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1. INTRODUCTION 

 

 The differential equations governing the flow of non-Newtonian second grade 

fluids are highly nonlinear in nature. The nonlinearities occur in inertial as well as in 

viscosity parts [1, 2]. For a homogeneous incompressible second grade fluid, the 

governing equations are one order higher than the Navier-Stokes equations, that's why 

an additional boundary condition is required. However, there are many flow situations 

for which there are no such restrictions. For details reader is referred to study [3-7]. 

 Inverse methods [8-14] play an important role to solve the general flow 

equations exactly, but unfortunately these solutions are not the general solution of the 

original equations because these are obtained by assuming a special form of the stream 

function. The form of the stream function is assumed due to the flow geometry of the 

flow field. 

 Due to the non-availability of the techniques which could be applied to the 

nonlinear equations directly, we seek some transformations which lead to the 

simplification of the nonlinear equations. These transformations leave the equations 

invariant. Sophus Lie gave a systematic approach to find the symmetries of differential 

equations which was further improved by several authors. For details the reader is 

referred to see the references [15-19]. Symmetries can reduce the order as well as the 

number of independent variables appearing in the differential equations [20-22]. 

 In the present analysis we have considered the unsteady two directional, two 

dimensional flow equations for an incompressible MHD aligned second grade fluid. The 

same equations were solved by inverse method exactly by Chandna [11]; the solutions 

obtained by Chandna are however exact but not general whereas the solutions obtained 

by us are the general solutions. Translational symmetries are used twice to reduce the 

partial differential equations into ordinary differential equations. 

 

 

 



 

 

Asif Ali and Ahmer Mehmood 
 

396

2. FLOW EQUATIONS 

 

 The basic equations for an incompressible MHD aligned second grade fluid are 

                                                          ,0=⋅∇ V       (continuity)                                     (1) 

                   ( )[ ] ( ) ,HHbTVVV ××∇++⋅∇=∇⋅+ ∗µρρ t (linear momentum)             (2) 

                                 ( ) ( ),1
HHH ×∇×∇−×∇×∇=

∗σµt  (diffusion)                           (3) 

                                                               ,0=⋅∇ H                (solenoidal)                       (4) 

The constitutive equation for the stress of a second grade fluid [7] is 

                                    ,
2

12211 AAAIT ααµ +++−= p                                                   (5) 

with 

                                            ,1

tLLA +=     VL ∇= , 

                                          ,112 ALLVAVA
T

t
++








∇⋅+

∂
∂

=  

 

where V is the velocity vector, b is the body force per unit mass, H is the magnetic field 

intensity, p is the pressure, ρ  is the fluid density, ν  is the magnetic permeability, σ  is 
the electrical conductivity, µ  is the constant viscosity, 1α  and 2α  are the constant 

normal stress moduli, 1A  and 2A  are the first and second Rivlin-Ericksen tensors 

respectively. The solenoidal equation (4) shows that there is no magnetic pole in the 

flow field. 

 On specializing velocity, magnetic field intensity and pressure distribution are as 

follows; 

    ( ) ( )[ ],0,,,,,, tyxvtyxu=V   ( ) ( )[ ]0,,,,,, 21 tyxHtyxH=H    and   ( )tyxpp ,,=           (6) 

We get the following equations from Eqs. (1) - (4) after neglecting the body forces 
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                                                            ,021 =+ yx HH                                                   (11) 

where ,/ ρµν =    ,/ ρµν ∗∗ =    ραα /1=    and   ./2 ραβ =  

 

3. SOLUTION OF THE PROBLEM 

 

 Equations (7)–(11) are a system of nonlinear partial differential equations with 

five dependent and three independent variables. It is not easy to get the exact solution of 

this system in this form. Rivlin and Ericksen [1] used the inverse method to get the 

solutions of the same problems by assuming a special form of the stream function, these 

solutions are however exact but not general. We use the one-parameter Lie point 

symmetries to reduce the system of partial differential equations into a system of 

ordinary differential equations. For this purpose we use the translational symmetries 

twice. The system (7) - (11) admits the translational symmetries in x-, y- and t-

directions. First we use the combination of x∂∂ /  and y∂∂ /  which lead the following 

transformations for the dependent and independent variables 

,axy −=ξ ( ),,tfu ξ∗= ( ),, tgv ξ∗= ( ),, thp ξ∗= ( )tLH ,11 ξ∗= and ( ),,22 tLH ξ∗=     (12) 

where a  is an arbitrary constant. 

 Therefore the system (7)-(11) reduces to the following system of partial 

differential equations 
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ξξ afg                                                         (13) 
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                                                      ,012 =− ∗∗
ξξ aLL                                                       (17) 

The system (13) – (17) admits the symmetries ξ∂∂ /  and t∂∂ / . We use the 

combination of these two symmetries to reduce the above system of partial differential 

equations into a system of ordinary differential equations. Therefore, tb ∂∂+∂∂ // ξ  

leads to the following change of variables 

bt−= ξη , )(ξff =∗ ,   )(ηgg =∗ ,   )(ηhh =∗ ,   )(11 ηLL =∗ , )(22 ηLL =∗               (18) 

where b  is an arbitrary constant. 

Using the transformations given in Eq. (18), the system (13) – (17) reduces to 

                                                   ,0'' =−bfg                                                                   (19) 
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                                                        ,0'' 12 =−aLL                                                          (23) 

Hence the system (7) – (11) of partial differential equations is reduced to the system 

(19) – (23) of ordinary differential equations. From Eqs. (19) – (23) we have 

                                                         ,1cafg +=                                                           (24) 

                                                        ,212 caLL +=                                                         (25) 

Multiplying Eq. (21) by a  and then adding it to Eq. (20) and using Eq. (24) and (25) we 

get 

                               ,0')('')1('''))(1( 1

2

1

2 =−−++−+ fbcfafbcaa ν                            (26) 

Here two cases arise for Eq. (26) 

I bc =1  

II bc ≠1  

3.1 Case I )( 1 bc =  

In this case Eq. (26) takes the form 

                                                                 ,0'' =f                                                              

which on integration gives 

                                                             ,42 ccf += η                                                    (27) 

Using Eq. (27) in Eq. (24) we find 

                                                       ,)( 143 cccag ++= η                                               (28) 

Substituting Eqs. (24), (25) and (27) into Eq. (22) we have 

                                                             ,0'''1 =L                                                               

which on integration gives 

                              .76

2

51 cccL ++= ηη                                                 (29)                     

Using Eq. (29) in Eq. (25) we get 
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2

52 ccccaL +++= ηη                                            (30) 

Eq. (21) with Eq. (24) becomes 
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where  Ci’s  8...1=i  are the constants of integration. 
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Making use of back substitution consecutively with Eqs. (18) and (12), Eqs. (27) – (31) 

can be written in the form of original variables 

                                         ,)(),,( 413 ctcaxyctyxu +−−=                                            (32) 

                                    ,)(),,( 1413 cactcaxyactyxv ++−−=                                       (33) 
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3.2 Case II )( 1 bc ≠  

For this case we have the following equation  

                                  ,0')('')1('''))(1( 1
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which admits the solution 
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Using Eq. (37) in Eq. (24) we have 
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Using Eqs. (24), (25) and (37) in Eq. (22) we get 
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which has the following solution 
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where ( ) )1/( 2

1 acb +−∗= σµλ  

Substituting Eq. (41) into Eq. (25) we get 
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From Eq. (15) we have 
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Integration of the above equation yields 
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where Ci’s  14...8=i  are the constants of integration. 

Making use of back substitution in Eqs. (37), (39), (41), (42) and (44) from Eqs. 

(18) and (12) respectively, we get the solution in the form of original variables 
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4. CONCLUDING REMARKS 

 

 Exact solutions to the nonlinear differential equations governing the flow of an 

incompressible MHD aligned second grade fluid were obtained by symmetry method. 

The symmetries of translational type were used. It was observed that the translational 

symmetries had led to exponential type exact solutions, but in the case I )( 1 bc = , when 

both the velocity components u  and v  were proportional to each other the solutions 

were not of exponential type. 
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