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Abstract: This study presents an intelligent metaheuristics-based design procedure for the
Proportional-Integral (PI) controllers tuning in the direct power control scheme for 1.5 MW Doubly
Fed Induction Generator (DFIG) based Wind Turbine (WT) systems. The PI controllers’ gains tuning
is formulated as a constrained optimization problem under nonlinear and non-smooth operational
constraints. Such a formulated tuning problem is efficiently solved by means of the proposed
Thermal Exchange Optimization (TEO) algorithm. To evaluate the effectiveness of the introduced
TEO metaheuristic, an empirical comparison study with the homologous particle swarm optimization,
genetic algorithm, harmony search algorithm, water cycle algorithm, and grasshopper optimization
algorithm is achieved. The proposed TEO algorithm is ensured to perform several desired operational
characteristics of DFIG for the active/reactive power and DC-link voltage simultaneously. This is
performed by solving a multi-objective function optimization problem through a weighted-sum
approach. The proposed control strategy is investigated in MATLAB/environment and the results
proved the capabilities of the proposed control system in tracking and control under different
scenarios. Moreover, a statistical analysis using non-parametric Friedman and Bonferroni–Dunn’s
tests demonstrates that the TEO algorithm gives very competitive results in solving global optimization
problems in comparison to the other reported metaheuristic algorithms.

Keywords: doubly fed induction generator; PI tuning; LCL-filter; passive damping; advanced
metaheuristics; Bonferroni–Dunn and Friedman’s tests

1. Introduction

Recently, the increasing consumption of electrical energy, depletion of fossil fuels and the
environmental problems related to using the non-renewable sources have promoted a growing interest
in renewable energies [1,2]. Wind power as a renewable source represents an important and a promising
solution for electrical demand and has recently gained more attention for its significant merits of
cleanness and resource abundances. Various wind energy configurations are produced from the
intensive studies and researches that are carried out in wind systems. One of the most common
configurations is the grid-connected Doubly Fed Induction Generators (DFIGs) equipped with variable
speed Wind Turbines (WTs). This configuration was widely installed in wind industry due to its
significant merits such as independent control of active and reactive powers, low converters’ costs and
mechanical stress reduction [2].

A DFIG is a wound rotor generator in which the stator windings are directly connected to the
grid. The rotor windings are connected to the grid through a back-to-back power converter that is
composed from the Rotor Side Converter (RSC) and Grid Side Converter (GSC) components. This
configuration allows the converter to handle the fraction of 20% to 30% of the total power. Therefore,
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the losses in the converter are lower compared to a system where the converter has to handle the full
power leading to an improvement in the total efficiency [2,3].

However, the switching of Insulated-Gate Bipolar Transistors (IGBTs) at both the RSC and GSC
components is usually performed by Sinusoidal Pulse Width Modulation (SPWM) strategy, which
generates the high frequency content in the utility current. A simple L-filter or an LCL-filter is adopted
to reduce the Total Harmonic Distortion (THD) of the utility current [4]. To meet the grid code
requirements, the LCL-filter is predominant in reducing the utility current harmonics. Indeed, it can
lead to a better attenuation of harmonics using small values of inductances. However, the resonance
phenomena of the LCL-filter must be damped properly in order to prevent the possible instability of
these systems [4]. One way for solving this problem is employing a passive damping circuit. The
passive damping is built by inserting a resistor branch in series or in parallel with the inductors or
capacitors of the LCL-filter [4].

The conventional control scheme of the grid connected DFIG wind turbine system is built based
on a vector control method [5–8]. Here, the Stator Flux Orientation (SFO) scheme is selected for DFIG
power regulation at the RSC. The SFO-based vector control strategy enables a decoupled regulation of
the active and reactive powers that is flowing between the DFIG and the grid. The active and reactive
powers’ control strategy is performed by regulating the converter currents using Proportional-Integral
(PI) controllers [5–8]. On the other hand, the Voltage Oriented Control (VOC) is adopted at the GSC,
which the DC-link voltage is maintained to constant value [9].

Zhou and Blaabjerg [5] proposed a frequency-domain based approach to attain the PI controllers’
gains for the inner and outer loops at both RSC and GSC circuits. The gains of the PI controllers that
verify the design condition are selected for control loop. However, Hamane et al. [6] performed the
direct power control of the DFIG using both PI and sliding mode controllers. The synthesis of the PI
controller is based on an algebraic pole compensation method. Moreover, Hamane et al. [7] developed
a comparative study of PI, RST, sliding mode and fuzzy supervisory controllers, and the synthesis of
PI and polynomial RST controllers are tuned based on the pole compensation and pole assignment
methods, respectively. In addition, the indirect vector control strategy is adopted, in which the matrix
converter is used at the wound rotor of the DFIG instead of the conventional back-to-back converter
in [8]. The active/reactive powers and current components are regulated by using the PI controllers
that are designed using the pole placement technique. Although these methods have presented good
performances, the main drawback for this type of control is that the performance of the DFIG system
highly depends on a proper tuning of the PI controller gains. However, since the parameters of PI
controllers depend on the precise mathematical representation, the control schemes become prone
to error. In addition, the execution of tuning process can be time-consuming, and the optimal gains
may not be obtained. Hence, proposing a systematic approach to find the best parameters setting of
PI controllers is an interesting task and the metaheuristics-based hard optimization theory may be
considered a promising solution.

In recent years, an enormous variety of metaheuristics optimization algorithms has been applied
to solve complex and hard problems in science and engineering fields. Bekakra and Attous [10]
presented the Particle Swarm Optimization (PSO) algorithm to obtain the optimal gains of PI controllers
for the indirect control of the active and reactive powers’ loops of a DFIG. Integral Absolute Error
(IAE), Integral Time-weighted Absolute Error (ITAE) and Integral Square Error (ISE) performance
criteria were selected as objective functions. Vieira et al. [11] applied the Genetic Algorithm (GA) to
obtain the gains of the PI controllers at the RSC, where the active and reactive powers loops were
directly controlled. In addition, an indirect power control strategy was achieved using GA-tuned
integral sliding mode controllers, where the GA was used to tune the parameters of the direct and
quadrature rotor current controllers [12]. Moreover, Assareh et al. [13] proposed a hybrid GA along
with a gravitational search algorithm to attain the optimal gains of the PI controller for the torque
regulation of a DFIG-based WT system. In all of these studies, the optimization algorithms are applied
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to obtain only the PI controllers’ gains of the active and reactive powers at the RSC without discussion
about the DC-link voltage regulation loop at the GSC and their effect on the overall control system.

Therefore, this work tends to apply a unified Thermal Exchange Optimization (TEO) metaheuristic
algorithm to optimize the gains of PI controllers for the outer-loops in the classical vector control
scheme of a DFIG-based wind energy system. In particular, this paper deals with the PI controllers
tuning of the active and reactive power control loops in the RSC. It also treats the PI controller
optimization-based design for the DC-link voltage loop in the GSC component.While the inner current
loops at both RSC and GSC are tuned according to classical methods. The global TEO metaheuristic
that has been proposed by Kaveh and Dadras in 2017 [14] is mainly adopted to tune the controllers’
parameters of the modeled DFIG-based Wind Energy Converter System (WECS). Moreover, other
well-known methods such as PSO, GA, Harmony Search Algorithm (HSA), Water Cycle Algorithm
(WCA) and Grasshopper Optimization Algorithm (GOA) are used for an empirical comparison study.
Moreover, a statistical analysis is performed to check the significance of each algorithm by using
nonparametric tests such as Friedman’s rank and Bonferroni–Dunn’s test. The main contribution of
this work is to provide a systematic and less complex procedure based on an advanced TEO algorithm
in order to design and tune all outer-loops PI controllers for the well-known vector control scheme of a
DFIG-based wind energy system. The classical trials-errors based methods of PI controller tuning are
no longer used and the design time is further reduced. The drawbacks of the classical tuning methods
are significantly reduced.

The remainder of this paper is organized as follows. The mathematical model of DFIG based
WT is presented in Section 2. The description of the vector control scheme for the DFIG system at
both RSC and GSC is analyzed in Section 3. In addition, Section 4 is devoted to the formulation of the
outer-loops PI controllers’ tuning problem given as a constrained optimization problem to be solved
by the proposed TEO algorithm. In Section 5, such a TEO algorithm is described and its pseudo-code
for the software implementation is given. Section 6 presents the implementation and the validation of
the proposed TEO-tuned PI controller approach. Concluding remarks are given in Section 7.

2. Modelling of the DFIG Based Wind Energy Converter

The configuration of the DFIG-based WECS is depicted in Figure 1. A WT is joined to the DFIG by
means of a gearbox. The DFIG is an induction machine, which the stator windings are directly connected
to the grid, while the rotor windings are connected to the grid thanks to a back-to-back converter.
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2.1. Modelling of the Wind Turbine

The rotor blade of the WT is responsible for catching the wind power and converting it into kinetic
energy. The captured mechanical power Pm is given as follows [2]:

Pm =
1
2
ρCp(λ, β)πR2V3

w (1)

where ρ is the air density, Cp is the power coefficient and it depends on both the tip-speed ratio λ and
the blade pitch angle β, R is the turbine radius and Vw is the wind speed.

The tip speed ratio is defined as the ratio of the blade tip speed to the wind speed. It is given by:

λ =
ΩtR
Vw

(2)

where Ωt is the angular speed of the WT.

2.2. Modelling of the DFIG

The dynamical model of the studied DFIG can be expressed by the following electrical
equations [6–8]: 

Vds = Rsids +
dϕds

dt −ωsϕqs

Vqs = Rsiqs +
dϕqs

dt +ωsϕds

Vdr = Rridr +
dϕdr

dt − (ωs −ωm)ϕqr

Vqr = Rriqr +
dϕqr

dt + (ωs −ωm)ϕdr

(3)

where Vs and is are the stator voltage and current, Vr and ir are the rotor voltage and current, ϕs and
ϕr are the stator and rotor flux linkages, Rs and Rr are the stator and rotor resistances, ωs and ωm are
the stator and rotor angular frequencies, respectively. The subscripts d and q denote the direct and
quadrature axis components, respectively. The stator and rotor flux linkages are defined as follows:{

ϕds = Lsids + Lmidr and ϕqs = Lsiqs + Lmiqr

ϕdr = Lridr + Lmids and ϕqr = Lriqr + Lmiqs
(4)

where Ls, Lr and Lm are the stator, rotor and magnetizing inductances, respectively.

2.3. Modelling of the GSC and the DC-Link

The GSC is connected to the grid through an LCL-filter. However, for better understanding the
control of GSC, it is necessary to describe the model of the grid side system and DC-link parts. The
mathematical formulation of the GSC in the dq synchronous frame is defined by Equation (5). In this
equation, LT represents the sum of the converter Li and grid side Lg inductances. In fact, the LCL-filter
can be approximated to an L-filter equal to the sum of the LCL-filter inductors [4]: LT

digd
dt = −RTigd +ωgLTigq + egd −Vd f

LT
digq
dt = −RTigq −ωgLTigd + egq −Vq f

(5)

where Vd f and Vq f are the components of the converter side voltage, igd and igq are the components of
the grid currents, egd and egq are the components of the grid voltage, and RT is the sum of the converter
and grid side resistors.

The grid active and reactive powers are expressed as [9]: Pg = 3
2

(
edgidg + eqgiqg

)
Qg = 3

2

(
eqgidg − edgiqg

) (6)
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3. Vector Control of the DFIG-Based Wind Energy Converter

The classical direct power control of the DFIG system is divided into the RSC and GSC control
loops, where the control structure for the RSC and GSC components consist of two cascaded control
layers. The inner PI layers are adopted to regulate the components of rotor and grid currents. On the
other hand, the outer PI ones in the RSC are implemented to control the active and reactive powers
while the outer PI loop in the GSC is adopted to maintain the DC-link voltage to its reference value.
However, in this work, the inner PI loops in the RSC and GSC circuits are designed based on a pole
assignment technique [8,15], while the outer PI ones are tuned based on the proposed metaheuristics
algorithms-based approach.

3.1. Control of the RSC

The RSC circuit is responsible to independently regulate the active and reactive powers in order
to extract the maximum available power. The vector control by the SFO scheme is employed for the
power regulation of the DFIG system.

Considering that the electrical network is stable, the stator flux ϕs is constant. In addition, for the
medium and high power DFIG, the value of the stator resistance is very small and therefore it can be
neglected [6,7]. Hence, based on these assumptions, the stator voltages and fluxes in Equation (3) and
Equation (4) can be rewritten respectively as follows:{

Vds = 0
Vqs = Vs = ωsϕds

(7)

{
ϕds = ϕds = Lsids + Lmidr
ϕqs = 0 = Lriqs + Lmiqr

(8)

The active and reactive stator powers and rotor voltages are given, respectively, by: Ps =
3
2

(
Vdsids + Vqsiqs

)
= − 3

2
Lm
Ls

Vsiqr

Qs =
3
2

(
Vqsids + Vdsiqs

)
= 3

2

(
V2

s
ωsLs
−

Lm
Ls

Vsidr

) (9)


Vdr = Rridr + σLr

didr
dt −

∆dr︷   ︸︸   ︷
σωrLriqr

Vqr = Rriqr + σLr
diqr
dt +

∆qr︷                    ︸︸                    ︷
σωrLridr +

Lm

Ls
ωrϕds

(10)

where σ = Lr − L2
m/Ls is the machine leakage coefficient and ωr = ωs −ωm is the slip angular frequency.

As shown in Equation (9), the stator active and reactive powers are independent from each other.
In addition, the components of stator power are linearly varying with the direct and quadrature rotor
currents. This powers’ regulation is thus performed using PI controllers for the d and q axis components
of the rotor currents.

The outer control loops for the stator active and reactive powers are tuned based on the proposed
metaheuristics-based procedure. Hence, the design of PI controllers for the inner rotor current loops is
detailed according to Figure 2.
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Based on a pole placement method as follows:

RPI(s) = Kpir

(
1 +

1
Tiirs

)
(11)

where Kpir and Tiir are the proportional gain and time constant of the rotor PI controllers, respectively.
The transfer function that describes the relationship between the voltages and currents dynamics

is given as follows [8,15]:

Rplant(s) =
irdq

Vrdq
=

1
Rr + σLrs

(12)

Since the same transfer functions for the direct and quadrature rotor currents are considered, the
closed-loop transfer function Rcli(s) between the reference rotor current i∗rdq and the actual one irdq is
written as:

Rcli(s) =
irdq

i∗rdq
=

Kpir(Tiirs + 1)

TiirσLrs2 + Tiir
(
Rr + Kpir

)
s + Kpir

(13)

By equating the denominator of the closed-loop transfer function of Equation (13) under the
general form of a second order system, the parameters of PI rotor current controllers can be found as
follows [8,15]:  Kpir = 2ξωnσLr −Rr

Tiir =
2ξ
ωn
−

Rr
σωn2Lr

(14)

where ξ and ωn are the damping coefficient and natural frequency of the desired closed-loop reference
model, respectively.

For the design purpose, the discussion is made with respect to the choice of the damping coefficient
ξ and natural frequency ωn. Since the inner current loop in the cascade control scheme will have a
much larger bandwidth than the one used in the outer-loop, a regulation at 1/20 of the switching
frequency fsw,RSC is retained. For the outer loop, a regulation between 1/20 and 1/10 of the inner
loop bandwidth is made [5]. Then, feed forward compensations ∆dr and ∆qr should be added back to
generate the desired rotor voltages V∗dr and V∗qr.

3.2. Control of the GSC

The VOC strategy is applied to control the GSC, which usually contains one outer PI control
loop that regulates the DC-link voltage regardless of the magnitude and the direction of the rotor
power. Two inner PI current loops that regulate the direct and quadrature gird currents are also
included [16,17]. In addition, the passive damping strategy is employed to mitigate the resonance
problem. The mathematical representation of GSC is built on the approximated model of the LCL-filter,
which is used to tune the PI grid current controllers. Whereas, the whole transfer function of the
LCL-filter with passive damping is taken into account for the stability analysis and investigation [4].
The block diagram of the grid current loops is shown in Figure 3.
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To implement the VOC scheme, the d-axis is aligned with the grid vector voltage. Therefore, this
leads to a d-axis grid voltage equal to its magnitude, and the q-axis voltage which is then equal to zero.
Hence, the grid power expressions can be expressed as [16,17]:{

Pg = 3
2 edgidg

Qg = − 3
2 edgiqg

(15)

Equation (15) decides the active power and consequently the DC-link voltage is controlled via the
direct current whereas the quadrature current is used to regulate the reactive power that exchanges
with the grid [17]. With the VOC approach, the dynamic equations of the grid currents are rewritten as
follows:

edg = RTidg −

∆dg︷   ︸︸   ︷
ωgLTiqg + LT

didg
dt + Vd f

0 = RTiqg +

∆qg︷   ︸︸   ︷
ωgLTidg + LT

diqg
dt + Vq f

(16)

By applying the same methodology of PI rotor current controllers design in the RSC, the gains of
PI controllers for the grid currents dynamics are found as [15,18]:{

Kpig = 2ξωnLT −RT

Kiig = ω2
nLT

(17)

where ωn = 847.80 rad/ sec and ξ = 0.707.

4. PI Controllers Tuning Problem Formulation

In the PI control framework, appropriate values of Kp and Ki gains are generally obtained by
empirical methods and trials-errors based procedures [19]. These nonsystematic and challenging
tasks become more difficult and time-consuming, especially for the complex and large-scale systems
like the studied DFIG-based WECS. So, the idea of formulating the Kp and Ki gains’ selection as an
optimization problem is a promising solution. Such a control problem can be nonlinear, non-smooth
or even non-convex and can be effectively solved thanks to advanced metaheuristics [10,11]. In this
work, three PI controllers for the outer-loops at both RSC and GSC components are considered for
the optimization process. These PI controllers for the DC-link voltage, active and reactive powers’
dynamics are systematically tuned thanks to the proposed TEO metaheuristic which is described in
the following. Figure 4 gives the proposed optimization-based tuning scheme of the PI controllers for
the DFIG-based WECS.
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The decision variables of the formulated optimization problem are obviously the proportional
and integral gains of PI controllers for the active/reactive powers and DC-link loops. They are specified
for the optimization process as follows:

x =
[
KpPs , KiPs , KpQs , KiQs , Kpdc, Kidc

]T
∈ S ⊆ R6

+ (18)

where S =
{
x ∈ R6

+,xlow ≤ x ≤ xup
}

denotes the bounded search space for all PI parameters.
However, the defined objective functions are minimized taking into account a scope of time-domain

restrictions. These are concerning to the maximum overshoot δmax, steady-state error Ess, rise time tr

and/or settling time ts of the closed-loop system step-response [20]. So, the tuning issue associating the
PI controllers of the DFGI-based WECS can be expressed as follows:

Minimize fm(x), m ∈ {IAE, ISE, ITSE, ITAE}

x =
[
KpPs , KiPs , KpQs , KiQs , Kpdc, Kidc

]T
∈ S ⊆ R6

+

subject to :
g1(x) = δPs − δ

max
Ps
≤ 0

g2(x) = δQs − δ
max
Qs
≤ 0

g3(x) = δdc − δ
max
dc ≤ 0

Kpj,min ≤ Kp ≤ Kpj,max

Ki j,min ≤ Ki ≤ Ki j,max, j ∈ {Ps, Qs, dc}

(19)

where fm : R6
+ → R are the cost functions, gq : R6

+ → R are the problem’s inequality constraints, δdc,
δPs and δQs are the overshoots of the controlled DC-voltage, active and reactive powers dynamics,
respectively, δmax

dc , δmax
Ps

and δmax
Qs

denote their maximum given value.
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Since the optimization problem (19) is a multi-objective type, weighted sum-based aggregation
functions are used as follows to handle with the multiple costs [21]:

fIAE(x) = wPs

∫ T

0

∣∣∣ePs(x, t)
∣∣∣dt + wQs

∫ T

0

∣∣∣eQs(x, t)
∣∣∣dt + wdc

∫ T

0

∣∣∣edc(x, t)
∣∣∣dt (20)

fISE(x) = wPs

∫ T

0
e2

Ps
(x, t)dt + wQs

∫ T

0
e2

Qs
(x, t)dt + wdc

∫ T

0
e2

dc(x, t)dt (21)

fITSE(x) = wPs

∫ T

0
te2

Ps
(x, t)dt + wQs

∫ T

0
te2

Qs
(x, t)dt + wdc

∫ T

0
te2

dc(x, t)dt (22)

fITAE(x) = wPs

∫ T

0
t
∣∣∣ePs

(x, t)
∣∣∣dt + wQs

∫ T

0
t
∣∣∣eQs(x, t)

∣∣∣dt + wdc

∫ T

0
t
∣∣∣edc(x, t)

∣∣∣dt (23)

where T denotes the total simulation time, wPs > 0, wQs > 0 and wdc > 0 are the weighting coefficients
of the aggregation functions satisfying wPs + wQs + wdc = 1, and e j(.), j ∈ {Ps, Qs, dc} denote the
tracking errors between the plant output and the relative set-point values, i.e., ePs(x, t) = P∗s − Ps(x, t),
eQs(x, t) = Q∗s −Qs(x, t) and edc(x, t) = V∗dc −Vdc(x, t).

The judgment matrix method is used to determine the weighting coefficients of the objective
functions [22,23]. Such a method grades all objective functions based on the importance of each one.
After calculating the eigenvalues of such a matrix, the weighting coefficients of functions (20)–(23) can
be chosen as wPs = 0.6370, wQs = 0.2583 and wdc = 0.1047.

5. Thermal Exchange Optimization Algorithm

The Thermal Exchange Optimization (TEO) algorithm is a novel metaheuristic inspired by
Newton’s law of the cooling [3]. In this population-based metaheuristic, each agent is modeled as
a cooling object. By associating another agent as a surrounding fluid, a heat transfer and thermal
exchange occurs between them. The new temperature of each agent is considered as a new position of
the potential solution in the search space.

In a d-dimensional search space and at the kth iteration time, each object of the population is
described by its temperature Tk

i =
(
Tk

i,1, Tk
i,2, . . . , Tk

i,d

)
, (i, k) ∈

[
1, Npop

]
× [0, Niter]. In order to enhance

the optimization performances, the TEO algorithm uses a Thermal Memory (TM) to store a number of
historically best vectors as well as their related fitness. Therefore, these stored solution vectors are added
to the population and the same numbers of current worst objects are deleted. After that, a growing
order of solutions is retained according to their cost function values. The Npop sorted objects are equally
divided into two groups of environment and cooling objects as shown in Figure 5. The environment
objects are denoted as Tk

1
, Tk

2
, . . . , Tk

Npop/2 while the cooling ones are Tk
Npop/2+1

, Tk
Npop/2+2

, . . . , Tk
Npop

.
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Since the object has lower η can exchange the temperature slightly, the TEO metaheuristic proposed
a similar formula to evaluate the value of η for each object as described in Equation (24):

η =
Cost (object)

Cost(worst object)
(24)
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Over the course of iterations, the value t = k/Niter increases as follows leading to improving the
exploration mechanism [3]. In order to enhance the TEO exploration capacity, Equation (25) has been
proposed to avoid the trapping in local optima and update the environmental temperature as follows:

Tk+1
env,i = (1−U{0, 1}(c1 + c2(1− t)))Tk

env,i (25)

where c1 and c2 are the controlling variables chosen as 0 or 1,U{0, 1} is a uniformly random number,
Tk

env,i is the previous environmental temperature, (1− t) is proposed to reduce the randomness by
closing to the last iterations. When the decreasing of the randomness is not required, the value of c2 is
set to zero.

The new temperatures for each object, i.e., either cooling objects or environmental ones, are
updated as follows:

Tk+1
i = Tk

env,i +
(
Tk

i − Tk
env,i

)
e−ηt (26)

In the TEO formalism, another formulation is suggested to improve the exploration ability. A
control parameter 0 ≤ pro ≤ 1 is introduced and determines whether a component of each cooling object
must be changed or not. For each object, such a parameter is compared to Rand(i),

(
i = 1, 2, . . . , Npop

)
,

which is a random number uniformly distributed between 0 and 1. If Rand(i) < pro, one dimension of
the ith object is chosen randomly and its value is regenerated as follows [3,24]:

T(i, j) = T j,min +U(0, 1) ×
(
T j,max − T j,min

)
(27)

where T(i, j) is the jth component of the ith object, T j,max and T j,min are the upper and lower bounds of
the jth component, respectively.

Finally, the steps of the proposed TEO algorithm are summarized as follows:

Step 1. Randomly initialize the temperature for all objects T0
i , i = 1, 2, . . . , Npop.

Step 2. Calculate the fitness of each search object.
Step 3. Save some T best vectors and their related cost values in the TM.
Step 4. Add the saved solutions and remove the same numbers of the worst objects.
Step 5. Arrange the objects according to their related fitness in an ascending order.
Step 6. Divide the objects into two equal groups: environment and cooling objects.
Step 7. Calculate the parameters η and t.
Step 8. Change the environment temperatures by Equation (25).
Step 9. Update the temperatures according to Equations (26) and (27).
Step 10. Check the termination criterion and repeat the iterations.

To describe the proposed metaheuristics-based tuning strategy of the PI controllers in the studied
DFIG-based energy conversion system, a detailed flowchart is shown in Figure 6.
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6. Simulation Results and Discussions

6.1. Execution of the Metaheuristic Algorithms

The proposed metaheuristics-based direct power control of the studied DFIG-based WECS is built
using the MATLAB/Simulink environment. The respective nominal parameters of the DFIG, power
converters at both sides, L-filter and LCL-filter are presented in Table 1. Specifically, this work deals
with the PI controllers tuning for the active and reactive powers loops in the RSC circuit, as well as
it treats with the PI controller optimization-based selection of the DC-link voltage loop in the GSC
component. It is worth indicating that the inner current loops in the RSC and GSC are tuned according
to the pole assignment method. Since the grid current closed-loop of the LCL-filter is unstable, the
passive damping method is applied as a solution to ensure the stability of such current dynamics. To
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investigate the effectiveness and superiority of the proposed TEO method, the well-known global
algorithms GA, PSO, HSA, WCA and GOA are considered for comparison purposes.

Table 1. Parameters for a 1.5 MW DFIG systems.

Equipment Parameter Value Unit

DFIG

Rated power 1500 kW

RMS grid line voltage 575 V

Slip range 0.2 -

Rated electrical frequency 50 Hz

Stator resistance 0.023 pu

Stator leakage inductance 0.18 pu

Rotor resistance 0.016 pu

Rotor leakage inductance 0.16 pu

Magnetizing inductance 2.9 pu

Power converters

Rated power 300 kW

Switching frequency at fsw,RSC and fsw,GSC 2700 Hz

DC-link voltage 1050 V

DC-link capacitance 10000 µF

L-filter L-filter grid inductance 0.1 pu

LCL-filter

LCL-filter grid side inductance 0.018 pu

LCL-filter capacitance 0.104 pu

LCL-filter converter side inductance 0.077 pu

Passive damping resistor 0.124 pu

All reported algorithms are independently run 10 times. The termination criterion is set as a
maximum number of iteration reached Niter = 100 for a population size of the thermal agents equal to
Npop = 50. All the values of the used common parameters are kept equal. All algorithms have been
executed on a PC computer with Core TM i5-7200U CPU and 2.5 GHz/8.00 GB RAM. The specific
control parameters of the reported algorithms are listed in Table 2.

Table 2. Parameter setting of reported algorithms.

Algorithms Parameters Setting

PSO Cognitive and social coeffs. c1 = c2 = 2, weights wmax = 0.9, wmin = 0.2 [10].

GA Roulette wheel, crossover Pcross = 1, mutation Pmut = 0.01 [11].

HSA Harmony memory rate HMCR = 0.9, pitch adjusting rate PAR = 0.3 [25].

WCA Summation number of rivers Nsr = 8 and dmax = 1× 10−3 [18].

GOA cmax = 1, cmin = 0.00001 [26].

TEO Thermal memory TM = 10, pro = 0.50, c1 = 1, c2 = 1 [3].

The optimization problem (19) is minimized for various performance criteria, i.e., IAE, ISE, ITAE
and Integral Time-weighted Square Error (ITSE), and under time-domain operational constraints.
These performance indexes are calculated within two conditions, which are considered as follows:

- 14.3% step change in the reference of DC-link voltage at time t = 0.5 sec;
- step change in the reference stator reactive power at time t = 0.8 sec.
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To find the accurate values of the decision variables x =
[
KpPs , KiPs , KpQs , KiQs , Kpdc, Kidc

]
, the

bounded search domain is initially set to 0 ≤ x ∈ R6
+ ≤ 105. Several runs of the algorithm are

performed within this initial limitation. The results indicated that the search space could be reduced to
0 ≤ x ∈ R6

+ ≤ 400. Therefore, the TEO algorithm explores within a smaller search domain for the next
runs and more precise solution output vector is achievable.

Table 3 gives the statistical results attained by the introduced algorithms under minimizing the
cost functions described in Equations (20)–(23). The worst, average, best values and the standard
deviation (STD) experimental results are summarized in the Table 3, where the optimal mean value of
each index is highlighted in bold and underlined. In addition, the Elapsed Time (ET) is also listed,
which is defined as the time that any algorithm requires finding the best solution. It can be clearly
observed that the proposed TEO produces very competitive solutions with the reported algorithms.
Appendix A summarizes the obtained gains of the PI controllers for each proposed optimization
method. Indeed, these tuned PI controllers’ gains lead to the best transient and steady state responses
of the entire reported algorithms.

Table 3. Statistical results of optimization problem (19) over 10 independent runs.

Indices PSO GA HSA WCA GOA TEO

IAE

Best 1.57 1.62 1.57 1.52 1.60 1.55

Mean 1.73 1.67 1.60 1.59 2.01 1.58

Worst 2.69 1.73 1.64 1.78 3.20 1.60

STD 3.4 × 10−1 3.2 × 10−2 2.3 × 10−2 7.6 × 10−2 6.3 × 10−1 1.9 × 10−2

ET (sec) 29022 28720 25480 32900 20400 24640

ISE

Best 33.17 34.86 32.64 32.66 34.06 31.45

Mean 41.42 37.25 35.51 45.88 45.06 33.46

Worst 61.80 40.53 38.78 61.24 64.50 36.79

STD 8.27 1.92 1.80 10.77 9.08 1.64

ET (sec) 28140 27420 19083 26900 19200 23420

ITSE

Best 17.47 17.49 18.45 17.14 17.86 17.79

Mean 18.46 17.96 23.18 18.32 19.83 18.24

Worst 20.45 18.21 26.77 19.75 28.11 19.20

STD 0.921 0.207 3.616 8.1E-1 2.96 4.1E-1

ET (sec) 21560 26280 18720 27540 19500 23380

ITAE

Best 0.650 0.632 0.646 0.640 0.644 0.642

Mean 0.683 0.650 0.683 0.659 0.688 0.658

Worst 0.707 0.62 0.718 0.736 0.742 0.675

STD 0.018 0.019 0.021 0.029 0.040 0.014

ET (sec) 20060 20480 16880 25880 20840 19680

In addition, Figure 7 shows the convergence histories of the mean objective function values of
IAE, ISE, ITAE and ITSE criteria, respectively. Indeed, it is shown that the proposed TEO metaheuristic
for both IAE and ISE indices outperforms the other reported methods in terms of the fastness and
non-premature convergence as well as the solutions’ quality. The TEO-based method for ITAE and ITSE
criteria gives the best solution as a second order after the GA one. From these results, the superiority
of the TEO metaheuristic is still shown in terms of exploitation and exploration capabilities for local
and global searches. This further justifies the use of such a global metaheuristic to systematic and easy
design of the direct power control of the DFIG-based WECS. The Box-and-Whisker plots of the mean
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objective function values are shown in Figure 8. From these results, one can observe that the boxplots
of the TEO algorithm for all given performance criteria are generally lower and narrower than other
algorithms. This confirms the high reproductivity of the TEO algorithm toward finding the optimal
values of the solution.

In the remainder of the results, the obtained gains of the optimized PI controllers are used to
assess the frequency-and time-domains performances of the outer-loops at the RSC and GSC power
components. Moreover, comparisons with the classical pole placement [8,15], frequency response [5]
symmetrical optimum [27], Ziegler–Nichols [28] and Tyreus–Luyben [29] tuning methods are made
for the DC-link voltage dynamics as shown in Table 4 and Figure 9. The closed-loop response of
the DC-link voltage dynamics is investigated under variable voltage profile. The DC-link voltage
reference is varied up and down at various step levels. Figure 9 describes such a response around
the final set-point value for different tuned PI controllers. Although, in real systems, the DC-link
voltage is required to be constant. This scenario is proposed to check the capability of the proposed
TEO algorithm under different circumstances. The aim is to show the difference between the classical
tuning methods and the proposed optimization-based one. Referring to this result, the ITAE-based
TEO algorithm can regulate the DC-link voltage dynamics with higher performance compared to the
other algorithms.
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Table 4. Time-domain performances for controlled DC-link voltage under step changes scenario.

PI Tuning Methods
Unit Step Change Response

tr (sec) ts (sec) tp (sec) δ (%) Ess

Frequency response 0.0441 4.3813 4.1382 1.168 0.3355

Pole placement 0.0163 4.1111 4.0441 2.006 0.2813

Symmetrical optimum 0.0185 4.1324 4.0459 2.768 0.3568

Ziegler–Nichols 0.0037 4.0252 4.0080 1.209 0.2843

Tyreus–Luyben 0.0060 4.0249 4.0182 0.299 0.2977

TEO 0.0029 4.0193 4.0076 2.537 0.2539
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The voltage tracking is achieved with best performance in terms of response precision and fastness,
i.e., the steady-state error and rise/settling time metrics are minimal as depicted in Table 4. The
performance in terms of response damping is acceptable for the proposed TEO-tuned PI control as
shown in Figure 9. Referring to the numerical results in Table 4, one can clearly observe that the
proposed TEO algorithm showed the best rise/settling times and steady-state error except the overshoot
index, which the Tyreus–Luyben method gained the minimum overshoot. Since several runs were
executed to obtain the PI controllers’ gains with the classical Ziegler–Nichols and Tyreus–Luyben
methods, the tuning process becomes a tedious and time-consuming task. These minor degradations
of the overshoot performance do not influence the effectiveness of the proposed TEO-based tuning
method with respect to the systematization of the synthesis procedure, the simplicity of implementation
and the superiority in other performance indices. The proposed TEO algorithm found the optimal
gains of the PI controllers within a reduced computation time and under operational constraints
compared to the reported trials-errors based tuning procedures which generally give local solutions
for the formulated control problem.

Regarding to the grid current dynamics, the same tuning methods with adding the technical
optimum instead of the symmetrical ones are used to select and adjust the PI controllers’ gains. All
obtained results are reported in Table 5.
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Table 5. Time-domain performances for controlled quadrature grid current under a step change scenario.

PI Tuning Methods
Unit Step Change Response

tr (sec) tp (sec) δ (%) Ess

Frequency response 0.0171 2.0387 28.1802 0.0035

Pole placement 0.0027 2.0096 21.95 0.0045

Technical optimum 0.0146 2.0383 8.2931 0.0055

Ziegler–Nichols 3.582 × 10−4 2.0026 10.7400 0.0051

Tyreus–Luyben 0.0020 2.0155 7.1657 0.0061

The control performance of the introduced tuning methods is investigated by supposing that
there is a step change in the q-axis grid current reference at time t = 0.2 sec. The reference q-axis grid
current is changed from zero to −0.2 pu. However, the q-axis reference grid current is usually set at
zero to achieve a unity power factor. Figure 10 shows the quadrature grid current response under step
changes. It can be observed that the Tyreus–Luyben method gives superior performance in comparison
with the other reported methods. Here, it is important to mention that the gains of the PI controllers
for the inner current loops at both RSC and GSC are selected thanks to the classical methods and not
with the proposed optimization algorithms. Since the plant models of the inner loops are available, the
use of the pole-placement, Tyreus–Luyben and Ziegler–Nichols methods is well adapted instead of
metaheuristics-based methods which do not require models of systems to be controlled. The Bode plot
of the grid current loop is presented in Figure 11.
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Figure 11. Bode plot of the open loop grid current loop: with and without passive damping based
technical optimum tuning.

The quality of the three phase grid currents is investigated through measuring the THD of the AC
grid currents. As depicted in Figure 12. It is obviously shown that the use of the LCL-filter achieves
a better attenuation with a THD value about 4.05% for which the IEEE519-1992 standard limits are
respected. Further analysis can be made to compare the THD of the AC grid currents in the case of
using an L-filter based structure. According to the results of Figure 12, it is clear that the THD for
adopting the LCL-filer is smaller than that using the L-filer type at the same value of inductance.Math. Comput. Appl. 2019, 24, x FOR PEER REVIEW 20 of 29 
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Figure 12. Harmonics spectrum of the AC grid currents.

Referring to the RSC control results, the stator active and reactive powers can be regulated by
controlling the q-axis rotor current. The reference value of stator active power is generated from a
Maximum Power Point Tracking (MPPT) strategy to extract the maximum power from the wind. In
addition, the value of reference reactive power is set at different step levels to check the performance of
the proposed PI controllers. As shown in Figure 13, both active and reactive powers track effectively
their reference values with good performance in terms of speed and damping dynamics. In addition,
the decoupling between the active and reactive powers is perfectly assured and the DFIG extracts the
maximum available power, which is approximately about 1.5 MW. Figure 14 demonstrates the control
performance of the PI controller for the reactive power loop around its final set-point value based on
different tuned PI methods. The aim is to show the difference between the optimization tuning-based
methods. On the other hand, both left and right sides of Figure 15 show the tracking performance of
the direct and quadrature rotor currents, respectively. Such tracking dynamics are perfectly performed
and improved thanks to the proposed TEO-based tuning and control method.
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6.2. Statistical Analysis and Comparison

In this part, the mean execution values related to the different optimization criteria are sorted to
assess the best operating one according to its average objective function performance. Moreover, a
statistical comparison based on the nonparametric Friedman and Bonferroni–Dunn is carried out by
using these mean performances [30,31]. The average ranks for all the proposed methods based on the
four performances indices are provided in Table 6. One can note that the proposed TEO metaheuristic
has worthily attained the lowest average ranks compared to the remaining methods. A statistical
analysis has been performed to highlight the importance of the TEO-based tuning method over other
algorithms [32].

Table 6. Average Rank based statistical analysis of mean performances.

Algorithms
Indices

Average RankIAE ISE ITSE ITAE

Score Rank Score Rank Score Rank Score Rank

PSO 1.73 5 41.42 4 18.46 4 0.683 5 4.25

GA 1.67 4 37.25 3 17.96 1 0.650 1 2.25

HSA 1.60 3 35.51 2 23.18 6 0.683 4 3.75

WCA 1.59 2 45.88 6 18.32 3 0.659 3 3.75

GOA 2.01 6 44.06 5 19.83 5 0.688 6 5.5

TEO 1.58 1 33.46 1 18.24 2 0.658 2 1.5

The Friedman test for six competitor algorithms (m = 6) and four indices (l = 4) provides the
computed value χ2

F = 12.14 of the χ-distribution. The critical value of such a distribution with degrees
of freedom m − 1 = 5 and at confidence level α = 0.05 is equal to χ2

5,0.05 = 11.07. Since the above
computed score is greater than this statistical value, the null hypothesis is declined. Moreover, for
the Iman–Davenport test [30,31], the statistic is distributed with m− 1 = 5 and (m− 1) × (l− 1) = 15
degrees of freedom. For this test, the null hypothesis is also rejected as the calculated value FF = 4.64
is greater than the critical value F5,15,0.05 = 2.9 at the same significant level of confidence. All these
statistical results indicate that there are significant differences among the performances of the reported
algorithms for the optimization problem (19). Thus, the proposed TEO is found to be the most effective
one having the best average Friedman ranking as given in Table 6. However, a Bonferroni–Dunn
post-hoc test is called to investigate whether or not the proposed TEO algorithm is significantly better
than another algorithm at the above considered level of confidence [32]. The corresponding Critical
Differences (CD) of the reported algorithms at the confidence levels α = 0.05 (95% significance level)
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and α = 0.1 (90% significance level) are computed as CD0.05 = 3.17 and CD0.1 = 2.88, respectively.
Figure 16 illustrates the graphical representation of the Bonferroni–Dunn test considering the TEO as
the control algorithm [32,33].
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The bar of the TEO algorithm is the lowest high among the reported algorithms and the heights
of the bars corresponding to the PSO algorithm. The GOA method violates the horizontal lines of
significant levels. This reveals that the TEO algorithm performs at least significantly better than these
two algorithms over the solutions equality.

6.3. Computational Time Efficiency

In this subsection, the average elapsed times of Table 3 are used to assess the computational
efficiency of the reported algorithms. Such an algorithmic property of resource usage is quantified by
the Computational Time Efficiency (CTE) metric defined as follows [34]:

CTE =
ETalgorithm

ETtotal
(%) (28)

where ETalgorithm and ETtotal denote the average and total elapsed times for the same index.
According to the ET measures of problem (19), the CTE for each algorithm over the reported

optimization criterion is summarized in Table 7.
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Table 7. The computational time efficiency (CTE) of each algorithm over the four indices.

Index
Algorithms

PSO GA HSA WCA GOA TEO

IAE 18.01% 17.82% 15.81% 20.41% 12.66% 15.29%

ISE 19.52% 19.02% 13.24% 18.66% 13.32% 16.25%

ITSE 15.74% 19.19% 13.67% 20.11% 14.24% 17.07%

ITAE 16.20% 16.54% 13.63% 20.90% 16.83% 15.89%

In terms of computational efficiency, it can be observed from these results that the proposed TEO
algorithm attained the second rank for IAE and ITAE criteria and the third and fourth ranks for ISE
and ITSE criteria, respectively. Roughly, the HSA algorithm presents the best computational efficiency
in terms of time resource usage. The GOA metaheuristic achieved the best average elapsed time as
shown in Figure 17.
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6.4. Sensitivity Analysis

In the TEO formalism, the parameters c1 and c2 are introduced to reduce the randomness of
the algorithm over the course of iterations and to improve the exploration capabilities. The size of
thermal memory TM is considered as a predefined parameter, which can enhance the performances
of the algorithm without increasing the computational cost [3,24]. However, pro is a user parameter
that improves the global search capacity. For illustration purposes, the resolution of problem (19) is
tested by changing these above main parameters. As shown in Table 8, the case with the parameters
set (c1 = 1, c2 = 1) shows the superiority of the optimization results compared to other scenarios. In
addition, it can be seen from Table 9 that the user parameter TM = 10 leads to obtain the best solutions.
Finally, Table 10 investigates the effect of the parameter pro on the algorithm performance. The
convergence of the TEO algorithm is always guaranteed under all these control parameters variations
which shows the insensitivity of the proposed physics-inspired metaheuristic.
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Table 8. Comparison under different values of c1 and c2: IAE criterion.

Optimization Scenario
TM=10, pro=0.5 and Niter=100

Worst Mean Best STD

c1 = 0, c2 = 0 1.669 1.652 1.638 1.9 × 10−2

c1 = 1, c2 = 0 1.664 1.640 1.622 1.4 × 10−2

c1 = 0, c2 = 1 1.654 1.640 1.631 7.5 × 10−3

c1 = 1, c2 = 1 1.608 1.582 1.553 1.9 × 10−2

Table 9. Comparison under different values of TM: IAE criterion.

Optimization Scenario
c1=1, c2=1, pro=0.5 and Niter=100

Worst Mean Best STD

TM = 4 1.699 1.694 1.689 3.5 × 10−3

TM = 8 1.654 1.640 1.631 8.4 × 10−2

TM = 10 1.608 1.582 1.553 1.9 × 10−2

Table 10. Comparison under different values of pro: IAE criterion.

Optimization Scenario
c1=1, c2=1, TM=10 and Niter=100

Worst Mean Best STD

pro = 0.20 1.693 1.654 1.633 1.7 × 10−2

pro = 0.35 1.678 1.617 1.575 5.2 × 10−2

pro = 0.50 1.608 1.582 1.553 1.9 × 10−2

7. Conclusions

This paper proposes an intelligent metaheuristics-based design procedure to tune the outer-loop PI
controllers for the direct power control scheme of DFIG-based energy conversion systems. In this study,
only outer PI loops in the RSC and GSC circuits are optimized for the active and reactive powers and
DC-link voltage dynamics. Since the reported classical techniques of PI controller tuning are tedious,
time-consuming and not systematic, a TEO-based approach has been proposed and successfully
implemented. The PI controllers tuning problem is firstly formulated as a constrained optimization
program under nonlinear and non-smooth operational constraints. The introduced TEO algorithm is
then employed separately to minimize several time-domain performance criteria such as IAE, ISE, ITAE
and ITSE indices as objective functions. The proposed TEO-tuned PI controllers methodology improves
the performance and robustness of the controlled DFIG-based energy converter in terms of rising time,
settling time, and steady state indices. The classical trials-errors based methods of PI controllers tuning
are no longer used and the design time is further reduced. To evaluate the performance superiority
of the proposed TEO-based approach in finding the global minimum value of the objective function
for various performance indices, a comparison study with the PSO, GA, HSA, GSO and WCA is
performed. The demonstrative results exhibit that the proposed TEO gives very complete results in
terms of global search capabilities, robustness and non-premature convergence. Finally, the statistical
analysis is achieved by using the Friedman’s rank and Bonferroni-Dunn’s test. The corresponding
results show that the proposed TEO-based method is a promising alternative approach for controlling
the DFIG system by systematically tuning the unknown PI controllers’ parameters efficiently.
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Abbreviations

The following abbreviations are used in this manuscript:

CD Critical Difference
CTE Computational Time Efficiency
ET Elapsed Time
DFIGs Doubly Fed Induction Generators
HSA Harmony Search Algorithm
IAE Integral Absolute Error
IGBTs Insulated-Gate Bipolar Transistors
ISE Integral Square Error
ITAE Integral Time-weighted Absolute Error
ITSE Integral Time-weighted Square Error
GA Genetic Algorithm
GOA Grasshopper Optimization Algorithm
GSC Grid Side Converter
MPPT Maximum Power Point Tracking
PI Proportional-Integral
PSO Particle Swarm Optimization
RSC Rotor Side Converter
SFO Stator Flux Orientation
SPWM Sinusoidal Pulse Width Modulation
STD Standard Deviation
TEO Thermal Exchange Optimization
THD Total Harmonic Distortion
TM Thermal Memory
VOC Voltage Oriented Control
WECS Wind Energy Converter System
WCA Water Cycle Algorithm
WT Wind Turbine
WTs Wind Turbines

Notations

Cdc DC-link capacitance
C f Filter capacitance
Cp Power conversion coefficient
eg(d,q) d-q axis grid voltages
ig(d,q) d-q axis grid currents
ir(d,q) d-q axis rotor currents
is(d,q) d-q axis stator currents
Lg Filter grid side inductance
Li Filter converter side inductance
Lm Magnetizing inductance
Lr, Ls Rotor and stator inductances
LT Filter total inductance
Pg, Ps Grid and stator active powers
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Pm Mechanical turbine power
Qg, Qs Grid and stator reactive powers
R Turbine radius
Rd Filter damping resistance
Rr, Rs Rotor and stator resistances
Vdc DC-link voltage
V f (d,q) d-q axis grid converter voltage sides
Vr (d,q) d-q axis rotor converter voltage sides
Vs (d,q) d-q axis stator voltages
Vw Wind speed
λ Tip speed ratio
ωr,ωs Rotor and stator angular frequencies
Ωt Mechanical rotational speed
ρ Air density
ϕdr,ϕqr d-q axis rotor fluxes
ϕds,ϕqs d-q axis stator fluxes

Appendix A. Decision Variables of Problem (19) Relative to the Optimization Mean Case

The following gains of the optimized PI controllers (Table A1), as decision variables of problem (19), are used
to perform all numerical simulations of the paper.

Table A1. Comparative results of the PI controllers’ coefficients tuning.

Indices Algorithms
PI Controllers’ Gains

KpPs KiPs
KpQs

KiQs
Kpdc Kidc

IAE

PSO 14.16 139.37 376.43 381.82 9 31.32

GA 16.92 394.62 18.22 147.46 24.36 62.17

HSA 7.89 83.96 151.27 227.72 28.03 86.11

WCA 2.28 329.93 122.55 400 26.11 41.53

GOA 16.91 394.62 18.22 147.47 26.36 59.85

TEO 4.23 58.43 10.37 15.73 89.10 192.71

ISE

PSO 11.23 207.70 169.31 353 69.65 272.40

GA 2.25 313.46 187.62 398.82 79.95 345.49

HSA 1 × 10−5 1.87 118.84 360.16 33.29 39.65

WCA 12.88 143.34 360.15 400 191.11 293

GOA 12.42 388.97 1.93 371.52 148.46 220.78

TEO 35.94 165.25 15.44 71.59 1.48 3

ITSE

PSO 0.1 1 × 10−5 238.93 351.81 0.99 25.03

GA 1 × 10−5 1 × 10−5 7.27 214.42 24.34 62.20

HSA 303.71 320.52 1.03 6.25 27.66 45.22

WCA 4.13 248.98 10.79 24.45 27.89 79.04

GOA 9.82 108.24 333.25 27.36 131.74 205.91

TEO 8.56 5.04 67.72 69.44 10.71 31.96

ITAE

PSO 250.16 289.53 346.50 142.34 73.74 238.53

GA 1 × 10−5 1 × 10−5 45.02 85.22 130.57 26.43

HSA 8.16 4.83 323.56 384.19 33.33 47.41

WCA 9.54 63.73 329.42 395.36 143.52 400

GOA 13.71 399.92 302.9 265.4 97.91 196

TEO 4.8 × 10−6 11.28 1.6 × 10−6 8.3 × 10−6 10.24 68.66
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