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Abstract

:

In this paper, we introduce the ρ,q-analog of the p-adic factorial function. By utilizing some properties of ρ,q-numbers, we obtain several new and interesting identities and formulas. We then construct the p-adic ρ,q-gamma function by means of the mentioned factorial function. We investigate several properties and relationships belonging to the foregoing gamma function, some of which are given for the case p=2. We also derive more representations of the p-adic ρ,q-gamma function in general case. Moreover, we consider the p-adic ρ,q-Euler constant derived from the derivation of p-adic ρ,q-gamma function at x=1. Furthermore, we provide a limit representation of aforementioned Euler constant based on ρ,q-numbers. Finally, we consider ρ,q-extension of the p-adic beta function via the p-adic ρ,q-gamma function and we then investigate various formulas and identities.
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1. Introduction


The p-adic numbers are a counterintuitive arithmetic system, which were firstly introduced by Kummer in 1850. Then, the German mathematician Kurt Hensel (1861–1941) developed the p-adic numbers in a paper concerned with the development of algebraic numbers in power series in circa 1897 (cf. [1]). There are all kinds of numbers, such as natural, rational, real, complex, p-adic, and quantum numbers. The p-adic numbers are less well known than the others; however, these numbers play a main role in number theory and the related topics in mathematics. Since p-adic numbers have penetrated some mathematical areas, e.g., algebraic number theory, algebraic geometry, algebraic topology and analysis, they are now well-established in mathematical fields and are used also by physicists. In conjunction with the introduction of these numbers, some mathematicians and physicists started to investigate new scientific tools utilizing their useful and positive properties. Some effects of this new research have emerged in mathematics and physics, such as p-adic analysis, string theory, p-adic quantum mechanics, quantum field theory, representation theory, algebraic geometry, complex systems, dynamical systems, genetic codes and so on (cf. [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]). One of the most important tools of these investigations is p-adic gamma function, which was firstly described by Yasou Morita around 1975 (cf. [11]). Intense research activities in this area is principally motivated by its importance in p-adic analysis. Therefore, in the recent forty years, p-adic gamma function and its generalizations have been investigated and studied extensively by many mathematicians (cf. [1,2,3,4,5,6,7,8,9,10,11,12,13]).



Here, we give some basic notations, definitions and properties belonging to the p-adic analysis which are taken from the books [1,7,13].



Let p∈2,3,5,7,11,13,17,⋯ be a prime number. For any nonzero integer a, let ordpa be the highest power of p that divides a, i.e., the greatest m such that a≡0modpm where we used the notation a≡bmodc meant c divides a−b.



Note that ordp0=∞. The following properties hold true for x=ab and y=cd:


ordpx=ordpa+ordpbandordpy=ordpc−ordpd.











The p-adic absolute value (norm) of x is given by


xp=p−ordpxforx≠0,0forx=0.



(1)







The p-adic norm provides the so-called strong triangle inequality


x+yp≦maxxp,yp,








which is also known as non-Archimedean norm.



Now, we provide some basic notations: N=1,2,3,⋯ denotes the set of all natural numbers, Z=⋯,,−1,0,1,⋯ denotes the ring of all integers, Q=aba,b∈Z,b≠0 denotes the field of all rational numbers, C denotes the field of all complex numbers, Qp=x=∑n=−k∞anpn:0≦ai≦p−1 denotes the field of all p-adic numbers, Zp=x∈Qp:xp≦1 denotes the ring of all p-adic integers and Cp denotes the completion of the algebraic closure of Qp. Let N0=N∪0.



For more information about p-adic analysis, see, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22].



The notations ρ and q can be variously considered as indeterminates, complex numbers ρ and q∈C with 0<q<ρ≦1, or p-adic numbers ρ and q∈Cp with ρ−1p<p−1p−1 and q−1p<p−1p−1 so that ρx=expxlogρ and qx=expxlogq for xp≦1.



The classical gamma function is firstly introduced by Leonard Euler (1707–1783) as


Γx=∫01−logtx−1dtx>0.











In 1964, the common form of the gamma function was given by Artin [23] with appropriate variable change:


Γx=∫0∞tx−1e−tdtx>0.











The classical gamma function is closely related with the factorial function n! as Γn+1=n! for n∈N.



By inspiring the beautiful and interesting relation between gamma function and factorial function above, the p-adic gamma function is also introduced by means of the p-adic factorial function n!p as follows


Γpx=limn→x−1nn!p,



(2)




where the factorial function n!p in Qp is defined by


n!p=∏p,j=1j<nj



(3)




for x∈Zp, where n approaches x through positive integers. For detailed statement of these issue, see [1,4,5,7,11,13].



The q-extension of the p-adic gamma function is defined as follows (see [12])


Γp,qx=limn→x−1n∏p,j=1j<njqwherejq=1−qj1−q.



(4)







These functions have been studied and investigated by many mathematicians, see [3,4,5,6,7,8,9,11,12].



The ρ,q-numbers are defined by


nρ,q:=ρn−qnρ−q



(5)




which reduce to the q-numbers when ρ=1 as n1,q→nq.



It is clear that nρ,q=ρn−1nq/ρ, which means that q-numbers and ρ,q-numbers are different, that is, ρ,q-numbers cannot be obtained just by substituting q by q/ρ in the definition of q-numbers (see [15,16,17,18,19,20,24,25] for details). However, when ρ=1, q-numbers become a special case of ρ,q-numbers, as shown above.



In conjunction with the introduction of these ρ,q-numbers (see [24]), ρ,q-calculus has been investigated and studied extensively by many mathematicians and also physicists since 1991. For example, Araci et al. [15] introduced an analog of Haar distribution based on ρ,q-numbers. By means of this distribution, they derived ρ,q-analog of Volkenborn integral (p-adic integral) and obtained some properties. Then, they constructed ρ,q-Bernoulli polynomials arising from ρ,q-Volkenborn integral. Aral et al. [16] defined a (ρ,q)-analog of Gamma function and, as an application, they proposed (ρ,q)-Szasz–Durrmeyer operators, estimated moments and established some direct results. Chakrabarti et al. [24] investigated the necessary elements of the ρ,q-calculus involving ρ,q-exponential, ρ,q-integration, and the ρ,q-differentiation. Duran et al. [17] considered a generalization of the fermionic p-adic measure based on ρ,q-integers and set the corresponding integral to this measure. They also defined Carlitz-type ρ,q-Euler polynomials and numbers in terms of this corresponding integral and acquired some of their identities and properties. Milovanovic et al. [25] provided a novel extension of beta functions based on ρ,q-numbers and committed the integral modification of the generalized Bernstein polynomials. Sadjang [18] introduced new generalizations of the gamma and the beta functions and investigated their properties. Sadjang [19] investigated some properties of the ρ,q-derivative and the ρ,q-integration and provided two appropriate polynomial bases for the ρ,q-derivative, and then he obtained various properties of these bases. As an application, he gave two ρ,q-Taylor formulas for polynomials. Furthermore, he gave the fundamental theorem of ρ,q-calculus and proved the formula of ρ,q-integration by part. Sahai et al. [20] developed the connection between ρ,q-analog of special functions and representations of certain two parameter quantum algebras.



The paper is organized as follows. Section 1, the Introduction, provides the required information, notations, definitions and motivation. In Section 2, we are interested in constructing the p-adic ρ,q-gamma function Γpρ,qx by means of p-adic ρ,q-factorial function x!pρ,q. We investigate some properties and relationships of the mentioned gamma function. In Section 3, the p-adic ρ,q-Euler constant is derived from the derivation of p-adic ρ,q-gamma function at x=1 and limit representation of this constant are shown. In Section 3, we also examine the results derived in this paper and give some further remarks of our results. Section 4 provides the ρ,q-extension of the p-adic beta function via the p-adic ρ,q-gamma function and includes multifarious formulas and identities.




2. The p-adic (ρ, q)-Gamma Function


This section provides a new definition of p-adic ρ,q-gamma function and gives some properties, identities and relations for the mentioned gamma function.



We firstly introduce ρ,q-extension of the p-adic factorial function as follows.



Definition 1.

Let ρ and q∈Cp with ρ−1p<1 and q−1p<1, ρ≠1 and q≠1. We introduce the p-adic ρ,q-factorial function x!pρ,q in Qp as


x!pρ,q=limn→x∏p,j=1j<nρj−qjρ−q=limn→x∏p,j=1j<njρ,q



(6)




for x∈Zp, where n approaches x through positive integers.





Note that, for n∈N, the p-adic ρ,q-factorial function can be written as


n!pρ,q=∏p,j=1j<njρ,q.



(7)







Proposition 1.

For n∈N, we have


1!pρ,q=1,2!pρ,q=1andn!pρ,qp=1.













Example 1.

We provide some examples of the foregoing function:



	3!2ρ,q=1
	3!3ρ,q=2ρ,q
	3!5ρ,q=2ρ,q



	6!2ρ,q=3ρ,q5ρ,q
	6!3ρ,q=2ρ,q4ρ,q5ρ,q
	6!5ρ,q=2ρ,q3ρ,q4ρ,q



	7!2ρ,q=3ρ,q5ρ,q
	7!3ρ,q=2ρ,q4ρ,q5ρ,q
	7!5ρ,q=2ρ,q3ρ,q4ρ,q6ρ,q










By Equation (5), we note that


n+mρ,q=ρnmρ,q+qmnρ,q=ρmnρ,q+qnmρ,q.



(8)







Using the addition property in Equation (8) of the ρ,q-integers, we give the following theorem.



Theorem 1.

For n,m∈N, we have


n+m!pρ,q=n!pρ,q·ρnm!pρ,q+nρ,qqm−12−p1+2+…+m−1pifd=0ρn∏p,d+j=1j<mjρ,q+nρ,q∏p,d+j=1j<mqjifd∈A,



(9)




where n=pk+d and A=1,2,…,p−1 and · is the greatest integer function.





Proof. 

In view of Equations (6) and (8), we get


n+m!pρ,q=∏p,j=1j<n+mjρ,q=∏p,j=1j<njρ,q∏p,n+j=1j<mn+jρ,q=∏p,j=1j<njρ,q∏p,n+j=1j<mρnjρ,q+qjnρ,q=n!pρ,qρn∏p,n+j=1j<mjρ,q+nρ,q∏p,n+j=1j<mqj=n!pρ,qρnm!pρ,q+nρ,qqm−12−p+2p+…+m−1ppifd=0ρn∏p,d+j=1j<mjρ,q+nρ,q∏p,d+j=1j<mqjifd∈A,








where n=pk+d and A=1,2,…,p−1. Thus, we attain the asserted result in Equation (9). □





We give the following interesting result.



Theorem 2.

For m∈N, we have


φpm!pρ,q=a0!pρ,q∏t=1m∏p,j=1j<atptφpt−1+jρ,q,



(10)




where φpm=a0+a1p+a2p2+⋯+ampm with a0,a1,…am∈1,2,…,p−1.





Proof. 

Indeed,


φpm!pρ,q=φpm−1!pρ,q∏p,j=1j<ampmφpm−1+jρ,q=φpm−2!pρ,q∏p,j=1j<am−1pm−1φpm−2+jρ,q∏p,j=1j<ampmφpm−1+jρ,q⋮=a0!pρ,q∏t=1m∏p,j=1j<atptφpt−1+jρ,q,








which completes the proof of this theorem. □





The following definition is new and plays an important role in deriving the main results of this paper. Now, we are ready to state the following Definition 2.



Definition 2.

Let ρ and q∈Cp with ρ−1p<1 and q−1p<1, ρ≠1 and q≠1. We define the p-adic ρ,q-gamma function as follows


Γpρ,qx=limn→x−1n∏p,j=1j<nρj−qjρ−q=limn→x−1n∏p,j=1j<njρ,q



(11)




for x∈Zp, where n approaches x through positive integers.





Note that for n∈N, the p-adic ρ,q-gamma function can be written as


Γpρ,qn=−1n∏p,j=1j<njρ,q.











Example 2.

We give some examples of the aforementioned function:



	Γ2ρ,q3=−1
	Γ3ρ,q3=−2ρ,q
	Γ5ρ,q3=−2ρ,q



	Γ2ρ,q6=3ρ,q5ρ,q
	Γ3ρ,q6=2ρ,q4ρ,q5ρ,q
	Γ5ρ,q6=2ρ,q3ρ,q4ρ,q



	Γ2ρ,q7=−3ρ,q5ρ,q
	Γ3ρ,q7=−2ρ,q4ρ,q5ρ,q
	Γ5ρ,q7=−2ρ,q3ρ,q4ρ,q6ρ,q










Remark 1.

Upon setting ρ=1 in Definition 2, p-adic ρ,q-gamma function reduces to the p-adic q-gamma function in Equation (4).





Remark 2.

When q→ρ=1 in Definition 2, Equation (11) yields to the p-adic gamma function in Equation (2).





We now investigate some properties and relations of the aforementioned function.



Lemma 1.

For n∈N, we have


Γpρ,q0=1,Γpρ,q1=−1,Γpρ,q2=1andΓpρ,qnp=1.













Proof. 

The proof of this lemma just follows from the Definition 2. Thus, we omit the proof. □





Taking into account Theorem 1, we obtain the following relation.



Corollary 1.

For n,m∈N, we have


Γpρ,qn+m=−1n+mΓpρ,qn·ρnΓpρ,qm+nρ,qqm−12−p1+2+…+m−1pifd=0ρn∏p,d+j=1j<mjρ,q+nρ,q∏p,d+j=1j<mqjifd∈A,








where n=pk+d and A=1,2,…,p−1 and · is the greatest integer function.





Considering that Theorem 2, we have the following identity.



Corollary 2.

For m∈N0, we have


Γpρ,qφpm=−1φpma0!pρ,q∏t=1m∏p,j=1j<atptφpt−1+jρ,q,








where φpm=a0+a1p+a2p2+⋯+ampm with a0,a1,…am∈1,2,…,p−1.





Here is a recurrence relation for Γpρ,qn by the following theorem.



Theorem 3.

The following recurrence formula holds true for all x∈Zp:


Γpρ,qx+1=ϵpρ,qxΓpρ,qx,



(12)




where


ϵpρ,qx=−xρ,qifxp=1,−1ifxp<1.



(13)









Proof. 

Using Definition 2 and Equation (1), we easily get


Γpρ,qx+1=limn→x−1n+1∏p,j=1j<n+1jρ,q=limn→x−1n∏p,j=1j<njρ,q·−xρ,qifxp=1,−1ifxp<1,








which gives the desired result in Equation (12). □





The result obtained in the Theorem 3 seems to be the p-adic ρ,q-analog of the well known result for classical gamma function Γx+1=xΓx for x>0.



We now give an explicit formula for Γpρ,qn as follows.



Theorem 4.

The following recurrence formula holds true for all n∈N:


Γpρ,qn+1=−1n+1nρ,q!pρ,qnpnpρp,qp!,



(14)




where · is the greatest integer function.





Proof. 

From Definition 2, we observe that


Γpρ,qn+1=−1n+1∏p,j=1j<njρ,q=−1n+11ρ,q2ρ,q⋯nρ,qpρ,q2pρ,q⋯nppρ,q.











Using the product rule kpρ,q=kρp,qppρ,q for ρ,q-numbers, we acquire


Γpρ,qn+1=−1n+1nρ,q!pρ,qnp1ρp,qp2ρp,qp⋯npρp,qp,








which yields to the asserted result in Equation (14). □





Particularly, we derive the following result.



Corollary 3.

We have


Γpρ,qpn=−1ppn−1ρ,q!pρ,qpn−1−1pn−1−1ρp,qp!.



(15)









Here are two relations for Γpρ,qx and the latter provides a representation of ρ,q-factorial function associated with p-adic ρ,q-gamma function.



Theorem 5.

For n∈N, let mn be the sum of digits of n=∑j=0majpjam≠0 in base p. We then derive


npmρ,q!=−1n+1−m−pρ,qn−mn/p−1∏j=0m−1npj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1



(16)




and


nρ,q!=−1n+1−m−pρ,qn−mn/p−1npρp,qp!∏j=1mnpj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1.



(17)









Proof. 

By Equation (14), we have


nρ,q!=−1n+1pρ,qnpnpρp,qp!Γpρ,qn+1.











Then, if we put npj where j lies in 0,1,⋯,m instead of n, respectively, we observe that


np0ρ,q!=−1np0+1pρ,qnp1np1ρp,qp!Γpρ,qnp0+1










np1ρ,q!=−1np1+1pρ,qnp2np2ρp,qp!Γpρ,qnp1+1⋮










npmρ,q!=−1npm+1pρ,qnpm+1npm+1ρp,qp!Γpρ,qnpm+1.











Multiplying the both sides above, one can acquire with ease that


npmρ,q!=−1np0+np1+⋯+npm+m+1pρ,qnp1+np2+⋯+npm+1·npm+1ρp,qp!∏j=0m−1npj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1=−1n−mn/p−1−1n+1−mpρ,qn−mnp−1npm+1ρp,qp!·∏j=0m−1npj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1.











Thus, we get the asserted result in Equation (16):


npmρ,q!=−1n+1−m−pρ,qn−mnp−1·∏j=0m−1npj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1.











In addition, from the applications above,


nρ,q!=−1np0+np1+⋯+npm+m+1pρ,qnp1+np2+⋯+npm+1·npρp,qp!∏j=1mnpj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1=−1n−mnp−1−1n+1−mpρ,qn−mnp−1npρp,qp!·∏j=1mnpj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1.











Thus, we obtain Equation (17):


nρ,q!=−1n+1−m−pρ,qn−mn/p−1npρp,qp!·∏j=1mnpj+1ρp,qp!npjρ,q!∏i=0mΓpρ,qnpi+1.








 □





We give the following theorem.



Theorem 6.

The following relation holds true for any prime p and n∈N:


pn−1ρ,q!=−1p−pρ,qpn−1/p−1pρ,q−npn−1−1ρp,qp!·∏j=0n−2pj−1ρp,qppj+1−1ρ,q∏j=0nΓpρ,qpj.



(18)









Proof. 

In view of Equation (15), we have


pk−1ρ,q!=−1pΓpρ,qpkpρ,qpk−1−1pk−1−1ρp,qp!.











If we put 0,1,2,…,n instead of k, respectively, we then get


p0−1ρ,q!=1=−1Γpρ,qp0,p1−1ρ,q!=−1pΓpρ,qp1pρ,qp1−1−1p1−1−1ρp,qp!,⋮pn−1ρ,q!=−1pΓpρ,qpnpρ,qpn−1−1pn−1−1ρp,qp!.











If we multiply to the both sides above, we attain


pn−1ρ,q!=−1np+1pρ,qp0+p1+⋯+pn−1−npn−1−1ρp,qp!∏j=0n−2pj−1ρp,qp!pj+1−1ρ,q!∏j=0nΓpρ,qpj,








which gives to the asserted result in Equation (18). □





Theorem 7.

For n∈N, let p be a prime number and mn be the sum of digits of n=∑j=0majpjam≠0 in base p. The following identity holds true for j=0,1,…m:


npjρ,q!pρ,qnpjnpjρp,qp!=∏k=1npjρk−qkρkp−qkp0≦k≦m.



(19)









Proof. 

For 0≦j≦m, we get


npjρ,q!pρ,qnpjnpjρp,qp!=1ρ,q2ρ,q⋯npjρ,qpρ,qnpj1ρp,qp2ρp,qp⋯npjρp,qp=ρ−qρ−qρ2−q2ρ−q⋯ρnpj−qnpjρ−qρp−qpρ−qnpjρp−qpρp−qpρ2p−q2pρp−qp⋯ρnpjp−qnpjpρp−qp=ρ−qρ2−q2⋯ρnpj−qnpjρp−qpρ2p−q2p⋯ρnpjp−qnpjp,








which completes the proof of this theorem. □





The following result can be easily derived from Theorems 5 and 7.



Corollary 4.

For n∈N, let p be a prime number and mn be the sum of digits of n=∑j=0majpjam≠0 in base p. We then get


nρ,q!=−1n−mn/p−1+n+1−m∏k=1np1ρkp−qkpρk−qk⋯∏k=1npmρkp−qkpρk−qk∏i=0mΓpρ,qnpi+1.













We here provide a representation for Γpρ,q−n via the following theorem.



Theorem 8.

The following relation holds true for any prime p and for any n∈N:


Γpρ,q−n=−1n+1−np∏p,j=1j<n+1ρqjΓpρ,qn+1−1.













Proof. 

In view of Lemma 1 and Theorem 3, we can write


1=Γpρ,q0=Γpρ,q1+−1=ϵpρ,q−1Γpρ,q−1=ϵpρ,q−1ϵpρ,q−2Γpρ,q−2=⋯=∏j=1nϵpρ,q−jΓpρ,q−n,








therefore, we get


Γpρ,q−n−1=∏j=1nϵpρ,q−j.











By utilizing the definitons of ρ,q-numbers and ϵpρ,q, we have


Γpρ,q−n−1=−1np∏p,j=1j<n+1ρq−jjρ,q=−1np−n−1∏p,j=1j<n+1ρq−j−1n+1∏p,j=1j<n+1jρ,q=−1np−n−1∏p,j=1j<n+1ρq−jΓpρ,qn+1.











Thereby, the proof of this theorem is completed. □





Corollary 5.

Substituting n−1 by n in Theorem 8, one can readily write that


Γpρ,qnΓpρ,q1−n=−1n−n−1p∏p,j=1j<nρqj.



(20)









Now, we introduce l:Zp→1,2,⋯,p by assigning to x∈Zp its residue modulo pZp. Let n=a0+a1p+a2p2+⋯ be a positive in base p. If a0≠0, then n−1p=a1+a2p+⋯. Thus, we obtain n−pn−1p=a0=ln. If a0=0, then n−1=p−1+b1p+b2p2+⋯. Thus, n−1p=b1+b2p+⋯. Thus, we get n−pn−1p=1+p−1=p=ln.



Hence, we give the following theorem.



Theorem 9.

For p≠2 and all x∈Zp, we have


Γpρ,qxΓpρ,q1−x=−1lxlimn→x∏p,j=1j<nρqj.



(21)









Letting x=12 in Theorem 9 yields to the following result


Γpρ,q122=−1l12limn→12∏p,j=1j<nρqj=−limn→12∏p,j=1j<nρqjifp≡1mod4,limn→12∏p,j=1j<nρqjifp≡3mod4,








where we used the equality l12=lp+12=p+12 by definition.



Corollary 6.

We have for p=2 in Theorem 8,


Γ2ρ,qn+1Γ2ρ,q−n=−1n+1−n2∏2,j=1j<n+1ρqj=−1n+1−n2ρqn−n22.



(22)









We give an identity for special case p=2.



Theorem 10.

For all x∈Z2, we obtain


Γ2ρ,qxΓ2ρ,q1−x=−11+η1xlimn→x∏2,j=1j<nρqj,



(23)




where η1∑j=0∞aj2j=a1.





Proof. 

For n∈N, by Equation (20), we have


Γ2ρ,qnΓ2ρ,q1−n=−1n−n−12∏2,j=1j<nρqj.











Let n=a0+a12+a222+⋯ in base 2. If a0≠0, thereby a0=1 in base 2 and n−12=a1mod2. Hence, we obtain −1n−n−12=−1a0−a1=−11+a1=−11+η1n. If a0=0, then we see n−12=−1+a12+a222+⋯2=1+a1−12+a222+⋯2=a1−1mod2. Therefore, we get −1n−n−12=−12−a1−1=−11+a1=−11+η1n. Consequently, we derive the following identity


Γ2ρ,qnΓ2ρ,q1−n=−11+η1n∏2,j=1j<nρqj,








which provides the claimed result in Equation (23).






3. The p-adic (ρ, q)-Euler Constant


The p-adic Euler constant γp∈Qp is firstly given by Diamond [2] in 1977 as follows:


γp=−Γp′1Γp1.











In this section, we explore the ρ,q-analog of the p-adic Euler constant. We can readily consider that Γpρ,q is locally analytic function thanks to Lemma 1.



Then, we derive the following theorem.



Theorem 11.

For n∈N, we have


Γpρ,q′nΓpρ,qn=Γpρ,q′1Γpρ,q1+1ρ−q∑j=1n−1ρjlogρ−qjlogqjρ,q.



(24)









Proof. 

From Theorem 3, we know that


logΓpρ,qn=logΓpρ,qn−1+logϵpρ,qn−1.











Then,


Γpρ,q′nΓpρ,qn=Γpρ,q′n−1Γpρ,qn−1+ϵpρ,q′n−1ϵpρ,qn−1=Γpρ,q′1Γpρ,q1+∑j=1n−1ϵpρ,q′jϵpρ,qj,








which implies the desired result in Equation (24). □





Remark 3.

Equation (24) can be called ρ,q-generalization of the known formula for p-adic gamma function


Γp′nΓpn=Γp′1Γp1+∑p,j=1j<n1j,








or ρ,q-generalization of p-adic analog of the formula for classical gamma function


Γ′nΓn=Γ′1Γ1+∑j<n1j.













Thereby, we are ready to define ρ,q-analog of the p-adic Euler constant γpρ,q as follows


γpρ,q:=Γpρ,q′1Γpρ,q1=Γpρ,q′1=−Γpρ,q′0.



(25)







The p-adic ρ,q-Euler constant has a limit representation by the following theorem.



Theorem 12.

We have


γpρ,q=limn→∞p−n1−−1ppn−1ρ,q!pρ,qpn−1−1npρp,qp!.













Proof. 

In conjunction with Equation (15), we have


Γpρ,qpn=−1ppn−1ρ,q!pρ,qpn−1−1npρp,qp!.











Then, we investigate


limn→∞p−n1−−1ppn−1ρ,q!pρ,qpn−1−1npρp,qp!=limn→∞1−Γpρ,qpnpn=−Γpρ,q′0=γpρ,q.








 □





Corollary 7.

By means of the Lemma 1, we deduce that γpρ,qp=Γpρ,q′1p≦1.






4. The p-adic (ρ, q)-Beta Function


In this section, we define ρ,q-extension p-adic beta function by means of the p-adic ρ,q-gamma function discussed in Section 2. Then, we present several properties, identities and relations for the mentioned beta function.



The classical beta function Bx,y is defined by means of the classical gamma functions as follows:


Bx,y=ΓxΓyΓx+y,x,y∈N








which also have the following subsequent properties (cf. [10]):


Bx,y=By,xBx,y=Bx,y+1+Bx+1,yBx+1,y=Bx,yxx+yBx,y+1=Bx,yyx+yBx+1,y=xyBx,y+1.











The p-adic beta function is defined by means of the p-adic gamma functions as follows:


Bpx,y=ΓpxΓpyΓpx+y,x,y∈Zp








which also have the following subsequent properties (cf. [5,10]):


Bpx,y=Bpy,xBpx,y=hpx+yhpx+hpyBpx,y+1+Bpx+1,yBpx+1,y=Bpx,yxx+yBpx,y+1=Bpx,yyx+yBpx+1,y=hpxhpyBpx,y+1.











Definition 3.

Let ρ and q∈Cp with ρ−1p<1 and q−1p<1, ρ≠1 and q≠1. We define the p-adic ρ,q-beta function via the p-adic ρ,q-gamma functions as follows:


Bpρ,qx,y=Γpρ,qxΓpρ,qyΓpρ,qx+y,



(26)




for x,y∈Zp.





Remark 4.

In the case ρ=1, the p-adic ρ,q-beta function reduces to the the p-adic q-beta function (cf. [5]).





Remark 5.

When q→ρ=1, the p-adic ρ,q-beta function reduces to the usual p-adic beta function (cf. [10]).





We are now ready to investigate the properties of the p-adic ρ,q-beta function.



Theorem 13.

For x,y∈Zp, the p-adic ρ,q-beta function is symmetric about x and y:


Bpρ,qx,y=Bpρ,qy,x.



(27)









Proof. 

By Equation (26), we readily get


Bpρ,qx,y=Γpρ,qxΓpρ,qyΓpρ,qx+y=Γpρ,qyΓpρ,qxΓpρ,qy+x=Bpρ,qx,y,








which is the asserted result in Equation (27). □





Theorem 14.

For x,y∈Zp, the p-adic ρ,q-beta function has the following formula:


Bpρ,qx+1,y=ϵpρ,qxϵpρ,qx+yBpρ,qx,y.



(28)









Proof. 

In view of Equations (12) and (26), we readily get


Bpρ,qx+1,y=Γpρ,qx+1Γpρ,qyΓpρ,qx+y+1=ϵpρ,qxΓpρ,qxΓpρ,qyϵpρ,qx+yΓpρ,qx+y=ϵpρ,qxϵpρ,qx+yΓpρ,qxΓpρ,qyΓpρ,qx+y=ϵpρ,qxϵpρ,qx+yBpρ,qx,y,








which is the desired result in Equation (28). □





Theorem 15.

For x,y∈Zp, the p-adic ρ,q-beta function satisfies the following identity:


Bpρ,qx,y+1=ϵpρ,qyϵpρ,qx+yBpρ,qx,y.



(29)









Proof. 

By Equation (26), we readily get


Bpρ,qx,y+1=Γpρ,qxΓpρ,qy+1Γpρ,qx+y+1=Γpρ,qxϵpρ,qyΓpρ,qyϵpρ,qx+yΓpρ,qx+y=ϵpρ,qyϵpρ,qx+yΓpρ,qxΓpρ,qyΓpρ,qx+y=ϵpρ,qyϵpρ,qx+yBpρ,qx,y,








which is the claimed result in Equation (29). □





By Theorems 14 and 15, we see that


Bpρ,qx+1,y+Bpρ,qx,y+1=ϵpρ,qxϵpρ,qx+yBpρ,qx,y+ϵpρ,qyϵpρ,qx+yBpρ,qx,y=ϵpρ,qx+ϵpρ,qyϵpρ,qx+yBpρ,qx,y








and


Bpρ,qx+1,y=ϵpρ,qxϵpρ,qx+yBpρ,qx,y=ϵpρ,qxϵpρ,qyϵpρ,qyϵpρ,qx+yBpρ,qx,y=ϵpρ,qxϵpρ,qyBpρ,qx,y+1,








which implies the following results.



Corollary 8.

For x,y∈Zp, the following formulas are valid:


Bpρ,qx,y=ϵpρ,qx+yϵpρ,qx+ϵpρ,qyBpρ,qx+1,y+Bpρ,qx,y+1








and


Bpρ,qx+1,y=ϵpρ,qxϵpρ,qyBpρ,qx,y+1.













We give the following theorem.



Theorem 16.

Let x,y∈Zp. For p=2, we get


Bpρ,qx,yBpρ,qx+y,1−y=−11+η1xϵpρ,qxlimn→y∏p,j=1j<nρqj



(30)




and for p≠2, we have


Bpρ,qx,yBpρ,qx+y,1−y=−1lyϵpρ,qxlimn→y∏p,j=1j<nρqj.



(31)









Proof. 

From Definition 3, we easily compute that


Bpρ,qx,yBpρ,qx+y,1−y=Γpρ,qxΓpρ,qyΓpρ,qx+yΓpρ,qx+yΓpρ,q1−yΓpρ,qx+1=Γpρ,qxΓpρ,qyΓpρ,q1−yϵpρ,qxΓpρ,qx=Γpρ,qyΓpρ,q1−yϵpρ,qx.











It just remains to use Equations (21) and (23) to obtain desired result in Equations (30) and (31). □





We provide the following theorem.



Theorem 17.

Let x,y∈Zp. We then obtain


Bpρ,qx+1,y+1=ϵpρ,qxϵpρ,qyϵpρ,qx+y+1ϵpρ,qx+yBpρ,qx,y.



(32)









Proof. 

In view of Definition 3 and using Equation (12), we readily see that


Bpρ,qx+1,y+1=Γpρ,qx+1Γpρ,qy+1Γpρ,qx+1+y+1=Γpρ,qx+1ϵpρ,qyΓpρ,qyϵpρ,qx+y+1Γpρ,qx+y+1=ϵpρ,qyϵpρ,qx+y+1Bpρ,qx+1,y,








which implies the asserted Equation (32) thanks to Equation (28). □





For x,y,ξ,γ∈Zp, we note that


Bpρ,qx,yBpρ,qx+y,ξBpρ,qx+y+ξ,γ=Γpρ,qxΓpρ,qyΓpρ,qξΓpρ,qγΓpρ,qx+y+ξ+γ.











We give the following theorem.



Theorem 18.

Let x∈Zp. For p=2, we obtain


Bpρ,qx,1−x=−12+η1xlimn→y∏p,j=1j<nρqj



(33)




and for p≠2, we attain


Bpρ,qx,1−x=−1ly+1limn→y∏p,j=1j<nρqj.



(34)









Proof. 

From Definition 3, we easily compute that


Bpρ,qx,1−x=Γpρ,qxΓpρ,q1−xΓpρ,q1=−Γpρ,qxΓpρ,q1−x,








which implies the claimed result in Equations (33) and (34) in conjunction with Equations (21) and (23). □





By the motivation for usual binomial coefficient, for n,k∈N with n≥k, we consider the p-adic ρ,q-binomial coefficients nkpρ,q by means of the p-adic ρ,q-factorial in Equation (6) as follows:


nkpρ,q=n!pρ,qn−k!pρ,qk!pρ,q.



(35)







Thus, we give the following theorem. □



Theorem 19.

Let n,k∈N with n≥k. We have


nkpρ,qBpρ,qn−k+1,k+1=−1ϵpρ,qn+1.













Proof. 

The proof just follows from Equations (26) and (35) with Equation (12). □





We provide the following theorem.



Theorem 20.

Let n,k∈N. We have


Bpρ,q−n,−k=−11+n+kp−np−kpϵpρ,qn+kϵpρ,qnϵpρ,qk1Bpρ,qn,k∏p,j=1j<k+1ρqj∏p,j=1j<n+1ρqj.













Proof. 

The proof of this theorem just follows from Equations (26) and (12) and Theorem 8 with some basic computations. □





Finally, we present the following theorem.



Theorem 21.

Let x∈Zp. For p=2, we obtain


Bpρ,qx,1−x=−12+η1xlimn→y∏p,j=1j<nqj



(36)




and for p≠2, we attain


Bpρ,qx,1−x=−1ly+1limn→y∏p,j=1j<nqj.



(37)









Proof. 

From Definition 3, we easily compute that


Bpρ,qx,1−x=Γpρ,qxΓpρ,q1−xΓpρ,q1=−Γpρ,qxΓpρ,q1−x,








which implies the claimed result in Equations (33) and (34) in conjunction with Equations (21) and (23). □





Remark 6.

The results derived in this part are generalizations of the results obtained in [5,10].






5. Conclusions


In this paper, we have firstly generalized p-adic factorial function and p-adic gamma function based on ρ,q-numbers. Utilizing these generalizations, we have constructed some recurrence relations and identities. By using some properties of ρ,q-numbers, we have derived several new and interesting identities and formulas for n!pρ,q and Γpρ,qx. As an application, we have derived the p-adic ρ,q-Euler constant by means of the p-adic ρ,q-gamma function and have given a limit representation for the foregoing constant. Moreover, we have considered ρ,q-extension of the p-adic beta function via the p-adic ρ,q-gamma function and then we have acquired several formulas and identities.
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