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Abstract- Mehrabian, et. al. (1998) presented a procedure for determining overall 

assurance interval of ε . Solving n linear programs are needed for this propose, where 

n  is the number of Decision Making Units involved in the evaluation. This paper 

proposes an efficient algorithm that can determine the overall assurance interval of ε  
by solving a few number of linear programs. 
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1. INTRODUCTION 

Charnes, Cooper and Rhodes (1978) published a breakthrough paper which 

pioneered the Data Envelopment Analysis (DEA) approach, a methodology for 

determining the relative efficiencies of Decision Making Units (DMU`s). The data are 

input-output observations for a number of DMU`s using varying amounts of the same 

inputs to produce varying amounts of the same outputs. 

In recent years DEA has enjoyed both rapid growth and widespread acceptance. A 

bibliography by Emrouznejad and Thanassolis (1997) contains almost 1500 studies 

employing the methodology of DEA. In these studies the two most frequently used 

models are the Charnes, Cooper and Rhodes (CCR) (1978) model and the Banker, 

Charnes and Cooper (BCC) (1984), model, which both involve the NON-Archimedean 

infinitesimal, ε . 

As a theoretical construct, ε  provides a lower bound for multipliers, to keep them 
away from zero. Some difficulties arise in representing an infinitesimal, because of finit 

tolerances in computer calculations. 

Ali and Seiford (1993) have proposed an upper bound on ε  for feasibility of the 
multiplier side and boundedness of the envelopment side of the CCR and BCC models 

(see also Chapter 4 of Charnes, et. al. (1994)). Mehrabian, et. al. (1998) showed that Ali 

and Seiford`s bound for ε  cannot be valid. They also provided a procedure for 

determining an assurance interval of the non-Archimedean ε . Solving n linear 

programs are needed to determine the assurance interval where n  is the number of 

decision making units under evaluation. This paper presents an efficient algorithm that 

can determine the assurance interval of the non-Archimedean ε  by solving a few 
number of linear programs. 

The paper is organized as follows. Section 2 presents definitions that are neede 

through the paper. This section also contains the procedure of determining the 

assurance interval of ε  presented by Mehrabian, et. al. (1998). Section 3 presents the 

new efficient algorithm of determining the assurance interval of ε . Section 4 continues 
with an empirical example. Concluding remarks appear in section 5. 
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2. DEFINITIONS 

Consider n  Decision Making Units (DMU`s), each consuming varying amounts of 

m  inputs in the production of s outputs. The nm×  matrix of inputs is denoted by X  

and the ns×  matrix of outputs by .Y  Further, ijx  denotes the amount consumed of the 

i th input by the j th decision making unit and rjy  denotes the amount produced of its 

r th output. Finally, jX  and jY  denotes, respectively, the vectors of inputs and outputs 

for the j th DMU. 

The input-oriented linear programming problem formulation for the CCR and BCC 

models for evaluation of DMU o (both the envelopment and the multiplier side) are as 

follows:  
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  Where ε  is an non-Archimedean infinitesimal. 

 Mehrabian, et. al. (1998) defined oP  and oP  as the following LP problems 

corresponding to DMU o : 
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where here ε  is a scalar variable. Note that the optimal solution of oP  is equal to the 

optimal solution of oP . 
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We review some definitions from Mehrabian, et. al. (1998). 

Definition 1. The assurance interval for feasibility / boundedness of the CCR-model 

for the evaluation of DMU o  is defined as the interval [0,
*

oε ], where *

oε  is the optimal 

value for oP . 

Definition 2. The intersection of all assurance interval for feasibility / boundedness of 

the CCR-model for the evaluation of all DMU`s defines the overall assurance interval 

[0, *ε ] with }.,....,min{ **

1

*

nεεε =  

Definition 3. Each element of the overall assurance interval [0, *ε ] defines an 

assurance value of the non-Archimedean ε  for feasibility / boundedness of the CCR-
model for evaluation of all DMU`s. 

Based on Definition 2 the overall assurance interval [0, *ε ] can be achieved by 

solving n linear programs: .,...,, 21 nPPP  

Similar statements can be given for the BCC-model. 

 
3. A NEW ALGORITHM 

This section presents an algorithm for obtaining the overall assurance interval of the 

non-Archimedean ε  in the DEA models using a few linear programs, which is of 
computational important. 

Consider the following LP problem: 
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Let ),,( ooo VUε  be the optimal solution of P′ . Mehrabian et. al. (1998) showed that 
oε  is a nonzero assurance value and also they showed that if }1:{ =j

oXVj  is 

singleton, then ,*εε =o  i.e., solving only one LP problem leads to the overall assurance 

interval of the non-Archimedean .ε  Here, this idea will be extended.  

Let },,...,1{ nJ p ⊆  consider 
pJ

P′ as the following LP problem: 
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Lemma. If ),,( ppp JJJ
VUε is the optimal solution of 

pJ
P′ and }{}1:{ tXVj j

J p ==  is the 

singleton, then },:min{ *

pj

J
Jjp ∈= εε where *

jε  is the optimal solution of .jP  
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  Proof: Consider the dual of 
pJ

P′ as follows: 
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By hypothesis, }.{\,1 tJjXV pj

J p ∈< Then the complementary slackness condition 

implies that in the optimal solution of }.{\,0, tJjD p

J

jJ
p

p
∈=′ θ  Hence, pJ
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optimal value of the following problem: 
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and this is a dual problem for ,tP  which has the optimal value of ,*tε  then *

t

J p εε = . 

Since },:min{ *

pj

J
Jjp ∈≤ εε  then }.:min{ *

pj

J
Jjp ∈= εε  

Extension of the foregoing lemma is trivially leaded to the following theorem: 

Theorem. Let kJJJ ,...,, 21  be k subset of },...,2,1{ n  such that 

},...,2,1{...21 nJJJ k =UUU  and ),,( ppp JJJ
VUε  be the optimal solution of 

pJ
P′ for 

which }1:{ =j

J
XVj p is singleton, for all ,,...,,2,1, kpp =  then 

},...,,min{ 21* kJJJ εεεε =  

As a result of the theorem is to construct the following efficient algorithm that is 

used for finding the overall assurance interval of the non-Archimedean :ε  

Step 0: Set }.,...,2,1{{}, nJT ==  

Step 1: Solve JP′  and find its its optimal solution: ).,,( JJJ VUε  

Step 2: Find }1:{ == j

J XVjK   

If 1=K  

then KTT U←  and continue from Step 3, 

else KTTKJJ U←← ,\  and come back to Step 1. 

Step 3: Solve jP  and save its optimal solution ,*jε  for all ., Tjj ∈  

Step 4: }.:min{ ** Tjj ∈= εε  
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4. EMPIRICAL EXAMPLE 

    The algorithm of determining the overall assurance interval of ε  is illustrated by 
means of the 44-unit data set of table 1 from Alirezai and Alamdar (1998). The data are 

concerned with 44 Power Plant Systems of Iran for the year 1997 and consist of three 

outputs (units performance factor, capability factor, and availability factor) and two 

inputs (production conditions and number of personnel). 

The algorithm implication leads the following results: 

}44,25,23,40,12,38,13,41,39,42,33{=T  

The following table presents *

jε  for .Tj∈  

 
j  *

jε  

33 0.0025465641 

42 0.0028170620 

39 0.0027096794 

41 0.0025388063 

13 0.0037240236 

38 0.0025148081 

12 0.0026216156 

40 0.0027549076 

23 0.0026506155 

25 0.0025719935 

44 0.0026071612 

Then  

0025148081.0}:min{ **
=∈= Tjjεε  

Hence, the overall assurance interval is ].0025148081.0,0[],0[ *
=ε  

Note that the foregoing algorithm gives the overall assurance interval of non-

Archimedean ε  by solving a few number of LP problems and it is computationally 
efficient in comparison with procedure presented by Mehrabian, et. al. (1998) in which 

solving n  LP problems were needed.  

 

5. CONCLUSION 

    This paper presented an efficient algorithm for determining the overall assurance 

interval of the non-Archimedean ε  in DEA models. Solving a few number of LP 
problems are needed for the propose of the algorithm while for the procedure presented 

by Mehrabian, et. al. (1998), n  LP problems have to solve- where n  is the number of 

units under evaluation. 

   An empirical test using 44 units data set confirmed the capability of proposed 

algorithm  
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Table 1: The data for 44 Power Plants Systems. 
DMU`s 

1I  `2I  1O  2O  3O  

1 1.06 0.333 88.54 64.35 86.27 

2 1.05 0.72 89.76 71.1 89.72 

3 1.07 0.4 89.96 55.62 85.68 

4 1.02 0.7 89.13 82.95 90.43 

5 1.07 0.498 78.32 75.99 75.57 

6 1.14 0.55 73.36 73.81 61.01 

7 1.05 0.75 90.22 79.65 89.97 

8 1.21 0.516 79.87 76.38 65.97 

9 1.19 0.525 77.21 39.981 82.94 

10 1.23 0.363 73.34 45.048 88.88 

11 1.24 0.612 78.34 84.61 76.11 

12 1.48 1.563 74.54 37.5 69.03 

13 1.03 4.15 89.39 83.34 77.9 

14 1.15 3.32 83.36 66.38 81.33 

15 1.23 1.007 67.05 92.8 76.81 

16 1.19 0.959 80.4 81.21 87.87 

17 1.28 0.937 68.84 74.42 77.00 

18 1.29 0.694 70.38 73.13 57.07 

19 1.36 0.32 81.29 92.45 85.66 

20 1.33 0.314 88.92 74.99 89.98 

21 1.31 0.479 86.88 57.78 89.33 

22 1.41 0.313 73.42 73.28 69.37 

23 1.55 0.81 33.05 46.25 64.76 

24 1.32 0.635 61.1 49.68 82.4 

25 1.51 1.222 57.95 77.63 62.6 

26 1.49 0.347 34.09 96.94 71.35 

27 1.38 0.347 90.25 80.57 90.49 

28 1.31 0.78 50.66 66.28 83.54 

29 1.39 0.304 83 56.57 89.73 

30 1.31 0.625 65.63 88.93 59.12 

31 1.46 05 43.77 77.78 74.06 

32 1.49 0.6 73.92 70.93 77.35 

33 1.67 0.711 12.77 78.07 96.43 

34 1.34 0.732 82.74 66.38 88.03 

35 1.41 0.25 90.44 50.55 55.05 

36 1.42 0.346 92.35 57.16 62.23 

37 1.37 0.444 82.04 74.68 41.65 

38 1.61 0.909 94.49 70.72 51.39 

39 1.43 2 99.36 94.08 54.69 

40 1.6 0.526 87.6 65.14 26.88 

41 1.64 0.795 76.11 68.6 24.5 

42 1.37 3.333 100 57.39 48.82 

43 1.43 0.588 91.29 91.18 42.1 

44 1.49 1.111 89.43 100 47.12 
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