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Abstract: In this paper, a hybrid model in Cartesian coordinates combining a two-dimensional (2-D)
generic magnetic equivalent circuit (MEC) with a 2-D analytical model based on the Maxwell–Fourier
method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method
and the Fourier’s series) is developed. This model coupling has been applied to a U-cored static
electromagnetic device. The main objective is to compute the magnetic field behavior in massive
conductive parts (e.g., aluminum, magnets, copper, iron) considering the skin effect (i.e., with the
eddy-current reaction field) and to predict the eddy-current losses. The magnetic field distribution
for various models is validated with 2-D and three-dimensional (3-D) finite-element analysis (FEA).
The study is also focused on the discretization influence of 2-D generic MEC on the eddy-current
loss calculation in conductive regions. Experimental tests and 3-D FEA have been compared with
the proposed approach on massive conductive parts in aluminum. For an operating point, the
computation time is divided by ~4.6 with respect to 3-D FEA.

Keywords: eddy-current losses; experiment; hybrid model; magnetic equivalent circuit; numerical;
Maxwell–Fourier method

1. Introduction

1.1. Context of This Paper

Political and economic issues are one of the main drawback of permanent-magnet (PM)
synchronous machines (PMSMs) due to the presence of rare-earth PMs. Indeed, economic dependency
constitutes a strong objective for industrial electronics companies and that is the reason why industry
and academia conduct research on PM-less machines (e.g., synchronous or switched-reluctance
machines, induction machines) [1]. However, today, PMSMs are one of the most competitive machines
for their high electromagnetic performances, massive torque, high efficiency, and low torque ripple [2,3].
Nevertheless, the speed variation leads to variable magnetic fields constituted of: (i) temporal harmonics
due to the current waveform (e.g., sinusoidal, six-step rectangular, pulse-width modulation currents,
etc.), and (ii) spatial harmonics, both the stator slotting permeance and the magnetomotive force (MMF)
distribution [4,5]. Consequently, eddy-currents appear inside the PM volume, which contributes to
supplement losses, namely eddy-current losses.

At high-speed or high-frequency, PM losses can be important [4]. The electrical conductivity can
also be affected at high temperatures, leading to a loss increase and faulty conditions due to the PM.
Therefore, the study of this phenomenon is required to predict the PM eddy-current losses in order to
improve the design procedure in electromagnetic devices. Different formulations have been developed
in order to estimate these eddy-current losses, such as: (i) semi-analytical methods based on the
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electrical equivalent circuit (EEC) and/or magnetic equivalent circuit (MEC) [6], (ii) analytical methods
based on the formal resolution of Maxwell’s equations [4,7–10], and (iii) the numerical hybrid method
based on the 3-D finite-element analysis (FEA) and the 3-D finite-difference method [11]. In [12,13],
the model enables consideration of both spatial and temporal harmonics using a resistance-limited
magnetic potential vector to formulate the system resolution. In [14], the eddy-currents induced by the
magnetic field variation are computed by solving the Maxwell’s equations. The losses are calculated by
using the integral volume accordingly with the eddy-current calculated previously. Also, eddy-currents
could be considered as additional induced terms in the Ampere laws [15]. The armature reaction can
be modeled by MMF sources [16], or by including hysteresis and eddy-current coefficients [17,18].

In [19,20], the eddy-currents are obtained by additional capacitors in the MEC. Coupling an EEC
with a MEC or a 2-D solution of Maxwell’s equations is also used in [21]. The authors conclude that
the armature reaction does not contribute significantly to the increase of the PM eddy-current losses.
The advantage of this method consists of the separation of the magnetic phenomenon from those
of the EEC responsible for the magnetic field reaction. In [22], a magnetic inductance can also be
incorporated in the MEC where the eddy-currents can be modeled by short single coil encircling iron
elements with a resistance. In [23,24], an EEC taking into account to the magnetic field reaction has
been considered. The local quantities can be derived from MEC or FEA. Using the EEC, the authors
consider the eddy-currents by incorporating a magnetic inductance in a regular MEC. This was applied
to a static electromagnetic device as well as a PMSM. A similar approach based on a coupling model
between a MEC and an EEC is used in [25], where the 3-D MEC serves to compute the flux crossing
perpendicularly the section of the massive conductive part and gives the induced voltage, while the
EEC is used to compute the eddy-currents losses [26]. It is explained in [27] how to incorporate the
eddy-current losses in 3-D FEA. It can also be found in [28] a 3-D approach method using a magnetic
conductance. An eddy-current loss estimation made by using an EEC is detailed in [29] to modelize a
PMSM, where the resolution of equation systems are done simultaneously with multi-slice 2-D FEA. A
hybrid method for the eddy-current loss calculation was proposed in [30]. It combines a 2-D transient
FEA to obtain the magnetic field distribution in PMs and a 2-D analytical model to determine resulting
eddy-current losses. The FEA output is used as the data input of the analytical method. The results are
validated by 3-D transient FEA computations and by experimental measurements.

1.2. Objectives of This Paper

The major drawbacks of the previously cited papers are linked to the high computational time and
depend strongly on the FEA. A model coupling (or a hybrid model), combining an analytical model
based on the Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the
separation of variables method and the Fourier’s series) in massive conductive parts (e.g., aluminum,
PMs, copper, iron) with a generic MEC, appeared as a promising solution [31]. MECs are largely used
in modeling with a greater or lesser time depending on the fineness applied to the reluctances network.
Analytical methods are also well-known for their short computation time. Therefore, unlike [30], it is
necessary to combine these two models in order to find a good compromise between the computation
time and the model accuracy. Hence, the scientific objective of this paper is to describe this type of
hybrid model by validating it with numerical and experimental results.

The 2-D generic MEC determine the magnetic flux density distribution in massive conductive
parts without the skin effect (i.e., without the eddy-current reaction field). The 2-D analytical model
based on the Maxwell–Fourier method calculates the magnetic field distribution in massive conductive
parts considering the skin effect as well as the resultant eddy-current density. The boundary conditions
(BCs) imposed on the 2-D analytical model are equivalent to the magnetic field obtained from the MEC.
Therefore, the 2-D analytical model will be applied across different layers in the y-axis of massive
conductive parts. From local quantities with the skin effect, the 3-D eddy-current loss distribution in
massive conductive parts can be observed. It is interesting to note that special attention should be paid
to BCs of the 2-D analytical model. Frequently, only the middle component of the magnetic field (i.e.,
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by assuming a uniform magnetic field) is taken to calculate the eddy-current losses [7,30]. In this work,
the BC number influence is accounted for by applying three different limit conditions. Moreover, this
paper contributes to the study of the discretization influence in order to reduce the computer time
consumed for optimization of the design and takes into account to the eddy-current losses in thermal
design in a more accurate manner.

This paper is organized as follows. First, Section 2 describes the U-cored static electromagnetic
device used to validate the proposed approach with 3-D FEA and experimental results. Secondly, the
model coupling is exposed by describing the 2-D generic MEC and the 2-D analytical model based on
the Maxwell–Fourier method. The magnetic field distribution for various models is validated with
2-D and 3-D FEA [32]. The mathematic formulation as well as the experimental and 3-D numerical
validation of eddy-current losses in massive conductive parts in aluminum are given in Section 3. The
discretization influence is also discussed in the same section.

2. Model Coupling: 2-D Generic MEC/Maxwell–Fourier

2.1. U-Cored Static Electromagnetic Device

The 2-D view of the U-cored static electromagnetic device is shown in Figure 1. It is constituted
of a mobile armature that allows the insertion of massive aluminum conductive parts of various
thicknesses. Two coils having Nt series turns are connected in parallel. The electromagnetic device
is supplied with a sinusoidal voltage. The magnetic circuit is not saturated with the voltage levels.
Therefore, the current waveform is purely sinusoidal with a maximum amplitude of Imax. The current
direction in the conductor is defined by ⊗ for the forward conductor and � for return conductor. The
U-cored static electromagnetic device as well as the experimental tests have been presented in [33].
The geometrical and physical parameters are detailed respectively in Tables 1 and 2.

Math. Comput. Appl. 2019, 24, x FOR PEER REVIEW 3 of 24 

 

attention should be paid to BCs of the 2-D analytical model. Frequently, only the middle component 
of the magnetic field (i.e., by assuming a uniform magnetic field) is taken to calculate the eddy-current 
losses [7,30]. In this work, the BC number influence is accounted for by applying three different limit 
conditions. Moreover, this paper contributes to the study of the discretization influence in order to 
reduce the computer time consumed for optimization of the design and takes into account to the 
eddy-current losses in thermal design in a more accurate manner. 

This paper is organized as follows. First, Section 2 describes the U-cored static electromagnetic 
device used to validate the proposed approach with 3-D FEA and experimental results. Secondly, the 
model coupling is exposed by describing the 2-D generic MEC and the 2-D analytical model based 
on the Maxwell–Fourier method. The magnetic field distribution for various models is validated with 
2-D and 3-D FEA [32]. The mathematic formulation as well as the experimental and 3-D numerical 
validation of eddy-current losses in massive conductive parts in aluminum are given in Section 3. 
The discretization influence is also discussed in the same section. 

2. Model Coupling: 2-D Generic MEC/Maxwell–Fourier 

2.1. U-Cored Static Electromagnetic Device 

The 2-D view of the U-cored static electromagnetic device is shown in Figure 1. It is constituted 
of a mobile armature that allows the insertion of massive aluminum conductive parts of various 
thicknesses. Two coils having tN  series turns are connected in parallel. The electromagnetic device 
is supplied with a sinusoidal voltage. The magnetic circuit is not saturated with the voltage levels. 
Therefore, the current waveform is purely sinusoidal with a maximum amplitude of maxI . The 
current direction in the conductor is defined by ⊗  for the forward conductor and   for return 
conductor. The U-cored static electromagnetic device as well as the experimental tests have been 
presented in [33]. The geometrical and physical parameters are detailed respectively in Tables 1 and 
2. 

 

(a) 

 

(b) 
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parameters (see Table 1 for the various parameters). 
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Figure 1. U-cored static electromagnetic device: (a) Experimental test [33], and (b) geometrical
parameters (see Table 1 for the various parameters).

Table 1. Geometrical parameters.

Parameters, Symbols (Units) Values

Depth, d (mm) 43
Width, w (mm) 43

Coil height and width, {hc; wc} (mm) {77; 10}
Coil section, Sc = hc ·wc (mm2) 770

Yoke height and length,
{
hy; ly

}
(mm) {43; 150}

Thickness of massive part, hmp (mm) 6 or 10
Height of overhang top and low, {hot; hob} (mm) {19; 4}
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Table 2. Physical parameters.

Parameters, Symbols (Units) Values

Electrical frequency, f (Hz) 50
Maximal current, Imax (A) 0 to 8.2

Number of turns, Nt (-) 500
Relative permeability of massive parts in aluminum, µrmp (-) 1

Electrical conductivity of massive parts in aluminum, σmp (S/m) 38.46× 106

Vacuum permeability, µ0 (H/m) 4π × 10−7

Relative permeability of iron core, µn (-) 1500

2.2. Proposed Approach

The approach consists of combining two models, viz.: (i) a 2-D generic MEC, and (ii) a 2-D
analytical model based on the Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s
equations by using the separation of variables method and the Fourier’s series). The 2-D generic MEC
gives us the ability to determine the magnetic flux density distribution in massive conductive parts
without the skin effect, while the 2-D analytical model provides the local quantities with the skin effect.
By applying the Poynting vector, the eddy-current losses in massive conductive parts across a closed
surface can be determined. Figure 2 shows the principle of model coupling.Math. Comput. Appl. 2019, 24, x FOR PEER REVIEW 5 of 24 
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It can be noticed that the input data of the 2-D generic MEC are the geometrical and physical
parameters (see Tables 1 and 2) as well as the discretization vectors in both directions (i.e., x- and
y-axis). The output data of the 2-D generic MEC (i.e., the magnetic flux density without the skin effect)
will be used as the input data of the 2-D analytical model, where the main variables are the skin depth
of the massive conductive part and the spatial harmonics number.

2.3. 2-D Generic MEC

2.3.1. General Assumptions

The 2-D generic MEC is based on the following simplifying assumptions:

• The saturation and hysteresis effects are neglected;
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• The end-effects in the z-axis are neglected (i.e., the semi-analytical is assumed to be in 2-D);
• The eddy-current effects in all materials (e.g., the massive parts, the copper, the iron) are neglected

(i.e., the electrical conductivities are assumed to be null);
• The magnetic materials are considered as isotropic;
• The mechanical stress on the nonlinear B(H) curve is ignored;
• Since the magnetic circuit is not saturated, the magnetic permeability is supposedly constant,

corresponding to the linear zone of the nonlinear B(H) curve.

2.3.2. Automatic Mesh

In an (x, y) coordinate system, Figure 3 represents the generalized discretization of a U-cored
static electromagnetic device for the development of 2-D generic MEC [34,35]. The device is inserted
in an infinite box whose outer edges respect the Dirichlet’s conditions. It can be divided into n = 9
zones in the x-axis and n′ = 8 zones in the y-axis. The intersection of these zones in both axes gives
rise to mesh elements {j, i}, having the same magnetic permeability, of size lxi × ly

j with i = 1, . . . , n and
j = 1, . . . , n′. So, the total number of mesh elements is equal to n× n′ = 72. The mesh elements

{
j, i

}
can be discretized one or several bidirectional (BD) blocks from {Ndy

j , Ndx
i } which are respectively the

vectors (of dimension n′ × 1 and n× 1) of discretization number in the y- and x-axis for the zone j and i
(see Figure 3a).Math. Comput. Appl. 2019, 24, x FOR PEER REVIEW 6 of 24 
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The mesh elements are so composed of BD blocks depending on the discretization chosen by the
designer. Figure 3b describes an example of discretization for the mesh element {1, 1} (see the mesh
element in sky blue color in Figure 3a) with Ndx

1 = 2 and Ndy
1 = 3, where the number of BD blocks is

equal to Ndx
1 ×Ndy

1 = 6. The BD blocks, connected between them by the loop fluxes ψ and giving to
the magnetic flux the possibility to flow in both directions, are described by a middle-point related to
(except for the outer edges of the device due to Dirichlet’s conditions):

• 4 branch MMFs (i.e., two x-MMFs and two y-MMFs);
• and 4 magnetic reluctances (i.e., two x-reluctances and two y-reluctances) crossed by branch fluxes

ϕ.

In general, the number of loop fluxes ψ is given by

Nψ = Nx
ψ ·N

y
ψ, (1a)

Nx
ψ = p− 1 with p =

n∑
i=1

Ndx
i , (1b)

Ny
ψ = m− 1 with m =

n′∑
j=1

Ndy
j . (1c)

The number of magnetic reluctances (or branch fluxes and MMFs) is defined by

N = Nx + Ny (2a)

Nx = m · P with P = 2Nx
ψ, (2b)

Ny = p ·M with M = 2Ny
ψ. (2c)

It is interesting to note that the number of BD blocks can be given by NBD = p ·m.
One should notice that the accuracy and the computational time of 2-D generic MEC rise by

increasing the number of BD blocks in each mesh element.

2.3.3. Matrix Formulation

Using the Maxwell’s equations as well as the magnetic material equations, the 2-D generic MEC
(where the loop fluxes ψ are the unknowns) can be governed by

[F] − [χ] · [<] · [χ]T · [ψ] = 0, (3a)

[F] = [χ] · [MMF], (3b)

in which

• [ψ] is the loop fluxes vector (of dimension Nψ × 1);
• [F] is the loop MMFs vector (of dimension Nψ × 1);
• [MMF] is the branch MMFs vector (of dimension N × 1) defined by

[MMF] =
[
[MMFx]

[MMFy]

]
. (4)

The branch MMFs vectors [MMFx] and [MMFy] in the x- and y-axis (of dimension Nx
× 1 and

Ny
× 1) are given by



Math. Comput. Appl. 2019, 24, 60 7 of 22

[MMF•] =



MMF•
{1,1}

...
MMF•

{1,n}
...

MMF•
{n′,1}

...
MMF•

{n′,n}


, (5)

with

MMFx
{ j,i} =


[Z](2·Ndx

i −1)·Ndy
j ,1 for i =

∣∣∣∣∣∣ 1
n

∀ j

otherwise [Z]2·Ndx
i ·Ndy

j ,1

(6a)

MMFy
{ j,i} =


[Z](2·Ndy

j −1)·Ndx
i ,1 for j =

∣∣∣∣∣∣ 1
n′

∀i

fMMF(Nt, Imax) · [O]2·Ndx
i ·Ndy

j ,1 for

∣∣∣∣∣∣ j = 5
i = 2 to 4 ∧ 6 to 8

otherwise [Z]2·Ndx
i ·Ndy

j ,1

(6b)

where [Z]
•,∗ is the zeros matrix of dimension • × ∗, [O]

•,∗ is the ones matrix of dimension • × ∗, and
fMMF(Nt, Imax) is a MMF function explained in [35]. Figure 4a represents the waveform of this function
at t = 0 s corresponding to Imax. The MMF curve for a coil is defined by a trapezoidal waveform
whose Ampere-turns change linearly from 0 to Nt · Imax for the forward conductor ⊗ and from Nt ·

Imax to 0 for the return conductor �. Figure 4b describes an example of MMF values according to the
discretization number for the mesh element with Ndy

5 = 2 and Ndx
2 = 2. All BD blocks in the y-axis

have the same values of MMFs. The MMF values differ with the discretization number according to
the MMF slope in the conductor.

• [<] the diagonal matrix of magnetic reluctances (of dimension N ×N) defined by

[<] =

[
[<x] 0

0 [<y]

]
, (7)

The diagonal matrices of magnetic reluctances [<x] and [<y] in the x- and y-axis (of dimension
Nx
×Nx and Ny

×Ny) are given by

[<] =

[
[<x] 0

0 [<y]

]
, (8)

with [
<

x
{ j,i}

]
= <x

j,i ·


[O]Ndy

j ,2·Ndx
i −1 for i =

∣∣∣∣∣∣ 1
n

∀ j

otherwise [O]Ndy
j ,2·Ndx

i

(9a)

[
<

y
{ j,i}

]
= <

y
j,i ·


[O]2·Ndy

j −1,Ndx
i

for j =

∣∣∣∣∣∣ 1
n′

∀i

otherwise [O]2·Ndy
j ,Ndx

i

, (9b)

where
<

x
j,i = Lx

i /
(
µ j,i · Sx

j

)
, (10a)

<
y
j,i = Ly

i /
(
µ j,i · S

y
j

)
, (10b)
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in which µ j,i is the absolute magnetic permeability of mesh elements
{
j, i

}
defined by

µ j,i = µ0 ·


µri for

∣∣∣∣∣∣ {2∧ 7, 3 to 7}
{4 to 6, 3∧ 7}

µrmp for {3, 3∧ 7}
otherwise 1

. (11)
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values according to the discretization number (e.g., for the mesh element {5, 2} with Ndy

5 = 2 and
Ndx

2 = 2).

The lengths (viz., Lx
i and Ly

j ) and sections (viz., Sx
j and Sy

i ) of magnetic reluctances in the x- and
y-axis are given in Table 3.
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Table 3. Lengths and sections of magnetic reluctances.

Length (m) Section (m2)

x-axis Lx
i =

lxi
2·Ndx

i
Sx

j =
d·ly

j

Ndy
j

y-axis Ly
j =

ly
j

2·Ndy
j

Sy
i =

d·lxi
Ndx

i

• [χ] is the topological (or incidence) matrix (of dimension Nψ ×N) defined by

[χ] =
[
[χx] [χy]

]
, (12)

where [χx] and [χy] are respectively the topological matrices in the x- and y-axis (of dimension Nψ ×Nx

and Nψ ×Ny). The elements [χ]k,k′ are then equal to [36]:

[χ]k,k′ =

 ±1 i f φk′ ∈ ψ
±

k
0 i f φk′ <

(
ψ+

k ∪ψ
−

k

) , (13)

with ψ+
k —branch and loop fluxes have the same direction, and —branch and loop fluxes have opposite

directions. Therefore, the topological matrices [χx] and [χy] are given by

[χx] = [Y]Ny
ψ
⊗

(
[I]Nx

ψ,Nx
ψ
⊗ [O]1,2

)
, (14a)

[χy] = [I]Ny
ψ,Ny

ψ
⊗

[
[Y]Nx

ψ
[Y]Nx

ψ

]
, (14b)

where [I]
∗,∗ is the identity matrix of dimension ∗ × ∗, ⊗ is the Kronecker’s product, and

[Y]
∗
=

1 2 · · · · · · ∗+ 1
−1 1

−1 1
. . . . . .
−1 1


1
2
...
∗

. (15)

2.3.4. Problem Solving

To solve the Cramer’s system (3), a numerical matrix inversion is required for the calculation
of [ψ], viz., [ψ] = [A]−1[F] with [A] = [χ] · [<] · [χ]T. For a saturated system, it is interesting to note
that (3) can be solved iteratively with a constant relative magnetic permeability µri according to the
nonlinear B(H) curve at each iteration by using the fixed-point iteration method. The flowchart of the
nonlinear system solving is detailed in [37].

Knowing [ψ], the branch fluxes vector [φ] (of dimension N × 1) and the magnetic flux densities
vector [B] (of dimension N × 1) are respectively defined by

[φ] = [χ]T · [ψ], (16)

[B] = [φ]/[S], (17)

with the reluctances surface vector (of dimension N × 1) in the various BD blocks given by

[S] =
[
[Sx]

[Sy]

]
(18)
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The reluctances surface vectors [Sx] and [Sy] in the x- and y-axis (of dimension Nx
× 1 and Ny

× 1)
are given by

[S•] =



S•
{1,1}
...

S•
{1,n}
...

S•
{n′,1}

...
S•
{n′,n}


, (19)

with

Sx
{ j,i} = Sx

j,i ·


[Z](2·Ndx

i −1)·Ndy
j ,1 for i =

∣∣∣∣∣∣ 1
n

∀ j

otherwise [Z]2·Ndx
i ·Ndy

j ,1

(20a)

Sy
{ j,i} = Sy

j,i ·


[Z](2·Ndy

j −1)·Ndx
i ,1 for j =

∣∣∣∣∣∣ 1
n′

∀i

otherwise [Z]2·Ndx
i ·Ndy

j ,1

(20b)

2.3.5. Comparing with 2-D FEA

The validation of 2-D generic MEC has been realized by Cedrat’s Flux2D software package (i.e.,
an advanced FE method based numeric field analysis program) [32]. The parameters of a U-cored
static electromagnetic device have been sent to a 2-D FEA pre-processor in the application “Magneto
Static 2-D“. The 2-D FEA is done with the same assumptions as the 2-D generic MEC (see Section 2.3.1).
It has been implemented in Matlab® by using the sparse matrix/vectors. The discretization in the x-
and y-axis have been considered as follows

Ndx =
[

1 4 k 4 14 4 k 4 1
]
, (21a)

Ndy =
[

1 10 k 5 6 6 10 1
]
, (21b)

where k = 2; 6; 10; 14; 18; 22; 24 is the discretization number in massive conductive parts.
Consequently, for the high discretization (i.e., k = 24), (3) is composed of NBD = 5040 BD blocks,

Nψ = 4898 loop fluxes, and N = 19, 874 branch fluxes, which is much smaller than the 2-D FEA mesh
having 38,897 nodes, 2081 line elements, and 19,288 surface elements of the second order (viz., the
triangles number of system). Figure 5 shows the consumption time for the 2-D generic MEC versus k.
By using the high discretization (i.e., k = 24) in the 2-D generic MEC, the computation time is the same
for both modeling methods, viz., ~4 s.

The validation paths of B =
{
Bx; By; 0

}
for the comparison are given in Figure 6. The waveforms

of Bx and By are represented on various paths in Figures 7–9 for Imax = 7.78A at t = 0 s and hmp = 6 mm.
The dotted lines represent the components of B calculated by the 2-D FEA and the circles correspond
to 2-D generic MEC. It can be seen that a very good agreement is obtained for the components of B
whatever the paths. Figures 7a and 9b confirm that the electromagnetic device is not saturated with a
maximum level of B equal to 1 T. In Figure 8a, it is interesting to note that the level of Bx on the edges
of massive conductive parts are not the same, which is due to the electromagnetic device structure.
Indeed, the magnetic leakages are more important inside than outside. It should be noted that Bx in
massive conductive parts is considered negligible in relation to By (see Figure 8). Moreover, Figure 10
presents a zoom of By in the left massive conductive part for the various paths (viz., Pathmp1 to Pathmp4)
between x1 and x4 (see Figure 6). Due to leakage fluxes, the levels of By are different at the edges and in
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the middle of the massive conductive part whatever the path in the y-axis. These various magnetic flux
densities will be used as BCs in the 2-D analytical model based on the Maxwell–Fourier method, which
calculate the magnetic field distribution considering the skin effect as well as the resultant eddy-current
density. It is interesting to note that the path number depends on the discretization number in the
y-axis, so the influence of the discretization number will be discussed in Section 3 in the eddy-current
loss calculation.
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Math. Comput. Appl. 2019, 24, x FOR PEER REVIEW 12 of 24 

 

The validation paths of { }; ; 0x yB B=B  for the comparison are given in Figure 6. The waveforms 

of xB  and yB  are represented on various paths in Figures 7–9 for max 7.78 AI =  at 0 st =  and 
6 mmmph = . The dotted lines represent the components of B  calculated by the 2-D FEA and the 

circles correspond to 2-D generic MEC. It can be seen that a very good agreement is obtained for the 
components of B  whatever the paths. Figures 7a and 9b confirm that the electromagnetic device is 
not saturated with a maximum level of B  equal to 1 T. In Figure 8a, it is interesting to note that the 
level of xB  on the edges of massive conductive parts are not the same, which is due to the 
electromagnetic device structure. Indeed, the magnetic leakages are more important inside than 
outside. It should be noted that xB  in massive conductive parts is considered negligible in relation 
to yB  (see Figure 8). Moreover, Figure 10 presents a zoom of yB  in the left massive conductive part 
for the various paths (viz., Pathmp1 to Pathmp4) between 1x  and 4x  (see Figure 6). Due to leakage 
fluxes, the levels of yB  are different at the edges and in the middle of the massive conductive part 
whatever the path in the y-axis. These various magnetic flux densities will be used as BCs in the 2-D 
analytical model based on the Maxwell–Fourier method, which calculate the magnetic field 
distribution considering the skin effect as well as the resultant eddy-current density. It is interesting 
to note that the path number depends on the discretization number in the y-axis, so the influence of 
the discretization number will be discussed in Section 3 in the eddy-current loss calculation. 

 
Figure 6. Paths of magnetic flux density validation for the comparison. 

 

(a) 

 

(b) 

y

x+
z

6x 7x 8x5x4x3x2x1x

Pathm1

Pathm2

Pathm3

Pathmp1
Pathmp2
Pathmp3
Pathmp4

Figure 7. Waveform of B for Pathm1 with Imax = 7.78A at t = 0 s and hmp = 6 mm: (a) x- and
(b) y-component.
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Figure 10. The y-component of B in the left massive conductive part (between x1 and x4) for various
paths with Imax = 7.78 A at t = 0 s and hmp = 6 mm.

2.4. 2-D Maxwell–Fourier

2.4.1. General Assumptions

The 2-D analytical model based on the Maxwell–Fourier method is defined by the following
simplifying assumptions:

• The massive conductive parts are excited by the magnetostatic magnetic field from the 2-D generic
MEC which is assumed normal to the xz-plane;

• Since the magnetic circuit is not saturated (see Figures 7a and 9b), the excitation magnetic field
varies sinusoidally in time which is similar to the power supply source;
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• The resultant eddy-current density in massive conductive parts has two components, i.e., J= {Jx; 0;
Jz};

• The relative magnetic permeability and electrical conductivity of massive conductive parts (i.e.,
µmp and σmp) are assumed to be constant.

It is interesting to note that the 2-D analytical model, for calculating the magnetic field distribution
with the skin effect as well as the resultant eddy-current density, will be applied across different layers
in the y-axis of massive conductive parts (viz., the mesh elements {3, 3} and {3, 7} in Figure 3a). These
different layers depend on the discretization Ndy

3 of BD blocks in massive conductive parts.

2.4.2. Governing Partial Differential Equations (PDEs) in Cartesian Coordinates

By assuming that the term ∂D/∂t (with D as the displacement field vector) is negligible in
comparison with the resultant eddy-current density J, the Maxwell’s equations are represented by

∇×H = J·implying ∇•J = 0 (Maxwell−Ampère), (22a)

∇× E = −∂B/∂t (Maxwell− Faraday), (22b)

∇•B = 0 (Maxwell− Thomson), (22c)

where E is the electrical field vector.
In a conductor, E is linked to J by

J = σ · E (Ohm’s law), (23)

where σ is the electrical conductivity.
The field vectors B and H are coupled by

B = µ ·H + µ0 ·Mr (Magnetic material equation), (24)

where Mr is the remnant magnetization vector (with Mr , 0 for the PMs or Mr = 0 for the other
materials).

Inside a linear magnetic or nonmagnetic material of constant electrical conductivity without
electromagnetic sources (i.e., Mr = 0), the magnetodynamic PDEs in terms of H can be defined by

∇
2H− µ · σ ·

∂H
∂t

= 0 (Diffusion equation). (25)

From the general assumptions, and using the complex notation, the magnetic field H =
{
0; Hσy; 0

}
inside the massive conductive part considering the skin effect can be written as

Hσy = <
{
Hσy · e j·ω·t

}
(26)

where j =
√
−1 and ω = 2π · f is the electrical pulse.

Therefore, (25) becomes

∇
2Hσy − α

2
·Hσy = 0 with α2 = j · µmp · σmp ·ω, (27)

which is the complex Helmholtz’s equation.
In (x, z) coordinate system, the distribution of the magnetic field inside the massive conductive

part considering the skin effect is then governed by

∂2Hσy

∂x2 +
∂2Hσy

∂z2 − α2
·Hσy = 0 (28)
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2.4.3. Definition of BCs

The BCs at the edges of massive conductive parts for the 2-D analytical model are equivalent to
the magnetostatic magnetic fields of 2-D generic MEC (see Section 2.3). Usually, BCs are considered
homogeneous at the edges, which are often equal to the excitation magnetic field value in the middle
of the massive conductive part as [7,30]. From the 2-D generic MEC simulations, the magnetic field
levels are different at the edges and in the middle of the massive conductive part, whatever the path in
the y-axis (see Figure 10). Hence, BCs in the 2-D analytical model are considered as non-homogeneous.
Figure 11 represents the BCs at the edges of massive conductive parts in a (x, z) coordinate system and
∀l, where Ml

s, Ll
s, and Rl

s are respectively the magnetostatic magnetic field values in the middle, at the
left edge, and at the right edge of massive conductive parts. The index l = 1, . . . , 2 ·Ndy

3 is the path in
the y-axis (or the parallel path in the x-axis). Figure 12 shows the value locations of Ml

s, Ll
s, and Rl

s in
the massive conductive part from the 2-D generic MEC in a (x, y) coordinate system.
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2.4.4. General Solution of the Magnetic Field

Using the separation of variables method, the 2-D general solution of Hσy in both directions (i.e.,
x- and y-edges) can be written as a Fourier’s series, ∀l,

Hσy =
∞∑

h=0

 cl
xh · ch(χh · z)

· · ·+ dl
xh · sh(χh · z)

 ·
 el

xh · cos(βh · x)

· · ·+ f l
xh · sin(βh · x)

+ ∞∑
k=0

 cl
zk · cos(λk · z)

· · ·+ dl
zk · sin(λk · z)

 ·
 el

zk · ch(δk · x)

· · ·+ f l
zk · sh(δk · x)

, (29a)
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where cl
xh ~ f l

xh and cl
zk ~ f l

zk are the integration constants, βh and λk are the periodicity of Hσy in the x-
and z-axis, h and k are the spatial harmonic orders, and

χh =
√
α2 + βh

2, (29b)

δk =

√
α2 + λk

2. (29c)

The coefficients cl
xh ~ f l

xh and cl
zk ~ f l

zk are determined by applying the BCs illustrated in Figure 9.
Therefore, (29a) becomes, ∀l,

Hσy = Hl
s ·

 ch(α · z)

ch
(
α · d

2

) + ∞∑
k=1,3,...

el
zk ·

ch(δk · x)

ch
(
δk ·

w
2

) + f l
zk ·

sh(δk · x)

sh
(
δk ·

w
2

)  · sin c
(
λk ·

d
2

)
· cos(λk · z)

, (30a)

el
zk =

Rl
s + Ll

s

Ml
s
− 2

(
λk
δk

)2, (30b)

f l
zk =

Rl
s − Ll

s

Ml
s

, (30c)

with λk = kπ/d.
It should be noted that if Ml

s = Ll
s = Rl

s then (30) is identical to the relation provided in [7].
Moreover, when α = 0 (viz., σmp = 0 S/m and/or f � 0+ Hz) the field distribution is equivalent to the
excitation magnetic field.

2.4.5. Resultant Eddy-Current Density

From the general assumptions, and using the complex notation, the components of resultant
eddy-current J = {Jx; 0; Jz} in massive conductive parts can be written as

Jx = <
{
Jx · e j·ω·t

}
. (31a)

Jz = <
{
Jz · e j·ω·t

}
. (31b)

Using J = ∇ × H, the complex components of J in Cartesian coordinates (x,z) can be deduced by

Jx =
∂Hσy

∂z
, (32a)

Jz =
∂Hσy

∂x
, (32b)

which leads to

Jx = Hl
s ·

−α · sh(α · z)

ch
(
α · d

2

) + ∑
k=1,3,...

λk ·

el
zk ·

ch(δk · x)

ch
(
δk ·

w
2

) + f l
zk ·

sh(δk · x)

sh
(
δk ·

w
2

)  · sin c
(
λk ·

d
2

)
· sin(λk · z)

 (33a)

Jz = Hl
s ·

∑
k=1,3,...

δk ·

el
zk ·

sh(δk · x)

ch
(
δk ·

w
2

) + f l
zk ·

ch(δk · x)

sh
(
δk ·

w
2

)  · sin c
(
λk ·

d
2

)
· cos(λk · z) (33b)

2.4.6. Comparing with 3-D FEA

The validation of the 2-D analytical model based on the Maxwell–Fourier method has been
realized using Cedrat’s Flux3D software package by using the application “Harmonic State 3-D” [32].
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The analytical solution of Hσy and J = {Jx; 0; Jz} have been computed with a finite number of spatial
harmonic term 2 ·Kmax − 1 = 241. The 3-D FEA mesh consists of 32,169 surface and 93,031 volume
elements of second order. Figure 13 shows the consumption time for the hybrid model versus k for
only one operating point. By using the high discretization (i.e., k = 24) in the 2-D generic MEC for the
BCs of the 2-D analytical model, the computation time for the hybrid model is greatly reduced as short
as 6.5 s, whereas the 3-D FEA requires as much as 30 s. The proposed approach can thus reduce the
computation time by approximately 4.6-fold compared to 3-D FEA.
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Figure 13. Consumption time for the hybrid model according to k (viz., the discretization number in
massive conductive parts) for only one operating point.

Figure 14 shows the magnetic field distribution considering the skin effect on a 2-D grid parallel to
the xz-plane located in the middle of the massive conductive part in the y-axis. The waveforms of Hσy

have been calculated with Imax = 7.78A at t = 0 s and hmp = 6 mm for two values of electrical frequency
(viz., 50 Hz and 1600 Hz). Also for the same conditions, the evolution of the resultant eddy-current
density is given in Figure 15. There is a very good agreement of the results given by analytic and
numeric calculation. The electrical frequency effect on the behavior of Hσy and J can be clearly seen. In
these figures, it can be seen that the skin effect appears slightly at 50 Hz, contrary to 1600 Hz where the
massive conductive part act as a barrier to the crossing flux. The error order is less than 16% for Hσy

(viz., 12% at 50 Hz and 16% at 1600 Hz) and less than 4% for J (viz., 1% at 50 Hz and 4% for 1600 Hz).
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3. 3-D Eddy-Current Loss Calculation

3.1. Mathematic Formulation

The instantaneous density of power flow
∏

at a point is defined by the Poynting vector [7]∏
= E×H. (34)

Using J = σ · E = ∇ × H, this power across a closed surface, in terms de complex vectors, is given
by the instantaneous apparent power

sapp =
{

S

∏
· dS =

1
σmp
·

{

S

(J×H) · dS = p + j · q (35)

The real part of the surface integral of the complex Poynting vector gives the instantaneous ohmic
losses, and the imaginary part the instantaneous magnetic energy.

From BCs at the edges of massive conductive parts (see Figure 10a), the average of sapp over an
electrical cycle T = 2π/ω can be defined by, ∀l,

Sapp =
〈
sapp

〉
=

hl

2σmp
·


w/2∫
−w/2

2 · Jx ·Hσy
∗
∣∣∣∣
z=−d/2

· dx−

d/2∫
−d/2

(
Jz ·Hσy

∗
∣∣∣∣
x=−w/2

− Jz ·Hσy
∗
∣∣∣∣
x=w/2

)
· dz

 (36)

where hl = hmp/
(
2 ·Ndy

3

)
is the layers thickness in the y-axis of the massive conductive part.

After the development, by substituting (30) and (33a) into (36), the average density of power flow
is then given by, ∀l,

Sapp = Pl + j ·Ql =
hl
·

(
Hl

s

)2

σmp
·

w · α ·
sh

(
α · d

2

)
ch

(
α · d

2

) + ∑
k=1,3,...

2δk

d · (λk)
2 ·


(
el

zk

)2
·

sh(δk·
w
2 )

ch(δk·
w
2 )

· · ·+
(

f l
zk

)2
·

ch(δk·
w
2 )

sh(δk·
w
2 )


 (37)

It should be noted that P =
∑
i

Pl only represents the 3-D eddy-current losses in massive

conductive parts.
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3.2. Experimental and Numerical Validations

In what follow, the analytical results are obtained by applying only one BC (viz., Ml
s = Ll

s = Rl
s)

and also by applying three different BCs. The discretization impact of 2-D generic MEC in massive
conductive parts is also discussed. The 3-D eddy-current loss results given by the model coupling are
compared with those obtained by 3-D FEA and experimental tests. The experimental and numerical
validations were performed at f = 50 Hz for two thicknesses in aluminum, viz., 6 mm and 10 mm.

3.2.1. Experimental Acquisition [33]

The eddy-current losses are calculated by using the separation of losses method. Firstly, the active
power of the U-cored static electromagnetic device without the massive conductive parts is measured,
then the active power after the insertion of massive conductive parts is measured. The difference
between these two active powers gives the eddy-current losses created by the sinusoidal variation of
the magnetic field in massive conductive parts.

3.2.2. Validation of Model Coupling with Ml
s = Ll

s = Rl
s

Figure 16 represent the evolution of P according to Imax when only the medium BC is applied over
the edges of the massive conductive part (i.e., Ml

s = Ll
s = Rl

s) for hmp = 6 mm and hmp = 10 mm. The
analytical results give a good agreement with 3-D FEA and experimental results.
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Figure 16. Validation of eddy-current losses (analytical, numerical, and experimental) in massive
conductive parts versus Imax with Ml

s = Ll
s = Rl

s for: (a) hmp = 6 mm and (b) hmp = 10 mm.

The difference between the analytical and experimental results can be linked to, ∀hmp: (i) the
experimental method, (ii) the electrical conductivity variation due to the temperature rise, and (iii)
non-homogeneous BCs in the 2-D analytical model. For the experimental method, the use of analogue
measurement instruments can affect the values obtained. In the 2-D analytical model developed, the
electrical conductivity is assumed constant and invariant according to the temperature. In reality, the
temperature variation influences the electrical conductivity values, and therefore the eddy-current
losses in the massive conductive part due to the eddy-current reaction field. Then, it is interesting
to note that the development of a magneto-thermal model would improve the error between the
analytical and experimental results. Non-homogeneous BCs at the edges of the massive conductive
part related to magnetic leakages (see Figure 10) affect to the distribution of the magnetic field Hσy

inside the massive conductive part, and therefore the eddy-current losses. However, in [38], a 3-D
generic MEC considering the skin effect would improve the volumic eddy-current loss calculation and
observe the magnetic reaction field influence of the massive conductive parts on the magnetic circuit of
the U-cored static electromagnetic device.
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3.2.3. Validation of Model Coupling with Ml
s , Ll

s , Rl
s

To study the BCs influence, three different BCs at the edges of massive conductive parts are applied
(i.e., Ml

s , Ll
s , Rl

s) (see Figure 11), and the results comparison are given in Figure 17. The results show
a good agreement with experimental results compared to those obtained with Ml

s = Ll
s = Rl

s. The
computation time is still acceptable even in high discretization.
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Figure 18 shows the normalized root-mean-square deviation (NRMSD) according to the
discretization number in both axes (i.e., x- and y-axis). The NRMSD formulation, for all studied
currents (see Table 2), is defined by

NRMSD =
RMSD

Pmeas
N − Pmeas

1
with RMSD =

√√√√√ N∑
i=1

(
Pmeas

i − Panal
i

)2

N
(38)

where N is the total number of currents used in experimental measures, Pmeas
i and Panal

i are respectively
the eddy-current losses obtained analytically and experimentally for the ith current. It can be remarked
that NRMSD decreases by increasing the discretization number, ∀hmp. With the discretization used in
(21), NRMSD is equal to 4.5% for 6 mm and 3% for 10 mm.
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The eddy-current losses were calculated on different layers in the y-axis of massive conductive
parts. Figure 19 shows the evolution of Pl at the top, middle, and bottom of the massive conductive
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part for hmp = 6 mm with a discretization Ndy
3 . It is interesting to note that the eddy-current losses

present a non-uniform distribution depending on the height of the massive conductive part. This can
lead to a non-uniform temperature distribution on the massive part. According to the magnetic field
distribution in the y-axis (see Figure 10), the level of eddy-current losses is higher at the bottom of
the massive conductive part. This is due to the magnetic flux density which presents a high level
compared to the medium layer.
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4. Conclusions

In this work, a 3-D eddy-current losses model is developed, combining a 2-D generic MEC with a
2-D analytical model based on the Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s
equations by using the separation of variables method and the Fourier’s series). This model coupling
has been applied to a U-cored static electromagnetic device [33]. The 2-D generic MEC determines the
magnetic flux density distribution in massive conductive parts without the skin effect (i.e., without
the eddy-current reaction field). The 2-D analytical model based on the Maxwell–Fourier method
calculates the magnetic field distribution in massive conductive parts considering the skin effect as
well as the resultant eddy-current density. BCs imposed on the 2-D analytical model are equivalent to
the magnetic field of the MEC. The magnetic field distribution for various models is validated with
2-D and 3-D FEA. Experimental tests and 3-D FEA have been compared with the proposed approach
for massive conductive parts in aluminum. For an operating point, the computation time is divided by
4.6 with respect to 3-D FEA. The study of the homogenous and non-homogenous BCs on the edges
of massive conductive parts has been analyzed. Moreover, according to the 2-D MEC discretization,
the model coupling is able to give more or less accurately the behavior of the magnetic field and
eddy-current distribution in the massive conductive part.

The magnetic flux density repartition in different paths parallel to the x-axis present different
variations. Consequently, the eddy-current losses present a non-uniform distribution over the massive
conductive part. This can lead to predicting the temperature distribution over the conducting region
while designing thermal components of the electromagnetic devices.

Furthermore, one advantage of this coupling model would be its exploitation in studies of PMSMs
with(out) circumferential and/or axial PMs segmentation in order to reduce the computation time,
which remains a major problem in this numerical method.
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