4,	0.8	7.899	1 ′	7.899	1	27.30	65	27.306	64	42.50	47	42.504	16	107.40)10	107.4	006
1,1,1()	0.1,0.4,	0.8	6.168	37 (6.168	3	13.37	44	13.374	-2	39.73	42	39.734	13	101.79	990	101.7	'989
1,10,1	l	0.1,0.4,	0.8	3.100	8	3.101	1	27.07	39	27.074	10	38.59	89	38.599	90	105.09	960	105.0	1958
10,1,1	1	0.1,0.4,	0.8	5.719	3	5.719	1	17.23	49	17.234	.9	32.90	85	32.908	35	104.88	330	104.8	\$825
10,10	,10	0.1,0.4,	0.8	2.854	5 2	2.854	4	9.938	4	9.9385		14.56	16	14.56	16	96.966	50	96.9660	
1,1,1		0.2,0.5,	0.7	6.968	6	6.968	9	21.29	64	21.296	0	43.30	97	43.309	98	161.78	880	30 161.7883	
1,1,1()	0.2,0.5,	0.7	4.286	61 4	4.287		14.38	62	14.386	64	35.9369		35.9370		161.6720		161.6	5722
1,10,1 0.2,0		0.2,0.5,	0.7	3.128	4	3.128	0	20.66	20.6621		.1	34.4942		34.4943		159.3900		159.3	905
10,1,1 0.2		0.2,0.5,	0.7	3.865	9 .	3.866	0	14.1970		14.197	4	40.50	99	40.510)1	159.78	370	159.7	866
10,10	,10	0.2,0.5,	0.7	2.438		2.437	7	7.362	8	7.3629		14.83	12	14.83	12	156.98	330	156.9	828
F		Tab	le 7	'. Nat	ural	frec	uer	ncies	of a	fixed	-fre	e bear	m v	vith tv	/0 1	nasse	S		
	$\alpha_1, \alpha_2 \eta_1, \eta_2$		ω_l		ω_l		ω_2		ω_2		W3		W3		ω_4		ω_4		
_		0.1.0		Exact	FEM		Exact		I	FEM	E	xact	F	EM	<u>E</u> :	xact	<u>F</u>	EM	
_	<u>l,l</u>	0.1,0	.4 .	3.1802	3.	1810	13	.5261	13	.5262	50.	8105	50.	8105	74.	4.0103 74 2.0620 82		5163	
_	$\frac{1,1}{1,10}$	0.5,0	.8	1.8602		8389 0071	12	.//03 1021	12	1028	54. 40	34.		0890 5417	82.	$\frac{2.0020}{1.4882}$ 71		1 4882	
-	$\frac{1,10}{1,10}$	0.1,0	.4	0 7404	$\frac{1}{10}$	0024 7223	0.4	1158	0.4	1157	49.	50 9673 50 9674 79 7553		4002 7553	79 7552				
-	$\frac{1,10}{10.1}$	0.5,0	4	3 1645	3	1640	12	6406	12	2.6406 26		0.0392 26.0		.0391 56.		5.8499 56.3		8499	
	10,1	0.5,0	.8	1.1085	1.	2397	7.0)279	7.0)276	53.6151 5		53.	6151	78.	8.1078 78.		8.1078	
_	10,1	0 0.1,0	.4	1.8773	1.	8777	8.4	4071	8.4	8.4076		24.6129 24		4.6129 53		.0191 53.		0191	
	10,1	0 0.5,0	.8	0.6799	.6799 0.6778		3 4.8469		4.8	4.8464		50.3070 5		50.3070 76		.2814 76.2		2815	
		Tabl	le 8.	. Natu	ıral	freq	uen	cies c	of a	fixed-	fre	e bean	n w	rith thi	ee	masse	s		
α_l ,	$, \alpha_2, \alpha$	η_1, η_2, η_3	η_2, η_3	3 (v_l		2	ω_2		ω_2		ω_3		ω_3		ω_4		ω_4	<i>r</i>
1 1	1	0.1.0	10	8 1 0	$\frac{1}{204}$	1 0 ²	NI 010	Exa		12.64	4 47	Exac	72	76 747	8	Exac 70.450	ι 6	FEM 70.450	1
1,1,	,1 10	0.1,0	4,0	8 0 7	294 115	1.94	5/0	12.04	207	12.044	+/	40.747	/ 5) 5	40.747	0 5	70.439 60.207	0 1	70.439 60.208	20
1,1,1	<u>,10</u> 0.1	0.1,0	4,0	8 1 5	090	1.50)79	6 001	5	6 000	8	45.005)3)3	45.084	3	68 699	9	69.2089	
10	11	0.1,0	40	8 1 9	263	1.50	92	11 80	06	11 800	06	26 028	34	26 028	4	50 142	0	50 142	20
10,	$\frac{1,1}{10.10}$	0.1,0	.4.0	.8 0.7	144	0.69	986	4.708	34	4.708	1	24.576	58	24.576	7	45.139	6	45.139	96
1,1.	,1	0.2,0	.5,0	.7 2.0	627	2.06	512	13.38	315	13.38	14	32.954	19	32.955	0	50.769	6	50.7695	
1,1,	,10	0.2,0	.5,0	.7 0.8	896	0.91	67	13.26	647	13.264	46	30.095	58	30.0958		44.8998		44.899	99
1,10	0,1	0.2,0	.5,0.	.7 1.2	885	1.28	382	8.724	5	8.724	1	32.716	59	32.716	9	43.445	2	43.445	50
10,	1,1	0.2,0	.5,0	.7 2.0	042	2.00)35	8.429	2	8.4293	3	20.112	25	20.112	6	47.017	9	47.017	17
10,	$10 \overline{10}$	0.2,0	.5,0.	.7 0.7	825	0.76	532	5.793	5	5.7928	8	13.477	73	13.4772		31.3119 31		31.312	22
10,10,10 0.2,0.5,0.7 0.7825 0.7632 5.7935 5.7928 13.4773 13.4772 31.3119 31.3122																			

Table 5. Natural frequencies of a simple-fixed beam with two masses

5. CONCLUDING REMARKS

The transverse vibrations of an Euler-Bernoulli type beam carrying concentrated masses are investigated using analytical and numerical methods. The natural frequencies are calculated for several boundary conditions and the comparison of frequencies is presented. FEM and analytical solution are close to each other. Since it is tedious and difficult to obtain the frequency equations, FEM will be appropriate to calculate the natural frequencies of beams having three and more concentrated masses.

6. REFERENCES

- 1. L. S. Srinath and Y. C. Das, Vibrations of beams carrying mass, *Transaction of the American Society of Mechanical Engineers, Journal of Applied Mechanics Series* E 784-785, 1967.
- 2. J. H. Lau, Fundamental frequency of a constrained beam, *Journal of Sound and Vibration* **78**, 154-157, 1981.
- 3. M. Gurgoze, A note on the vibrations of restrained beams and rods with point masses, *Journal of Sound and Vibration* **96**, 461-468, 1984.
- 4. N. G. Stephen, Comment on "A note on the vibrations of restrained beams and rods with point masses", *Journal of Sound and Vibration* **100**(1) 149-150, 1985.
- 5. M. Gurgoze, On the vibrations of restrained beams and rods with heavy masses, *Journal of Sound and Vibration* **100**(4) 588-589, 1985.
- 6. M. Gurgoze, On the approximate determination of the fundamental frequency of a cantilever beam carrying a tip heavy load, *Journal of Sound and Vibration* **105**(3) 443-449, 1986.
- 7. P. A. A. Laura and V. H. Cortinez, Optimization of eigenvalues in the case of vibrating beams with point masses., *Journal of Sound and Vibration* **108**(2), 346-348, 1986.
- 8. M. Gurgoze and H. Batan, A note on the vibrations of a restrained cantilever beam carrying a heavy tip body, *Journal of Sound and Vibration* **106**(3), 533-536, 1986.
- 9. W. H. Liu and F. H. Yeh, Free vibration of a restrained-uniform beam with intermediate masses, *Journal of Sound and Vibration* **117**(3), 555-570, 1987.
- 10. W. H. Liu and C. –C. Huang, Vibrations of a concentrated beam carrying a heavy tip body, *Journal of Sound and Vibration* **123**(1), 15-29, 1988.
- 11. M. J. Maurizi and P. M. Belles, Natural frequencies of the beam-mass system: comparison of the two fundamental theories of beam vibrations, *Journal of Sound and Vibration* **150**, 330-334, 1991.
- 12. G. B. Chai and K. H. Low, On the natural frequencies of beams carrying a concentrated mass, *Journal of Sound and Vibration* **160**, 161-166, 1993.
- K. H. Low, T. M. Lim and G. B. Chai, Experimental and analytical investigations of vibration frequencies for center-loaded beams, *Computers and Structures* 48, 1157-1162, 1993.
- 14. M. N. Hamdan and L. Abdel Latif, On the numerical convergence of discretization methods for the free vibrations of beams with attached inertia elements, *Journal of Sound and Vibration* 169(4) 527-545, 1994.
- 15. E. Özkaya, M. Pakdemirli and H. R. Öz, Non-linear vibrations of a beam-mass system under different boundary conditions, *Journal of Sound and Vibration* **199**, 679-696, 1997.

- 16. K. H. Low, Closed-form formulas for fundamental vibration frequency of beams under off-centre load, *Journal of Sound and Vibration* **201**, 528-533, 1997.
- 17. K. H. Low and R. N. Dubey, A note on the fundamental shape function and frequency of beams under off-center load, *Journal of Sound and Vibration* **202**, 134-138, 1997.
- 18. K. H. Low, R. N. Dubey and G. B. Chai, Experimental investigation and shape functions for lateral vibration of axially constrained beams with a concentrated mass at the centre, *Journal of Sound and Vibration* **202**, 446-451, 1997.
- 19. N. M. Auciello and G. Nole, Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end, *Journal of Sound and Vibration* **214**(1), 105-119, 1998.
- 20. E. Özkaya and M. Pakdemirli, Non-linear vibrations of a beam-mass system with both ends clamped, *Journal of Sound and Vibration* **221**, 491-503, 1999.
- 21. B. Karlık, E. Özkaya, S. Aydın and M. Pakdemirli, Vibrations of a beam-mass system using artificial neural networks, *Computers and Structures* **69**, 339-347, 1998.
- 22. S. Naguleswaran, Lateral vibration of a uniform Euler-Bernoulli beam carrying a particle at an intermediate point, *Journal of Sound and Vibration* **227**(1), 205-214, 1999.
- 23. H. R. Öz, Calculation of the natural frequencies of a beam-mass system using finite element method, *Mathematical and Computational Applications* **5**(2), 67-75, 2000.
- 24. E. Özkaya, Linear transverse vibrations of a simply supported beam carrying concentrated masses, *Mathematical & Computational Applications* 6(2), 147-151, 2001.
- 25. O. Turhan, On the fundamental frequency of beams carrying a point mass: Rayleigh approximations versus exact solutions, *Journal of Sound and Vibration* **230**(2), 449-459, 2000.