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Abstract: In a network model, the evaluation information given by decision makers are occasionally
of types: yes, abstain, no, and refusal. To deal with such problems, we use mathematical models
based on picture fuzzy sets. The spherical fuzzy model is more versatile than the picture fuzzy
model as it broadens the space of uncertain and vague information, due to its outstanding feature
of vast space of participation of acceptable triplets. Graphs are a mathematical representation of
networks. Thus to deal with many real-world phenomena represented by networks, spherical fuzzy
graphs can be used to model different practical scenarios in a more flexible manner than picture
fuzzy graphs. In this research article, we discuss two operations on spherical fuzzy graphs (SFGs),
namely, symmetric difference and rejection; and develop some results regarding their degrees and
total degrees. We describe certain concepts of irregular SFGs with several important properties.
Further, we present an application of SFGs in decision making.

Keywords: spherical fuzzy graphs; symmetric difference; rejection; edge irregular spherical fuzzy
graphs; decision making

1. Introduction

Fuzzy set theory proposed by Zadeh [1] is an extension of classical set theory. Zadeh’s remarkable
idea has found many applications in several fields, including chemical industry, telecommunication,
decision theory, networking, computer science, and management science. Atanassov [2] introduced
the intuitionistic fuzzy set (IFS) as an extension of fuzzy set (FS) theory. He broadened the idea of
FSs by defining the truthness degree (α) alongside the falseness degree (β) with the requirement
0 ≤ α + β ≤ 1. Fortifying the idea of IFS, Yager [3] proposed Pythagorean fuzzy sets (PyFS), which
broadened the space of participation by presenting a new limitation, 0 ≤ α2 + β2 ≤ 1.

Cuong [4,5] initiated the concept of the picture fuzzy set (PFS) as a direct extension of intuitonistic
fuzzy sets, which may be adequate in cases when human opinions are of types: yes, abstain, no,
and refusal. A picture fuzzy set gives three degrees to the elements named truthness degree α : X →
[0, 1], abstinence degree γ : X → [0, 1], and falseness degree β : X → [0, 1] under the condition
0 ≤ α + γ + β ≤ 1, where π = 1− (α + γ + β) is the refusal degree. PFSs have many applications in
fuzzy inference, clustering, decision making etc.

Zeng et al. [6] explored the picture fuzzy divergence measure in multi-criteria group decision
making. Garg [7] presented some picture fuzzy aggregation operators. Recently, Liu et al. [8] defined
picture fuzzy weighted distance measures and their application to investment selection. Zhang et al. [9]
explored picture fuzzy Dombi Heronian mean operators. For further study on picture fuzzy sets,
one may refer to [10–15].

The spherical fuzzy set (SFS), proposed by Gündogdu and Kahraman [16], is an extension of PFS,
as it provides enlargement of the space of degrees of truthness (α), abstinence (γ), and falseness (β)
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in the interval [0, 1] with a condition 0 ≤ α2 + γ2 + β2 ≤ 1. Ashraf et al. [17] presented the notion of
SFSs with applications in decision making problems. Another extension suggested by Li et al. [18] in
2018 is the q-rung picture fuzzy set (q-RPFS). The proposed concept relaxes the constraints of picture
and spherical fuzzy sets with 0 ≤ αq + γq + βq ≤ 1, q ≥ 1. This model can express vague information
more flexibly and accurately with increasing q rungs.

Graph theory has become a powerful conceptual framework for modeling and for solutions
of combinatorial problems that arise in various areas, including mathematics, computer science,
and engineering. Many real life problems can be represented by graphs. Graph theory was first
presented by Euler, when he handled Königsberg’s bridges problem. Kaufmann [19] proposed the
notion of fuzzy graphs (FG) based on Zadeh’s fuzzy relation [20]. Rosenfeld [21] developed the
structure of FGs by obtaining various fuzzy analogs of graph theoretic concepts such as cycles, paths,
and connectedness. After that, Bhattacharya [22] discussed some remarks on FGs with a demonstration
that every idea in classical graph theory does not have equivalence in FGs.

As the concept of regularity led to many developments in the structural theory of graphs,
meanwhile, the irregular graphs have also been significant while dealing with network heterogeneity,
which has many applications across ecology, biology, economy, and technology. Literature shows that
many researchers have studied this property for fuzzy graphs and its extensions. Santhimaheswari and
Sekar [23] discussed strongly edged irregular and totally irregular FGs. Al-Hawary [24–27] considered
certain notions of fuzzy graphs. Parvathi and Karunambigai [28] extended the theory of FGs to
intuitionistic fuzzy graphs (IFGs). Afterward, IFGs were examined by Akram and Davvaz [29].
Naz et al. [30] presented the notion of Pythagorean fuzzy graphs (PyFGs), an extension of the
concept of Akram and Davvaz’s IFGs, including its applications in decision-making. Akram et al. [31]
described the specific types of PyFGs and their applications to decision-making. Recently, Akram [32]
investigated decision making methods based on spherical fuzzy graphs. Akram and Habib [33,34]
introduced the concept of q-RPFGs and discussed their regularity. Some decision making approaches
based on modified VIKOR and TOPSIS methods can be seen in [35,36]. For further study on these
graphs, one may refer to [37–40].

The spherical fuzzy model is a more versatile model, as it tackles the ambiguities in real
phenomena in a broad manner. To deal with many real world issues and to relax the bounding
constraint, the implication to the necessity of SFGs arises. The objective of this study is to expand the
graph-theoretic concepts under a SF environment. In this research article, we discuss two operations
on SFGs namely, symmetric difference and rejection with a brief description on degree and total degree
of SFGs, along with some related results. We develop several properties of irregular and edge-irregular
SFGs with examples. Further, we describe an application of SFGs in the decision making process.

2. Spherical Fuzzy Graphs

Definition 1 ([16]). A spherical fuzzy set X on an underlying set V is defined as

X = {(a, αX(a), γX(a), βX(a)) | a ∈ V}

where αX(a) ∈ [0, 1] is known as the degree of truthness of a in X, γX(a) ∈ [0, 1] is known as
the degree of abstinence of a in X, and βX(a) ∈ [0, 1] is known as the degree of falseness of a in X,
where αX, γX and βX fulfil the following condition 0 ≤ α2

X(a) + γ2
X(a) + β2

X(a) ≤ 1. Further, for all

a ∈ V, δX(a) =
√

1− (α2
X(a) + γ2

X(a) + β2
X(a)) is called the degree of refusal of membership of a in X.

Figure 1 compares the spaces of spherical fuzzy sets and picture fuzzy sets.
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Figure 1. Comparison of the spaces of picture fuzzy sets (PFSs) and spherical fuzzy sets (SFSs).

Definition 2. A spherical fuzzy graph (SFG) on an underlying set V is a pair G = (M, N), where M is a
spherical fuzzy set in V and N is a spherical fuzzy relation on V ×V, such that

αN(a, b) ≤ min{αM(a), αM(b)},
γN(a, b) ≤ min{γM(a), γM(b)},
βN(a, b) ≤ max{βM(a), βM(b)},

where α is known as the degree of truthness, γ is known as the degree of abstinence, and β is known as the
degree of falseness and fulfils the following condition 0 ≤ α2

N(a, b) + γ2
N(a, b) + β2

N(a, b) ≤ 1 for all a, b ∈ V,
where M is a spherical fuzzy vertex set and N is a spherical fuzzy edge set of G.

Definition 3. Let G = (M, N) be an SFG defined on G∗ = (V, E). The degree of a vertex a of G is denoted by
dG(a) = (dα(a), dγ(a), dβ(a)) and defined as

dG(a) =
(

∑
a 6=b

αY(a, b), ∑
a 6=b

γY(a, b), ∑
a 6=b

βY(a, b)
)

for all (a, b) ∈ E.

Definition 4. Let G = (M, N) be an SFG defined on G∗ = (V, E). The total degree of a vertex a of G is
denoted by tdG(a) = (tdα(a), tdγ(a), tdβ(a)) and defined as

tdG(a) =
(

∑
a 6=b

αY(a, b) + αX(a), ∑
a 6=b

γY(a, b) + γX(a), ∑
a 6=b

βY(a, b) + βX(a)
)

for all (a, b) ∈ E.
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We now define two operations: symmetric difference and rejection on spherical fuzzy graphs,
and develop several important results.

Definition 5. Let M1 = (αM1 , γM1 , βM1) and M2 = (αM2 , γM2 , βM2) be spherical fuzzy sets defined on V1

and V2, and let N1 = (αN1 , γN1 , βN1) and N2 = (αN2 , γN2 , βN2) be spherical fuzzy sets defined on E1 and E2,
respectively. Then, we denote the symmetric difference of two SFGs G1 and G2 of the graphs G∗1 and G∗2 by
G1 ⊕ G2 = (M1 ⊕M2, N1 ⊕ N2), and define as follows:

(i)
(
αM1 ⊕ αM2

)
(a1, a2) = min{αM1 (a1), αM2 (a2)}(

γM1 ⊕ γM2

)
(a1, a2) = min{γM1 (a1), γM2 (a2)}(

βM1 ⊕ βM2

)
(a1, a2) = max{βM1 (a1), βM2 (a2)} for all a1, a2 ∈ V,

(ii)
(
αN1 ⊕ αN2

)
(a, a2)(a, b2) = min{αM1 (a), αN2 (a2b2)}(

γN1 ⊕ γN2

)
(a, a2)(a, b2) = min{γM1 (a), γN2 (a2b2)}(

βN1 ⊕ βN2

)
(a, a2)(a, b2) = max{βM1 (a), βN2 (a2b2)} for all a ∈ V1, for all a2b2 ∈ E2,

(iii)
(
αN1 ⊕ αN2

)
(a1, c)(b1, c) = min{αN1 (a1b1), αM2 (c)}(

γN1 ⊕ γN2

)
(a1, c)(b1, c) = min{γN1 (a1b1), γM2 (c)}(

βN1 ⊕ βN2

)
(a1, c)(b1, c) = max{βN1 (a1b1), βM2 (c)} for all c ∈ V2, for all a1b1 ∈ E1,

(iv)
(
αN1 ⊕ αN2

)
(a1, a2)(b1, b2) = min{αM1 (a1), αM1 (b1), αN2 (a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= min{αM2 (a2), αM2 (b2), αN1 (a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1,

(
γN1 ⊕ γN2

)
(a1, a2)(b1, b2) = min{γM1 (a1), γM1 (b1), γN2 (a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= min{γM2 (a2), γM2 (b2), γN1 (a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1,

(
βN1 ⊕ βN2

)
(a1, a2)(b1, b2) = max{βM1 (a1), βM1 (b1), βN2 (a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= max{βM2 (a2), βM2 (b2), βN1 (a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1.

Example 1. Consider two SFGs G1 = (M1, N1) and G2 = (M2, N2), as shown in Figure 2. Their symmetric
difference G1 ⊕ G2 is shown in Figure 3.

(iv)
(

αN1 ⊕ αN2

)

(a1, a2)(b1, b2) = min{αM1(a1), αM1(b1), αN2(a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= min{αM2(a2), αM2(b2), αN1(a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1,

(

γN1 ⊕ γN2

)

(a1, a2)(b1, b2) = min{γM1(a1), γM1(b1), γN2(a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= min{γM2(a2), γM2(b2), γN1(a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1,

(

βN1 ⊕ βN2

)

(a1, a2)(b1, b2) = max{βM1(a1), βM1(b1), βN2(a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= max{βM2(a2), βM2(b2), βN1(a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1.

Example 2.5. Consider two SFGs G1 = (M1, N1) and G2 = (M2, N2) as shown in Figure 2. Their symmetric
difference G1 ⊕ G2 is shown in Figure 3.
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(iv)
(

αN1 ⊕ αN2

)

(a1, a2)(b1, b2) = min{αM1(a1), αM1(b1), αN2(a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= min{αM2(a2), αM2(b2), αN1(a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1,

(

γN1 ⊕ γN2

)

(a1, a2)(b1, b2) = min{γM1(a1), γM1(b1), γN2(a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= min{γM2(a2), γM2(b2), γN1(a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1,

(

βN1 ⊕ βN2

)

(a1, a2)(b1, b2) = max{βM1(a1), βM1(b1), βN2(a2b2)} for all a1b1 6∈ E1, a2b2 ∈ E2

or

= max{βM2(a2), βM2(b2), βN1(a1b1)} for all a2b2 6∈ E2, a1b1 ∈ E1.

Example 2.5. Consider two SFGs G1 = (M1, N1) and G2 = (M2, N2) as shown in Figure 2. Their symmetric
difference G1 ⊕ G2 is shown in Figure 3.
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Proposition 1. If G1 and G2 are SFGs, then G1 ⊕ G2 is a SFG.

Proof. Let a ∈ V1 and a2b2 ∈ E2. Then we have(
αN1 ⊕ αN2

)
(a, a2)(a, b2) = min

(
αM1 (a), αN2 (a2b2)

)
≤ min

(
αM1 (a), min

(
αM2 (a2), αM2 (b2)

))
= min

(
min

(
αM1 (a), αM2 (a2)

)
, min

(
αM1 (a), αM2 (b2)

))
= min

((
αM1 ⊕ αM2

)
(a, a2),

(
αM1 ⊕ αM2

)
(a, b2)

)
,

(
γN1 ⊕ γN2

)
(a, a2)(a, b2) = min

(
γM1 (a), γN2 (a2b2)

)
≤ min

(
γM1 (a), min

(
γM2 (a2), γM2 (b2)

))
= min

(
min

(
γM1 (a), γM2 (a2)

)
, min

(
γM1 (a), γM2 (b2)

))
= min

((
γM1 ⊕ γM2

)
(a, a2),

(
γM1 ⊕ γM2

)
(a, b2)

)
,

(
βN1 ⊕ βN2

)
(a, a2)(a, b2) = max

(
βM1 (a), βN2 (a2b2)

)
≤ max

(
βM1 (a), max

(
βM2 (a2), βM2 (b2)

))
= max

(
max

(
βM1 (a), βM2 (a2)

)
, max

(
βM1 (a), βM2 (b2)

))
= max

((
βM1 ⊕ βM2

)
(a, a2),

(
βM1 ⊕ βM2

)
(a, b2)

)
.

Let c ∈ V2 and a1b1 ∈ E1. Then we have(
αN1 ⊕ αN2

)
(a1, c)(b1, c) = min

(
αN1 (a1b1), αM2 (c)

)
≤ min

(
min

(
αM1 (a1), αM1 (b1)

)
, αM2 (c)

)
= min

(
min

(
αM1 (a1), αM2 (c)

)
, min

(
αM1 (b1), αM2 (c)

))
= min

((
αM1 ⊕ αM2

)
(a1, c),

(
αM1 ⊕ αM2

)
(b1, c)

)
,
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(
γN1 ⊕ γN2

)
(a1, c)(b1, c) = min

(
γN1 (a1b1), γM2 (c)

)
≤ min

(
min

(
γM1 (a1), γM1 (b1)

)
, γM2 (c)

)
= min

(
min

(
γM1 (a1), γM2 (c)

)
, min

(
γM1 (b1), γM2 (c)

))
= min

((
γM1 ⊕ γM2

)
(a1, c),

(
γM1 ⊕ γM2

)
(b1, c)

)
,

(
βN1 ⊕ βN2

)
(a1, c)(b1, c) = max

(
βN1 (a1b1), βM2 (c)

)
≤ max

(
max

(
βM1 (a1), βM1 (b1)

)
, βM2 (c)

)
= max

(
max

(
βM1 (a1), βM2 (c)

)
, max

(
βM1 (b1), βM2 (c)

))
= max

((
βM1 ⊕ βM2

)
(a1, c),

(
βM1 ⊕ βM2

)
(b1, c)

)
.

Let a1b1 6∈ E1, a2b2 ∈ E2. Then we have(
αN1 ⊕ αN2

)
(a1, a2)(b1, b2) = min

(
αM1 (a1), αM1 (b1), αN2 (a2b2)

)
≤ min

(
αM1 (a1), αM1 (b1), min

(
αM2 (a2), αM2 (b2)

))
= min

(
min

(
αM1 (a1), αM2 (a2)

)
, min

(
αM1 (b1), αM2 (b2)

))
= min

((
αM1 ⊕ αM2

)
(a1, a2),

(
αM1 ⊕ αM2

)
(b1, b2)

)
,

(
γN1 ⊕ γN2

)
(a1, a2)(b1, b2) = min

(
γM1 (a1), γM1 (b1), γN2 (a2b2)

)
≤ min

(
γM1 (a1), γM1 (b1), min

(
γM2 (a2), γM2 (b2)

))
= min

(
min

(
γM1 (a1), γM2 (a2)

)
, min

(
γM1 (b1), γM2 (b2)

))
= min

((
γM1 ⊕ γM2

)
(a1, a2),

(
γM1 ⊕ γM2

)
(b1, b2)

)
,

(
βN1 ⊕ βN2

)
(a1, a2)(b1, b2) = max

(
βM1 (a1), βM1 (b1), βN2 (a2b2)

)
≤ max

(
βM1 (a1), βM1 (b1), max

(
βM2 (a2), βM2 (b2)

))
= max

(
max

(
βM1 (a1), βM2 (a2)

)
, max

(
βM1 (b1), βM2 (b2)

))
= max

((
βM1 ⊕ βM2

)
(a1, a2),

(
βM1 ⊕ βM2

)
(b1, b2)

)
,

Let a1b1 ∈ E1, a2b2 6∈ E2. Then we have(
αN1 ⊕ αN2

)
(a1, a2)(b1, b2) = min

(
αM2 (a2), αM2 (b2), αN1 (a1b1)

)
≤ min

(
αM2 (a2), αM2 (b2), min

(
αM1 (a1), αM1 (b1)

))
= min

(
min

(
αM1 (a1), αM2 (a2)

)
, min

(
αM1 (b1), αM2 (b2)

))
= min

((
αM1 ⊕ αM2

)
(a1, a2),

(
αM1 ⊕ αM2

)
(b1, b2)

)
,

(
γN1 ⊕ γN2

)
(a1, a2)(b1, b2) = min

(
γM2 (a2), γM2 (b2), γN1 (a1b1)

)
≤ min

(
γM2 (a2), γM2 (b2), min

(
γM1 (a1), γM1 (b1)

))
= min

(
min

(
γM1 (a1), γM2 (a2)

)
, min

(
γM1 (b1), γM2 (b2)

))
= min

((
γM1 ⊕ γM2

)
(a1, a2),

(
γM1 ⊕ γM2

)
(b1, b2)

)
,

(
βN1 ⊕ βN2

)
(a1, a2)(b1, b2) = max

(
βM2 (a2), βM2 (b2), βN1 (a1b1)

)
≤ max

(
βM2 (a2), βM2 (b2), max

(
βM1 (a1), βM1 (b1)

))
= max

(
max

(
βM1 (a1), βM2 (a2)

)
, max

(
βM1 (b1), βM2 (b2)

))
= max

((
βM1 ⊕ βM2

)
(a1, a2),

(
βM1 ⊕ βM2

)
(b1, b2)

)
.

Hence, G1 ⊕ G2 is an SFG.
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Definition 6. Let G1 = (M1, N1) and G2 = (M2, N2) be two SFGs. Then for any vertex, (a1, a2) ∈ V1 ×V2,

(dα)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
αN1 ⊕ αN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2∈E2

min{αM1 (a1), αN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{αM2 (a2), αN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{αN1 (a1b1), αM2 (a2), αM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{αN2 (a2b2), αM1 (a1), αM1 (b1)},

(dγ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
γN1 ⊕ γN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2∈E2

min{γM1 (a1), γN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{γM2 (a2), γN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{γN1 (a1b1), γM2 (a2), γM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{γN2 (a2b2), γM1 (a1), γM1 (b1)},

(dβ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
βN1 ⊕ βN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2∈E2

max{βM1 (a1), βN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

max{βM2 (a2), βN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

max{βN1 (a1b1), βM2 (a2), βM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

max{βN2 (a2b2), βM1 (a1), βM1 (b1)}.

Theorem 1. Let G1 = (M1, N1) and G2 = (M2, N2) be two SFGs. If αM1 ≥ αN2 , γM1 ≥ γN2 , βM1 ≤ βN2

and αM2 ≥ αN1 , γM2 ≥ γN1 , βM2 ≤ βN1 . Then dG1 ⊕G2(a1, a2) = m2dG1(a1) + m1dG2(a2), where m2 =

|V2| − dG∗2
(a2) and m1 = |V1| − dG∗1

(a1) for all (a1, a2) ∈ V1 ×V2.

Proof. By definition of the vertex degree of G1 ⊕ G2, we have

(dα)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
αN1 ⊕ αN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2∈E2

min{αM1 (a1), αN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{αM2 (a2), αN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{αN1 (a1b1), αM2 (a2), αM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{αN2 (a2b2), αM1 (a1), αM1 (b1)}

= ∑
a2b2∈E2

αN2 (a2b2) + ∑
a1b1∈E1

αN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

αN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

αN2 (a2b2) (by using αM1 ≥ αN2 and αM2 ≥ αN1 )

= m2(dα)G1 (a1) + m1(dα)G2 (a2),
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(dγ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
γN1 ⊕ γN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2∈E2

min{γM1 (a1), γN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{γM2 (a2), γN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{γN1 (a1b1), γM2 (a2), γM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{γN2 (a2b2), γM1 (a1), γM1 (b1)}

= ∑
a2b2∈E2

γN2 (a2b2) + ∑
a1b1∈E1

γN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

γN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

γN2 (a2b2) (by using γM1 ≥ γN2 and γM2 ≥ γN1 )

= m2(dγ)G1 (a1) + m1(dγ)G2 (a2),

(dβ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
βN1 ⊕ βN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2∈E2

max{βM1 (a1), βN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

max{βM2 (a2), βN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

max{βN1 (a1b1), βM2 (a2), βM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

max{βN2 (a2b2), βM1 (a1), βM1 (b1)}

= ∑
a2b2∈E2

βN2 (a2b2) + ∑
a1b1∈E1

βN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

βN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

βN2 (a2b2) (by using βM1 ≤ βN2 and βM2 ≤ βN1 )

= m2(dβ)G1 (a1) + m1(dβ)G2 (a2).

Hence, dG1 ⊕ G2(a1, a2) = m2dG1(a1) + m1dG2(a2), where m2 = |V2| − dG∗2
(a2) and m1 = |V1| −

dG∗1
(a1).

Definition 7. Let G1 = (M1, N1) and G2 = (M2, N2) be two SFGs. Then for any vertex, (a1, a2) ∈ V1 ×V2,

(tdα)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
αN1 ⊕ αN2

)
(a1, a2)(b1, b2) +

(
αM1 ⊕ αM2

)
(a1, a2)

= ∑
a1=b1 , a2b2∈E2

min{αM1 (a1), αN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{αM2 (a2), αN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{αN1 (a1b1), αM2 (a2), αM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{αN2 (a2b2), αM1 (a1), αM1 (b1)}+ min{αM1 (a1), αM2 (a2)},

(tdγ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
γN1 ⊕ γN2

)
(a1, a2)(b1, b2) +

(
γM1 ⊕ γM2

)
(a1, a2)

= ∑
a1=b1 , a2b2∈E2

min{γM1 (a1), γN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{γM2 (a2), γN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{γN1 (a1b1), γM2 (a2), γM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{γN2 (a2b2), γM1 (a1), γM1 (b1)}+ min{γM1 (a1), γM2 (a2)},

(tdβ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
βN1 ⊕ βN2

)
(a1, a2)(b1, b2) +

(
βM1 ⊕ βM2

)
(a1, a2)

= ∑
a1=b1 , a2b2∈E2

max{βM1 (a1), βN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

max{βM2 (a2), βN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

max{βN1 (a1b1), βM2 (a2), βM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

max{βN2 (a2b2), βM1 (a1), βM1 (b1)}+ max{βM1 (a1), βM2 (a2)}.
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Theorem 2. Let G1 = (M1, N1) and G2 = (M2, N2) be two SFGs. If

(i) αM1 ≥ αN2 and αM2 ≥ αN1 , then (tdα)G1 ⊕ G2 (a1, a2) = m2(tdα)G1 (a1)− (m2 − 1)αM1 (a1) + m1(tdα)G2 (a2)

− (m1 − 1)αM2 (a2)− max{αM1 (a1), αM2 (a2)};
(ii) γM1 ≥ γN2 and γM2 ≥ γN1 , then (tdγ)G1 ⊕ G2 (a1, a2) = m2(tdγ)G1 (a1)− (m2 − 1)γM1 (a1) + m1(tdγ)G2 (a2)

− (m1 − 1)γM2 (a2)− max{γM1 (a1), γM2 (a2)};
(iii) βM1 ≤ βN2 and βM2 ≤ βN1 , then (tdβ)G1 ⊕ G2 (a1, a2) = m2(tdβ)G1 (a1)− (m2 − 1)βM1 (a1) + m1(tdα)G2 (a2)

− (m1 − 1)βM2 (a2)− min{αM1 (a1), αM2 (a2)},

for all (a1, a2) ∈ V1 ×V2.

Proof. By definition of the vertex total degree of G1 ⊕ G2, we have

(tdα)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
αN1 ⊕ αN2

)
(a1, a2)(b1, b2) +

(
αM1 ⊕ αM2

)
(a1, a2)

= ∑
a1=b1 , a2b2∈E2

min{αM1 (a1), αN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{αM2 (a2), αN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{αN1 (a1b1), αM2 (a2), αM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{αN2 (a2b2), αM1 (a1), αM1 (b1)}+ min{αM1 (a1), αM2 (a2)}

= ∑
a2b2∈E2

αN2 (a2b2) + ∑
a1b1∈E1

αN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

αN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

αN2 (a2b2) + min{αM1 (a1), αM2 (a2)} (by using αM1 ≥ αN2 and αM2 ≥ αN1 )

= ∑
a2b2∈E2

αN2 (a2b2) + ∑
a1b1∈E1

αN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

αN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

αN2 (a2b2) + αM1 (a1) + αM2 (a2)−max{αM1 (a1), αM2 (a2)}

= m2(tdα)G1 (a1)− (m2 − 1)αM1 (a1) + m1(tdα)G2 (a2)− (m1 − 1)αM2 (a2)

− max{αM1 (a1), αM2 (a2)},

(tdγ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
γN1 ⊕ γN2

)
(a1, a2)(b1, b2) +

(
γM1 ⊕ γM2

)
(a1, a2)

= ∑
a1=b1 , a2b2∈E2

min{γM1 (a1), γN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

min{γM2 (a2), γN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

min{γN1 (a1b1), γM2 (a2), γM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

min{γN2 (a2b2), γM1 (a1), γM1 (b1)}+ min{γM1 (a1), γM2 (a2)}

= ∑
a2b2∈E2

γN2 (a2b2) + ∑
a1b1∈E1

γN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

γN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

γN2 (a2b2) + min{γM1 (a1), γM2 (a2)} (by using γM1 ≥ γN2 and γM2 ≥ γN1 )

= ∑
a2b2∈E2

γN2 (a2b2) + ∑
a1b1∈E1

γN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

γN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

γN2 (a2b2) + γM1 (a1) + γM2 (a2)−max{γM1 (a1), γM2 (a2)}

= m2(tdγ)G1 (a1)− (m2 − 1)γM1 (a1) + m1(tdγ)G2 (a2)− (m1 − 1)γM2 (a2)

−max{γM1 (a1), γM2 (a2)},
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(tdβ)G1 ⊕ G2 (a1, a2) = ∑
(a1 ,a2)(b1 ,b2)∈E1 ⊕ E2

(
βN1 ⊕ βN2

)
(a1, a2)(b1, b2) +

(
βM1 ⊕ βM2

)
(a1, a2)

= ∑
a1=b1 , a2b2∈E2

max{βM1 (a1), βN2 (a2b2)}+ ∑
a2=b2 , a1b1∈E1

max{βM2 (a2), βN1 (a1b1)}

+ ∑
a1b1∈E1 , a2b2 6∈E2

max{βN1 (a1b1), βM2 (a2), βM2 (b2)}

+ ∑
a1b1 6∈E1 , a2b2∈E2

max{βN2 (a2b2), βM1 (a1), βM1 (b1)}+ max{βM1 (a1), βM2 (a2)}

= ∑
a2b2∈E2

βN2 (a2b2) + ∑
a1b1∈E1

βN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

βN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

βN2 (a2b2) + max{βM1 (a1), βM2 (a2)} (by using βM1 ≤ βN2 and βM2 ≤ βN1 )

= ∑
a2b2∈E2

βN2 (a2b2) + ∑
a1b1∈E1

βN1 (a1b1) + ∑
a1b1∈E1 ,a2b2 6∈E2

βN1 (a1b1)

+ ∑
a1b1 6∈E1 ,a2b2∈E2

βN2 (a2b2) + βM1 (a1) + βM2 (a2)−min{βM1 (a1), βM2 (a2)}

= m2(tdβ)G1 (a1)− (m2 − 1)βM1 (a1) + m1(tdβ)G2 (a2)− (m1 − 1)βM2 (a2)

−min{βM1 (a1).βM2 (a2)},

where m2 = |V2| − dG∗2
(a2) and m1 = |V1| − dG∗1

(a1).

Example 2. Consider two SFGs, G1 and G2, as in Example 1. Their symmetric difference is shown in Figure 3.
Then, by Theorem 1, we must have

(dα)G1⊕G2 (c, d) = m2(dα)G1 (c) + m1(dα)G2 (d) = 1.2,

(dγ)G1⊕G2 (c, d) = m2(dγ)G1 (c) + m1(dγ)G2 (d) = 0.9,

(dα)G1⊕G2 (c, d) = m2(dβ)G1 (c) + m1(dβ)G2 (d) = 1.5.

Therefore, dG1⊕G2(c, d) = (1.2, 0.9, 1.5). In addition, by Theorem 2, we must have

(tdα)G1 ⊕ G2 (c, d) = m2(tdα)G1 (c)− (m2 − 1)αM1 (c) + m1(tdα)G2 (d)− (m1 − 1)αM2 (d)

− max{αM1 (c), αM2 (d)} = 1.8

(tdγ)G1 ⊕ G2 (c, d) = m2(tdγ)G1 (c)− (m2 − 1)γM1 (d) + m1(tdγ)G2 (d)

− (m1 − 1)γM2 (d)− max{γM1 (c), γM2 (d)} = 1.2

(tdβ)G1 ⊕ G2 (c, d) = m2(tdβ)G1 (c)− (m2 − 1)βM1 (c) + m1(tdα)G2 (d)

− (m1 − 1)βM2 (d)− min{αM1 (c), αM2 (d)} = 2.0.

Therefore, tdG1⊕G2(c, d) = (1.8, 1.2, 2.0). Analogously, we can compute the degree and total degree of all vertices
in G1 ⊕ G2.

Definition 8. Let M1 = (αM1 , γM1 , βM1) and M2 = (αM2 , γM2 , βM2) be spherical fuzzy sets defined on
V1 and V2, and let N1 = (αN1 , γN1 , βN1) and N2 = (αN2 , γN2 , βN2) be spherical fuzzy sets defined on E1

and E2, respectively. Then, we denote the rejection of two SFGs G1 and G2 of the graphs G∗1 and G∗2 by
G1 | G2 = (M1 | M2, N1 | N2), and define as follows:

(i)
(
αM1 | αM2

)
(a1, a2) = min{αM1 (a1), αM2 (a2)}(

γM1 | γM2

)
(a1, a2) = min{γM1 (a1), γM2 (a2)}(

βM1 | βM2

)
(a1, a2) = max{βM1 (a1), βM2 (a2)} for all (a1, a2) ∈ V ×V,

(ii)
(
αN1 | αN2

)
(a, a2)(a, b2) = min{αM1 (a), αM2 (a2), αM2 (b2)}(

γN1 | γN2

)
(a, a2)(a, b2) = min{γM1 (a), γM2 (a2), γM2 (b2)}(

βN1 | βN2

)
(a, a2)(a, b2) = max{βM1 (a), βM2 (a2), βM2 (b2)} for all a ∈ V1, for all a2b2 6∈ E2,
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(iii)
(
αN1 | αN2

)
(a1, c)(b1, c) = min{αM1 (a1), αM1 (b1), αM2 (c)}(

γN1 | γN2

)
(a1, c)(b1, c) = min{γN1 (a1), γN1 (b1), γM2 (c)}(

βN1 | βN2

)
(a1, c)(b1, c) = max{βN1 (a1), βN1 (b1), βM2 (c)} for all c ∈ V2, for all a1b1 6∈ E1,

(iv)
(
αN1 | αN2

)
(a1, a2)(b1, b2) = min{αM1 (a1), αM1 (b1), αM2 (a2), αM2 (b2)}(

γN1 | γN2

)
(a1, a2)(b1, b2) = min{γM1 (a1), γM1 (b1), γM2 (a2), γM2 (b2)}(

βN1 | βN2

)
(a1, a2)(b1, b2) = max{βM1 (a1), βM1 (b1), βM2 (a2), βM2 (b2)} for all a2b2 6∈ E2, a1b1 6∈ E1.

Example 3. Consider two SFGs, G1 = (M1, N1) and G2 = (M2, N2), as shown in Figure 4. Then rejection of
G1 and G2, i.e., G1 | G2 is shown in Figure 5.

(ii)
(

αN1 | αN2

)

(a, a2)(a, b2) = min{αM1(a), αM2 (a2), αM2(b2)}
(

γN1 | γN2

)

(a, a2)(a, b2) = min{γM1(a), γM2(a2), γM2(b2)}
(

βN1 | βN2

)

(a, a2)(a, b2) = max{βM1(a), βM2(a2), βM2(b2)} for all a ∈ V1, for all a2b2 6∈ E2,

(iii)
(

αN1 | αN2

)

(a1, c)(b1, c) = min{αM1(a1), αM1(b1), αM2(c)}
(

γN1 | γN2

)

(a1, c)(b1, c) = min{γN1(a1), γN1(b1), γM2(c)}
(

βN1 | βN2

)

(a1, c)(b1, c) = max{βN1(a1), βN1(b1), βM2(c)} for all c ∈ V2, for all a1b1 6∈ E1,

(iv)
(

αN1 | αN2

)

(a1, a2)(b1, b2) = min{αM1(a1), αM1(b1), αM2(a2), αM2(b2)}
(

γN1 | γN2

)

(a1, a2)(b1, b2) = min{γM1(a1), γM1(b1), γM2(a2), γM2(b2)}
(

βN1 | βN2

)

(a1, a2)(b1, b2) = max{βM1(a1), βM1(b1), βM2(a2), βM2(b2)} for all a2b2 6∈ E2, a1b1 6∈ E1.

Example 2.13. Consider two SFGs G1 = (M1, N1) and G2 = (M2, N2) as shown in Figure 4. Then rejection
of G1 and G2, i.e., G1 | G2 is shown in Figure 5.

b

b

b

a(0.5, 0.4, 0.6)

b(0.7, 0.3, 0.4)

c(0.3, 0.6, 0.7)

(0
.5
, 0
.2
, 0
.6
)

(0.3, 0.3, 0.7)

(a) G1

b b

b

d(0.3, 0.5, 0.6)

e(0.6, 0.4, 0.5)

f(0.4, 0.6, 0.3)

(0.2, 0.4, 0.6)

(0
.4
, 0
.3
, 0
.5
)

(b) G2

Figure 4: SFGs

b

b b

b

b b

b

b

b

(a, e)

(a, f)(a, d)

(b,
f
)

(c, f)

(c, e)

(c, d)

(b
,
d
)

(b
, e
)

(0.5, 0.4, 0.6)

(0.4, 0.4, 0.6)

(0
.4
,0
.3
,0
.4
)

(0.3, 0.6, 0.7)

(0.3, 0.4, 0.7)

(0.3, 0.5, 0.7)

(0
.3
,
0
.3
,
0
.6
)

(0
.6,

0.3
, 0
.5)

(0.3, 0.4, 0.6)

(0.3, 0.5, 0.7)

(0
.3
, 0
.4
, 0
.7
)

(0
.3
, 0
.4
, 0
.7
)

(0.3, 0.3, 0.6)

(0.3
, 0.4

, 0.7
)

(0.3, 0.4, 0.7)

(0
.3
, 0
.4
, 0
.7
)

(0.3, 0.4, 0.6)

Figure 5: G1 | G2

Proposition 2.14. If G1 and G2 are SFGs, then G1 | G2 is a SFG.

12

Figure 4. SFGs.

(ii)
(

αN1 | αN2

)

(a, a2)(a, b2) = min{αM1(a), αM2 (a2), αM2(b2)}
(

γN1 | γN2

)

(a, a2)(a, b2) = min{γM1(a), γM2(a2), γM2(b2)}
(

βN1 | βN2

)

(a, a2)(a, b2) = max{βM1(a), βM2(a2), βM2(b2)} for all a ∈ V1, for all a2b2 6∈ E2,

(iii)
(

αN1 | αN2

)

(a1, c)(b1, c) = min{αM1(a1), αM1(b1), αM2(c)}
(

γN1 | γN2

)

(a1, c)(b1, c) = min{γN1(a1), γN1(b1), γM2(c)}
(

βN1 | βN2

)

(a1, c)(b1, c) = max{βN1(a1), βN1(b1), βM2(c)} for all c ∈ V2, for all a1b1 6∈ E1,

(iv)
(

αN1 | αN2

)

(a1, a2)(b1, b2) = min{αM1(a1), αM1(b1), αM2(a2), αM2(b2)}
(

γN1 | γN2

)

(a1, a2)(b1, b2) = min{γM1(a1), γM1(b1), γM2(a2), γM2(b2)}
(

βN1 | βN2

)

(a1, a2)(b1, b2) = max{βM1(a1), βM1(b1), βM2(a2), βM2(b2)} for all a2b2 6∈ E2, a1b1 6∈ E1.

Example 2.13. Consider two SFGs G1 = (M1, N1) and G2 = (M2, N2) as shown in Figure 4. Then rejection
of G1 and G2, i.e., G1 | G2 is shown in Figure 5.

b

b

b

a(0.5, 0.4, 0.6)

b(0.7, 0.3, 0.4)

c(0.3, 0.6, 0.7)

(0
.5
, 0
.2
, 0
.6
)

(0.3, 0.3, 0.7)

(a) G1

b b

b

d(0.3, 0.5, 0.6)

e(0.6, 0.4, 0.5)

f(0.4, 0.6, 0.3)

(0.2, 0.4, 0.6)

(0
.4
, 0
.3
, 0
.5
)

(b) G2

Figure 4: SFGs

b

b b

b

b b

b

b

b

(a, e)

(a, f)(a, d)

(b,
f
)

(c, f)

(c, e)

(c, d)

(b
,
d
)

(b
, e
)

(0.5, 0.4, 0.6)

(0.4, 0.4, 0.6)

(0
.4
,0
.3
,0
.4
)

(0.3, 0.6, 0.7)

(0.3, 0.4, 0.7)

(0.3, 0.5, 0.7)

(0
.3
,
0
.3
,
0
.6
)

(0
.6,

0.3
, 0
.5)

(0.3, 0.4, 0.6)

(0.3, 0.5, 0.7)

(0
.3
, 0
.4
, 0
.7
)

(0
.3
, 0
.4
, 0
.7
)

(0.3, 0.3, 0.6)

(0.3
, 0.4

, 0.7
)

(0.3, 0.4, 0.7)

(0
.3
, 0
.4
, 0
.7
)

(0.3, 0.4, 0.6)

Figure 5: G1 | G2

Proposition 2.14. If G1 and G2 are SFGs, then G1 | G2 is a SFG.

12

Figure 5. G1 | G2.

Proposition 2. If G1 and G2 are SFGs, then G1 | G2 is an SFG.
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Proof. Let a ∈ V1 and a2b2 6∈ E2. Then we have(
αN1 | αN2

)
(a, a2)(a, b2) = min

(
αM1 (a), αM2 (a2), αM2 (b2)

)
= min

(
min

(
αM1 (a), αM2 (a2)

)
, min

(
αM1 (a), αM2 (b2)

))
= min

((
αM1 | αM2

)
(a, a2),

(
αM1 | αM2

)
(a, b2)

)
,

(
γN1 | γN2

)
(a, a2)(a, b2) = min

(
γM1 (a), γM2 (a2), γM2 (b2)

)
= min

(
min

(
γM1 (a), γM2 (a2)

)
, min

(
γM1 (a), γM2 (b2)

))
= min

((
γM1 | γM2

)
(a, a2),

(
γM1 | γM2

)
(a, b2)

)
,

(
βN1 | βN2

)
(a, a2)(a, b2) = max

(
βM1 (a), βM2 (a2), βM2 (b2)

)
= max

(
max

(
βM1 (a), βM2 (a2)

)
, max

(
βM1 (a), βM2 (b2)

))
= max

((
βM1 | βM2

)
(a, a2),

(
βM1 | βM2

)
(a, b2)

)
.

Let c ∈ V2 and a1b1 6∈ E1. Then we have(
αN1 | αN2

)
(a1, c)(b1, c) = min

(
αM1 (a1), αM1 (b1), αM2 (c)

)
= min

(
min

(
αM1 (a1), αM2 (c)

)
, min

(
αM1 (b1), αM2 (c)

))
= min

((
αM1 | αM2

)
(a1, c),

(
αM1 | αM2

)
(b1, c)

)
,

(
γN1 | γN2

)
(a1, c)(b1, c) = min

(
γM1 (a1), γM1 (b1), γM2 (c)

)
= min

(
min

(
γM1 (a1), γM2 (c)

)
, min

(
γM1 (b1), γM2 (c)

))
= min

((
γM1 | γM2

)
(a1, c),

(
γM1 | γM2

)
(b1, c)

)
,

(
βN1 | βN2

)
(a1, c)(b1, c) = max

(
βM1 (a1), βM1 (b1), βM2 (c)

)
= max

(
max

(
βM1 (a1), βM2 (c)

)
, max

(
βM1 (b1), βM2 (c)

))
= max

((
βM1 | βM2

)
(a1, c),

(
βM1 | βM2

)
(b1, c)

)
.

Let a1b1 6∈ E1, a2b2 6∈ E2. Then we have(
αN1 | αN2

)
(a1, a2)(b1, b2) = min

(
αM1 (a1), αM1 (b1), αM2 (a2), αM2 (b2)

)
= min

(
min

(
αM1 (a1), αM2 (a2)

)
, min

(
αM1 (b1), αM2 (b2)

))
= min

((
αM1 | αM2

)
(a1, a2),

(
αM1 | αM2

)
(b1, b2)

)
,

(
γN1 | γN2

)
(a1, a2)(b1, b2) = min

(
γM1 (a1), γM1 (b1), γM2 (a2), γM2 (b2)

)
= min

(
min

(
γM1 (a1), γM2 (a2)

)
, min

(
γM1 (b1), γM2 (b2)

))
= min

((
γM1 | γM2

)
(a1, a2),

(
γM1 | γM2

)
(b1, b2)

)
,

(
βN1 | βN2

)
(a1, a2)(b1, b2) = max

(
βM1 (a1), βM1 (b1), βM2 (a2), βM2 (b2)

)
= max

(
max

(
βM1 (a1), βM2 (a2)

)
, max

(
βM1 (b1), βM2 (b2)

))
= max

((
βM1 | βM2

)
(a1, a2),

(
βM1 | βM2

)
(b1, b2)

)
.

Hence, G1 | G2 is an SFG.
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Definition 9. Let G1 = (M1, N1) and G2 = (M2, N2) be two SFGs. Then for any vertex, (a1, a2) ∈ V1 ×V2,

(dα)G1 | G2
(a1, a2) = ∑

(a1 ,a2)(b1 ,b2)∈E1 | E2

(
αN1 | αN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2 6∈E2

min{αM1 (a1), αM2 (a2), αM2 (b2)}+ ∑
a2=b2 , a1b1 6∈E1

min{αM2 (a2), αM1 (a1), αM1 (b1)}

+ ∑
a1b1 6∈E1 , a2b2 6∈E2

min{αM1 (a1), αM1 (b1), αM2 (a2), αM2 (b2)},

(dγ)G1 | G2
(a1, a2) = ∑

(a1 ,a2)(b1 ,b2)∈E1 | E2

(
γN1 | γN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2 6∈E2

min{γM1 (a1), γM2 (a2), γM2 (b2)}+ ∑
a2=b2 , a1b1 6∈E1

min{γM2 (a2), γM1 (a1), γM1 (b1)}

+ ∑
a1b1 6∈E1 , a2b2 6∈E2

min{γM1 (a1), γM1 (b1), γM2 (a2), γM2 (b2)},

(dβ)G1 | G2
(a1, a2) = ∑

(a1 ,a2)(b1 ,b2)∈E1 | E2

(
βN1 | βN2

)
(a1, a2)(b1, b2)

= ∑
a1=b1 , a2b2 6∈E2

max{βM1 (a1), βM2 (a2), βM2 (b2)}+ ∑
a2=b2 , a1b1 6∈E1

max{βM2 (a2), βM1 (a1), βM1 (b1)}

+ ∑
a1b1 6∈E1 , a2b2 6∈E2

max{βM1 (a1), βM1 (b1), βM2 (a2), βM2 (b2)}.

Definition 10. Let G1 = (M1, N1) and G2 = (M2, N2) be two SFGs. Then for any vertex, (a1, a2) ∈ V1×V2,

(tdα)G1 | G2
(a1, a2) = ∑

(a1 ,a2)(b1 ,b2)∈E1 | E2

(
αN1 | αN2

)
(a1, a2)(b1, b2) +

(
αM1 | αM2

)
(a1, a2)

= ∑
a1=b1 , a2b2 6∈E2

min{αM1 (a1), αM2 (a2), αM2 (b2)}+ ∑
a2=b2 , a1b1 6∈E1

min{αM2 (a2), αM1 (a1), αM1 (b1)}

+ ∑
a1b1 6∈E1 , a2b2 6∈E2

min{αM1 (a1), αM1 (b1), αM2 (a2), αM2 (b2)}+ min{αM1 (a1), αM2 (a2)},

(tdγ)G1 | G2
(a1, a2) = ∑

(a1 ,a2)(b1 ,b2)∈E1 | E2

(
γN1 | γN2

)
(a1, a2)(b1, b2) +

(
γM1 | γM2

)
(a1, a2)

= ∑
a1=b1 , a2b2 6∈E2

min{γM1 (a1), γM2 (a2), γM2 (b2)}+ ∑
a2=b2 , a1b1 6∈E1

min{γM2 (a2), γM1 (a1), γM1 (b1)}

+ ∑
a1b1 6∈E1 , a2b2 6∈E2

min{γM1 (a1), γM1 (b1), γM2 (a2), γM2 (b2)}+ min{γM1 (a1), γM2 (a2)},

(tdβ)G1 | G2
(a1, a2) = ∑

(a1 ,a2)(b1 ,b2)∈E1 | E2

(
βN1 | βN2

)
(a1, a2)(b1, b2) +

(
βM1 | βM2

)
(a1, a2)

= ∑
a1=b1 , a2b2 6∈E2

max{βM1 (a1), βM2 (a2), βM2 (b2)}+ ∑
a2=b2 , a1b1 6∈E1

max{βM2 (a2), βM1 (a1), βM1 (b1)}

+ ∑
a1b1 6∈E1 , a2b2 6∈E2

max{βM1 (a1), βM1 (b1), βM2 (a2), βM2 (b2)}+ max{βM1 (a1), βM2 (a2)}.

3. Irregularity in Spherical Fuzzy Graphs

The concept of irregularity has been explored by many researchers on fuzzy graphs and several
of its extensions. We now define irregularity for spherical fuzzy graphs.

Definition 11. An SFG G = (M, N) is said to be an irregular-spherical fuzzy graph (I-SFG) if ∃ a vertex
which is adjacent to vertices with different degrees.

Example 4. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E), such that V = {a, b, c, d} and
E = {ab, ad, bc, cd}, as shown in Figure 6.
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(tdβ)G1 | G2
(a1, a2) =

∑

(a1,a2)(b1,b2)∈E1 | E2

(

βN1 | βN2

)

(a1, a2)(b1, b2) +
(

βM1 | βM2

)

(a1, a2)

=
∑

a1=b1, a2b2 6∈E2

max{βM1(a1), βM2(a2), βM2(b2)}+
∑

a2=b2, a1b1 6∈E1

max{βM2(a2), βM1(a1), βM1(b1)}

+
∑

a1b1 6∈E1, a2b2 6∈E2

max{βM1(a1), βM1(b1), βM2(a2), βM2(b2)}+max{βM1(a1), βM2(a2)}.

3 Irregularity in Spherical Fuzzy Graphs

The concept of irregularity has been explored by many researchers on fuzzy graphs and several of its exten-
sions. We now define irregularity for spherical fuzzy graphs.

Definition 3.1. A SFG G = (M,N) is said to be an irregular-spherical fuzzy graph (I-SFG) if ∃ a vertex
which is adjacent to vertices with different degrees.

Example 3.2. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, ad, bc, cd}, as shown in Figure 6.
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By direct computation, we have dG(a) = (0.6, 0.4, 0.1), dG(b) = (0.5, 0.3, 0.9), dG(c) = (0.5, 0.3, 0.9) and
dG(d) = (0.6, 0.4, 0.1). From this, we can see that a is adjacent to vertices of different degrees. So, G is an
I-SFG.

Definition 3.3. A SFG G = (M,N) is said to be a totally irregular-spherical fuzzy graph (TI-SFG) if ∃ a
vertex which is adjacent to vertices with different total degrees.

Example 3.4. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, ad, bc, cd}, as shown in Figure 7.
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By direct computation, we have dG(a) = (0.6, 0.4, 0.1), dG(b) = (0.5, 0.3, 0.9), dG(c) = (0.5, 0.3, 0.9)
and dG(d) = (0.6, 0.4, 0.1). From this, we can see that a is adjacent to vertices of different degrees. So, G is
an I-SFG.

Definition 12. An SFG G = (M, N) is said to be a totally irregular-spherical fuzzy graph (TI-SFG) if ∃ a
vertex which is adjacent to vertices with different total degrees.

Example 5. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d} and
E = {ab, ad, bc, cd}, as shown in Figure 7.

(tdβ)G1 | G2
(a1, a2) =

∑

(a1,a2)(b1,b2)∈E1 | E2

(

βN1 | βN2

)

(a1, a2)(b1, b2) +
(

βM1 | βM2

)

(a1, a2)

=
∑

a1=b1, a2b2 6∈E2

max{βM1(a1), βM2(a2), βM2(b2)}+
∑

a2=b2, a1b1 6∈E1

max{βM2(a2), βM1(a1), βM1(b1)}

+
∑

a1b1 6∈E1, a2b2 6∈E2
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By direct computation, we have tdG(a) = (1.7, 1.0, 1.1), tdG(b) = (1.5, 1.1, 1.1), tdG(c) = (1.7, 1.0, 1.1)
and tdG(d) = (1.5, 0.9, 1.1). From this, we can see that a is adjacent to vertices of different total degrees. So,
G is a TI-SFG.

Definition 13. An SFG G = (M, N) is said to be strongly I-SFG if every vertex has a different degree.

Example 6. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d, e, f } and
E = {ad, bc, de, c f }, as shown in Figure 8.
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By direct computation, we have tdG(a) = (1.7, 1.0, 1.1), tdG(b) = (1.5, 1.1, 1.1), tdG(c) = (1.7, 1.0, 1.1) and
tdG(d) = (1.5, 0.9, 1.1). From this, we can see that a is adjacent to vertices of different total degrees. So, G is
a TI-SFG.

Definition 3.5. A SFG G = (M,N) is said to be strongly I-SFG if every vertex has a different degree.

Example 3.6. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d, e, f} and
E = {ad, bc, de, cf}, as shown in Figure 8.
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Figure 8: Strongly I-SFG G

By direct computation, we have dG(a) = (0.2, 0.6, 0.4), dG(b) = (0.3, 0.2, 0.6), dG(c) = (0.9, 0.3, 1.1), dG(d) =
(0.6, 0.9, 0.8), dG(e) = (0.4, 0.3, 0.4) and dG(f) = (0.6, 0.1, 0.5). From this, we can see that every vertex has
a different degree. So, G is strongly I-SFG.

Definition 3.7. A SFG G = (M,N) is said to be strongly TI-SFG if every vertex has a different total degree.

Example 3.8. Consider a SFG G = (M,N) as shown in Figure 8. By direct computation, we have tdG(a) =
(0.5, 1.3, 0.8), tdG(b) = (0.8, 0.6, 1.3), tdG(c) = (1.5, 0.7, 1.6), tdG(d) = (1.0, 1.5, 1.1), tdG(e) = (1.1, 0.8, 0.8)
and tdG(f) = (1.4, 0.3, 0.8). From this, we can see that every vertex has a different total degree. So, G is
strongly TI-SFG.

Definition 3.9. A SFG G = (M,N) is said to be highly I-SFG if every vertex in G is adjacent to vertices of
different degrees.

Example 3.10. Consider a SFG G = (M,N) as shown in Figure 6. From this, we can see that every vertex
is adjacent to vertices of different degrees. So, G is highly I-SFG.

Definition 3.11. A SFG G = (M,N) is said to be highly TI-SFG if every vertex in G is adjacent to vertices
of different total degrees.

Example 3.12. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, ad, bc, cd}, as shown in Figure 9.
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By direct computation, we have dG(a) = (0.2, 0.6, 0.4), dG(b) = (0.3, 0.2, 0.6), dG(c) =

(0.9, 0.3, 1.1), dG(d) = (0.6, 0.9, 0.8), dG(e) = (0.4, 0.3, 0.4), and dG( f ) = (0.6, 0.1, 0.5). From this,
we can see that every vertex has a different degree. So, G is strongly I-SFG.

Definition 14. An SFG G = (M, N) is said to be strongly TI-SFG if every vertex has a different total degree.

Example 7. Consider an SFG G = (M, N) as shown in Figure 8. By direct computation, we have tdG(a) =
(0.5, 1.3, 0.8), tdG(b) = (0.8, 0.6, 1.3), tdG(c) = (1.5, 0.7, 1.6), tdG(d) = (1.0, 1.5, 1.1), tdG(e) =

(1.1, 0.8, 0.8), and tdG( f ) = (1.4, 0.3, 0.8). From this, we can see that every vertex has a different total
degree. So, G is strongly TI-SFG.

Definition 15. An SFG G = (M, N) is said to be highly I-SFG if every vertex in G is adjacent to vertices of
different degrees.

Example 8. Consider an SFG G = (M, N) as shown in Figure 6. From this, we can see that every vertex is
adjacent to vertices of different degrees. So, G is highly I-SFG.

Definition 16. An SFG G = (M, N) is said to be highly TI-SFG if every vertex in G is adjacent to vertices of
different total degrees.

Example 9. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d} and
E = {ab, ad, bc, cd}, as shown in Figure 9.

By direct computation, we have tdG(a) = (1.1, 0.9, 1.4), tdG(b) = (1.0, 1.1, 1.5), tdG(c) =

(1.2, 0.8, 1.7), and tdG(d) = (0.9, 0.9, 1.7). From this, we can see that every vertex is adjacent to vertices
of different degrees. So, G is a highly TI-SFG.
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By direct computation, we have tdG(a) = (1.7, 1.0, 1.1), tdG(b) = (1.5, 1.1, 1.1), tdG(c) = (1.7, 1.0, 1.1) and
tdG(d) = (1.5, 0.9, 1.1). From this, we can see that a is adjacent to vertices of different total degrees. So, G is
a TI-SFG.

Definition 3.5. A SFG G = (M,N) is said to be strongly I-SFG if every vertex has a different degree.

Example 3.6. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d, e, f} and
E = {ad, bc, de, cf}, as shown in Figure 8.
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Figure 8: Strongly I-SFG G

By direct computation, we have dG(a) = (0.2, 0.6, 0.4), dG(b) = (0.3, 0.2, 0.6), dG(c) = (0.9, 0.3, 1.1), dG(d) =
(0.6, 0.9, 0.8), dG(e) = (0.4, 0.3, 0.4) and dG(f) = (0.6, 0.1, 0.5). From this, we can see that every vertex has
a different degree. So, G is strongly I-SFG.

Definition 3.7. A SFG G = (M,N) is said to be strongly TI-SFG if every vertex has a different total degree.

Example 3.8. Consider a SFG G = (M,N) as shown in Figure 8. By direct computation, we have tdG(a) =
(0.5, 1.3, 0.8), tdG(b) = (0.8, 0.6, 1.3), tdG(c) = (1.5, 0.7, 1.6), tdG(d) = (1.0, 1.5, 1.1), tdG(e) = (1.1, 0.8, 0.8)
and tdG(f) = (1.4, 0.3, 0.8). From this, we can see that every vertex has a different total degree. So, G is
strongly TI-SFG.

Definition 3.9. A SFG G = (M,N) is said to be highly I-SFG if every vertex in G is adjacent to vertices of
different degrees.

Example 3.10. Consider a SFG G = (M,N) as shown in Figure 6. From this, we can see that every vertex
is adjacent to vertices of different degrees. So, G is highly I-SFG.

Definition 3.11. A SFG G = (M,N) is said to be highly TI-SFG if every vertex in G is adjacent to vertices
of different total degrees.

Example 3.12. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, ad, bc, cd}, as shown in Figure 9.
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Figure 9. Highly TI-SFG G.

Definition 17. The degree and the total degree of an edge ab of a SFG G are denoted by dG(ab) =

(dα(ab), dγ(ab), dβ(ab)), and tdG(ab) = (tdα(ab), tdγ(ab), tdβ(ab)), respectively, and are defined as

dG (ab) = dG (a) + dG (b)− 2(αY(ab), γY(ab), βY(ab)),

tdG (ab) = dG (ab) + (αY(ab), γY(ab), βY(ab)).

Example 10. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d} and
E = {ab, bc, cd}, as shown in Figure 10.

By direct computation, we have tdG(a) = (1.1, 0.9, 1.4), tdG(b) = (1.0, 1.1, 1.5), tdG(c) = (1.2, 0.8, 1.7) and
tdG(d) = (0.9, 0.9, 1.7). From this, we can see that every vertex is adjacent to vertices of different degrees.
So, G is a highly TI-SFG.

Definition 3.13. The degree and the total degree of an edge ab of a SFG G are denoted by dG(ab) =
(dα(ab), dγ(ab), dβ(ab)) and tdG(ab) = (tdα(ab), tdγ(ab), tdβ(ab)), respectively, and are defined as

dG(ab) = dG(a) + dG(b)− 2(αY (ab), γY (ab), βY (ab)),

tdG(ab) = dG(ab) + (αY (ab), γY (ab), βY (ab)).

Example 3.14. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, bc, cd}, as shown in Figure 10.
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Figure 10: SFG G

By direct computation, we have dG(a) = (0.3, 0.4, 0.5), dG(b) = (0.5, 0.9, 0.9), dG(c) = (0.5, 0.7, 0.8) and
dG(d) = (0.3, 0.2, 0.4).

• The degree of every edge is given as:

dG(ab) = dG(a) + dG(b)− 2(αY (ab), γY (ab), βY (ab)),

= (0.3, 0.4, 0.5) + (0.5, 0.9, 0.9)− 2(0.3, 0.4, 0.5),

= (0.2, 0.5, 0.4),

dG(bc) = dG(b) + dG(c)− 2(αY (bc), γY (bc), βY (bc)),

= (0.5, 0.9, 0.9) + (0.5, 0.7, 0.8)− 2(0.2, 0.5, 0.4),

= (0.6, 0.6, 0.9),

dG(cd) = dG(c) + dG(d)− 2(αY (cd), γY (cd), βY (cd)),

= (0.5, 0.7, 0.8) + (0.3, 0.2, 0.4)− 2(0.3, 0.2, 0.4),

= (0.2, 0.5, 0.4),

• The total degree of every edge is given as:

tdG(ab) = dG(ab) + (αY (ab), γY (ab), βY (ab)),

= (0.2, 0.5, 0.4) + (0.3, 0.4, 0.5),

= (0.5, 0.9, 0.9),

tdG(bc) = dG(bc) + (αY (bc), γY (bc), βY (bc)),

= (0.6, 0.6, 0.9) + (0.2, 0.5, 0.4),

= (0.8, 1.1, 1.3),

tdG(cd) = dG(cd) + (αY (cd), γY (cd), βY (cd)),

= (0.2, 0.5, 0.4) + (0.3, 0.2, 0.4),

= (0.5, 0.7, 0.8).

17

Figure 10. SFG G.

By direct computation, we have dG(a) = (0.3, 0.4, 0.5), dG(b) = (0.5, 0.9, 0.9), dG(c) = (0.5, 0.7, 0.8),
and dG(d) = (0.3, 0.2, 0.4).

• The degree of every edge is given as:

dG (ab) = dG (a) + dG (b)− 2(αY(ab), γY(ab), βY(ab)),

= (0.3, 0.4, 0.5) + (0.5, 0.9, 0.9)− 2(0.3, 0.4, 0.5),

= (0.2, 0.5, 0.4),

dG (bc) = dG (b) + dG (c)− 2(αY(bc), γY(bc), βY(bc)),

= (0.5, 0.9, 0.9) + (0.5, 0.7, 0.8)− 2(0.2, 0.5, 0.4),

= (0.6, 0.6, 0.9),

dG (cd) = dG (c) + dG (d)− 2(αY(cd), γY(cd), βY(cd)),

= (0.5, 0.7, 0.8) + (0.3, 0.2, 0.4)− 2(0.3, 0.2, 0.4),

= (0.2, 0.5, 0.4).
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• The total degree of every edge is given as:

tdG (ab) = dG (ab) + (αY(ab), γY(ab), βY(ab)),

= (0.2, 0.5, 0.4) + (0.3, 0.4, 0.5),

= (0.5, 0.9, 0.9),

tdG (bc) = dG (bc) + (αY(bc), γY(bc), βY(bc)),

= (0.6, 0.6, 0.9) + (0.2, 0.5, 0.4),

= (0.8, 1.1, 1.3),

tdG (cd) = dG (cd) + (αY(cd), γY(cd), βY(cd)),

= (0.2, 0.5, 0.4) + (0.3, 0.2, 0.4),

= (0.5, 0.7, 0.8).

Definition 18. A connected SFG G = (M, N) is said to be a neighborly edge irregular-spherical fuzzy graph
(EI-SFG), if every pair of adjacent edges in G has different degrees.

Example 11. Consider the SFG G = (M, N), as shown in Figure 10. From this, we can see that every pair of
adjacent edges in G has different degrees. So G is a neighborly EI-SFG.

Definition 19. A connected SFG G = (M, N) is said to be a neighborly edge TI-SFG, if every pair of adjacent
edges in G has different total degrees.

Example 12. Consider the SFG G = (M, N), as shown in Figure 10. From this, we can see that every pair of
adjacent edges in G has different total degrees. So, G is a neighborly edge TI-SFG.

Definition 20. An SFG G = (M, N) on a crisp graph G∗ is said to be a strongly EI-SFG if every edge in G
has a different degree.

Example 13. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E), such that V = {a, b, c} and
E = {ab, bc, cd}, as shown in Figure 11.

Definition 3.15. A connected SFG G = (M,N) is said to be neighborly edge irregular-spherical fuzzy graphs
(EI-SFG) if every pair of adjacent edges in G have different degrees.

Example 3.16. Consider the SFG G = (M,N) as shown in Figure 10. From this, we can see that every pair
of adjacent edges in G have different degrees. So G is a neighborly EI-SFG.

Definition 3.17. A connected SFG G = (M,N) is said to be neighborly edge TI-SFG if every pair of
adjacent edges in G have different total degrees.

Example 3.18. Consider the SFG G = (M,N) as shown in Figure 10. From this, we can see that every pair
of adjacent edges in G have different total degrees. So, G is a neighborly edge TI-SFG.

Definition 3.19. A SFG G = (M,N) on a crisp graph G∗ is said to be a strongly EI-SFG if every edge in
G has a different degree.

Example 3.20. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c} and
E = {ab, bc, cd}, as shown in Figure 11.
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Figure 11: SFG G

By direct computation, we have dG(a) = (0.7, 0.6, 1.0), dG(b) = (0.5, 0.7, 1.1) and dG(c) = (0.6, 0.5, 1.1).

• The degree of every edge is given as:

dG(ab) = dG(a) + dG(b)− 2(αY (ab), γY (ab), βY (ab)),

= (0.7, 0.6, 1.0) + (0.5, 0.7, 1.1)− 2(0.3, 0.4, 0.5),

= (0.6, 0.5, 1.1),

dG(bc) = dG(b) + dG(c)− 2(αY (bc), γY (bc), βY (bc)),

= (0.5, 0.7, 1.1) + (0.6, 0.5, 1.1)− 2(0.2, 0.3, 0.6),

= (0.7, 0.6, 1.0),

dG(ac) = dG(a) + dG(c)− 2(αY (ac), γY (ac), βY (ac)),

= (0.7, 0.6, 1.0) + (0.6, 0.5, 1.1)− 2(0.4, 0.2, 0.5),

= (0.5, 0.7, 1.1).

Since every edge in G has a different degree, so G is a strongly EI-SFG.

Definition 3.21. A SFG G = (M,N) on a crisp graph G∗ is said to be a strongly edge TI-SFG if every edge
in G has a different total degree.

Example 3.22. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, bc, cd, ad}, as shown in Figure 12.
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Figure 11. SFG G.

By direct computation, we have dG(a) = (0.7, 0.6, 1.0), dG(b) = (0.5, 0.7, 1.1) and dG(c) =

(0.6, 0.5, 1.1).
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• The degree of every edge is given as:

dG (ab) = dG (a) + dG (b)− 2(αY(ab), γY(ab), βY(ab)),

= (0.7, 0.6, 1.0) + (0.5, 0.7, 1.1)− 2(0.3, 0.4, 0.5),

= (0.6, 0.5, 1.1),

dG (bc) = dG (b) + dG (c)− 2(αY(bc), γY(bc), βY(bc)),

= (0.5, 0.7, 1.1) + (0.6, 0.5, 1.1)− 2(0.2, 0.3, 0.6),

= (0.7, 0.6, 1.0),

dG (ac) = dG (a) + dG (c)− 2(αY(ac), γY(ac), βY(ac)),

= (0.7, 0.6, 1.0) + (0.6, 0.5, 1.1)− 2(0.4, 0.2, 0.5),

= (0.5, 0.7, 1.1).

Since every edge in G has a different degree, G is a strongly EI-SFG.

Definition 21. An SFG G = (M, N) on a crisp graph G∗ is said to be a strongly edge TI-SFG, if every edge in
G has a different total degree.

Example 14. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d} and
E = {ab, bc, cd, ad}, as shown in Figure 12.
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Figure 12: SFG G

By direct computation, we have dG(a) = (0.9, 0.6, 0.9), dG(b) = (0.7, 0.5, 1.1), dG(c) = (0.6, 0.3, 1.1) and
dG(d) = (0.8, 0.4, 0.9).

• The degree of every edge is given as:

dG(ab) = dG(a) + dG(b)− 2(αY (ab), γY (ab), βY (ab)),

= (0.9, 0.6, 0.9) + (0.7, 0.5, 1.1)− 2(0.4, 0.3, 0.5),

= (0.8, 0.5, 1.0),

dG(bc) = dG(b) + dG(c)− 2(αY (bc), γY (bc), βY (bc)),

= (0.7, 0.5, 1.1) + (0.6, 0.3, 1.1)− 2(0.3, 0.2, 0.6),

= (0.7, 0.4, 1.0),

dG(cd) = dG(c) + dG(d)− 2(αY (cd), γY (cd), βY (cd)),

= (0.6, 0.3, 1.1) + (0.8, 0.4, 0.9)− 2(0.3, 0.1, 0.5),

= (0.8, 0.5, 1.0),

dG(ad) = dG(a) + dG(d) − 2(αY (ad), γY (ad), βY (ad)),

= (0.9, 0.6, 0.9) + (0.8, 0.4, 0.9)− 2(0.5, 0.3, 0.4),

= (0.7, 0.4, 1.0).

• The total degree of every edge is given as:

tdG(ab) = dG(ab) + (αY (ab), γY (ab), βY (ab)),

= (0.8, 0.5, 1.0) + (0.4, 0.3, 0.5),

= (1.2, 0.8, 1.5),

tdG(bc) = dG(bc) + (αY (bc), γY (bc), βY (bc)),

= (0.7, 0.4, 1.0) + (0.3, 0.2, 0.6),

= (1.0, 0.6, 1.6),

tdG(cd) = dG(cd) + (αY (cd), γY (cd), βY (cd)),

= (0.8, 0.5, 1.0) + (0.3, 0.1, 0.5),

= (1.1, 0.6, 1.5),

tdG(ad) = dG(ad) + (αY (ad), γY (ad), βY (ad)),

= (0.7, 0.4, 1.0) + (0.5, 0.3, 0.4),

= (1.2, 0.7, 1.4).

Since every edge in G has a different total degree. So, G is a strongly edge TI-SFG.

Remark 3.1. A strongly EI-SFG G may not be strongly edge TI-SFG.
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Figure 12. SFG G.

By direct computation, we have dG(a) = (0.9, 0.6, 0.9), dG(b) = (0.7, 0.5, 1.1), dG(c) = (0.6, 0.3, 1.1)
and dG(d) = (0.8, 0.4, 0.9).

• The degree of every edge is given as:

dG (ab) = dG (a) + dG (b)− 2(αY(ab), γY(ab), βY(ab)),

= (0.9, 0.6, 0.9) + (0.7, 0.5, 1.1)− 2(0.4, 0.3, 0.5),

= (0.8, 0.5, 1.0),

dG (bc) = dG (b) + dG (c)− 2(αY(bc), γY(bc), βY(bc)),

= (0.7, 0.5, 1.1) + (0.6, 0.3, 1.1)− 2(0.3, 0.2, 0.6),

= (0.7, 0.4, 1.0),

dG (cd) = dG (c) + dG (d)− 2(αY(cd), γY(cd), βY(cd)),

= (0.6, 0.3, 1.1) + (0.8, 0.4, 0.9)− 2(0.3, 0.1, 0.5),

= (0.8, 0.5, 1.0),

dG (ad) = dG (a) + dG (d)− 2(αY(ad), γY(ad), βY(ad)),

= (0.9, 0.6, 0.9) + (0.8, 0.4, 0.9)− 2(0.5, 0.3, 0.4),

= (0.7, 0.4, 1.0).



Math. Comput. Appl. 2020, 25, 8 19 of 32

• The total degree of every edge is given as:

tdG (ab) = dG (ab) + (αY(ab), γY(ab), βY(ab)),

= (0.8, 0.5, 1.0) + (0.4, 0.3, 0.5),

= (1.2, 0.8, 1.5),

tdG (bc) = dG (bc) + (αY(bc), γY(bc), βY(bc)),

= (0.7, 0.4, 1.0) + (0.3, 0.2, 0.6),

= (1.0, 0.6, 1.6),

tdG (cd) = dG (cd) + (αY(cd), γY(cd), βY(cd)),

= (0.8, 0.5, 1.0) + (0.3, 0.1, 0.5),

= (1.1, 0.6, 1.5),

tdG (ad) = dG (ad) + (αY(ad), γY(ad), βY(ad)),

= (0.7, 0.4, 1.0) + (0.5, 0.3, 0.4),

= (1.2, 0.7, 1.4).

Since every edge in G has a different total degree, G is a strongly edge TI-SFG.

Remark 1. A strongly EI-SFG G may not be strongly edge TI-SFG.

Example 15. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c} and
E = {ab, bc, ac}, as shown in Figure 13.

Example 3.23. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c} and
E = {ab, bc, ac}, as shown in Figure 13.
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Figure 13: strongly EI-SFG G

By direct computation, we have dG(a) = (0.7, 0.5, 1.1), dG(b) = (0.6, 0.7, 0.8) and dG(c) = (0.5, 0.6, 0.9).
The degree of every edge is dG(ab) = (0.5, 0.6, 0.9), dG(bc) = (0.7, 0.5, 1.1) and dG(ac) = (0.6, 0.7, 0.8).
Since every edge in G has a different degree, so G is a strongly EI-SFG. The total degree of every edge is
tdG(ab) = (1.4, 0.6, 1.1) = tdG(bc) = tdG(ac). Since all the edges of G have equal total degrees, so G is not a
strongly edge TI-SFG.

Remark 3.2. A strongly edge TI-SFG G may not be strongly EI-SFG.

Example 3.24. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, bc, cd, ad}, as shown in Figure 14.
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Figure 14: strongly edge TI-SFG G

By direct computation, we have dG(a) = (0.6, 0.7, 0.8), dG(b) = (0.5, 0.9, 0.7), dG(c) = (0.9, 0.7, 0.8) and
dG(d) = (1.0, 0.5, 0.9). The degree of every edge is dG(ab) = (0.7, 0.6, 0.9), dG(bc) = (0.8, 0.8, 0.7), dG(cd) =
(0.7, 0.6, 0.9) and dG(ad) = (0.8, 0.8, 0.7). From this, we can see that dG(ab) = dG(cd) and dG(bc) = dG(ad).
So, G is not a strongly EI-SFG. The total degree of every edge is tdG(ab) = (0.9, 1.1, 1.2), tdG(bc) =
(1.1, 1.2, 1.1), tdG(cd) = (1.3, 0.9, 1.3) and tdG(ad) = (1.2, 1.0, 1.2). Since every edge in G have different
total degree, so G is a strongly edge TI-SFG.

Theorem 3.25. If G = (M,N) is a strongly edge irregular connected SFG, where N is a constant function.
Then G is a strongly edge TI-SFG.

Proof. Let G = (M,N) be a strongly edge irregular connected SFG. Consider N is a constant function.
Then αN (ab) = m1, γN (ab) = m2 and βN (ab) = m3, for all ab ∈ E, where m1, m2 and m3 are constants.
Consider two edges ab and cd in E. Since G is a strongly EI-SFG therefore dG(ab) 6= dG(cd), where ab and
cd are two edges in E. This shows that dG(ab) + (m1,m2,m3) 6= dG(cd) + (m1,m2,m3). This implies that
dG(ab) + (αN (ab), γN (ab), βN (ab)) 6= dG(cd) + (αN (cd), γN (cd), βN (cd)). Thus tdG(ab) 6= tdG(cd), where ab

and cd are two edges in E. Since the edges ab and cd, were taken to be arbitrary this demonstrates every two
edges in G have different total degrees. Hence G is a strongly edge TI-SFG.

20

Figure 13. Strongly EI-SFG G.

By direct computation, we have dG(a) = (0.7, 0.5, 1.1), dG(b) = (0.6, 0.7, 0.8) and dG(c) =

(0.5, 0.6, 0.9). The degree of every edge is dG(ab) = (0.5, 0.6, 0.9), dG(bc) = (0.7, 0.5, 1.1), and dG(ac) =
(0.6, 0.7, 0.8). Since every edge in G has a different degree, G is a strongly EI-SFG. The total degree of every edge
is tdG(ab) = (1.4, 0.6, 1.1) = tdG(bc) = tdG(ac). Since all the edges of G have equal total degrees, G is not a
strongly edge TI-SFG.

Remark 2. A strongly edge TI-SFG G may not be a strongly EI-SFG.

Example 16. Consider an SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d} and
E = {ab, bc, cd, ad}, as shown in Figure 14.
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Example 3.23. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c} and
E = {ab, bc, ac}, as shown in Figure 13.
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Figure 13: strongly EI-SFG G

By direct computation, we have dG(a) = (0.7, 0.5, 1.1), dG(b) = (0.6, 0.7, 0.8) and dG(c) = (0.5, 0.6, 0.9).
The degree of every edge is dG(ab) = (0.5, 0.6, 0.9), dG(bc) = (0.7, 0.5, 1.1) and dG(ac) = (0.6, 0.7, 0.8).
Since every edge in G has a different degree, so G is a strongly EI-SFG. The total degree of every edge is
tdG(ab) = (1.4, 0.6, 1.1) = tdG(bc) = tdG(ac). Since all the edges of G have equal total degrees, so G is not a
strongly edge TI-SFG.

Remark 3.2. A strongly edge TI-SFG G may not be strongly EI-SFG.

Example 3.24. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, bc, cd, ad}, as shown in Figure 14.
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Figure 14: strongly edge TI-SFG G

By direct computation, we have dG(a) = (0.6, 0.7, 0.8), dG(b) = (0.5, 0.9, 0.7), dG(c) = (0.9, 0.7, 0.8) and
dG(d) = (1.0, 0.5, 0.9). The degree of every edge is dG(ab) = (0.7, 0.6, 0.9), dG(bc) = (0.8, 0.8, 0.7), dG(cd) =
(0.7, 0.6, 0.9) and dG(ad) = (0.8, 0.8, 0.7). From this, we can see that dG(ab) = dG(cd) and dG(bc) = dG(ad).
So, G is not a strongly EI-SFG. The total degree of every edge is tdG(ab) = (0.9, 1.1, 1.2), tdG(bc) =
(1.1, 1.2, 1.1), tdG(cd) = (1.3, 0.9, 1.3) and tdG(ad) = (1.2, 1.0, 1.2). Since every edge in G have different
total degree, so G is a strongly edge TI-SFG.

Theorem 3.25. If G = (M,N) is a strongly edge irregular connected SFG, where N is a constant function.
Then G is a strongly edge TI-SFG.

Proof. Let G = (M,N) be a strongly edge irregular connected SFG. Consider N is a constant function.
Then αN (ab) = m1, γN (ab) = m2 and βN (ab) = m3, for all ab ∈ E, where m1, m2 and m3 are constants.
Consider two edges ab and cd in E. Since G is a strongly EI-SFG therefore dG(ab) 6= dG(cd), where ab and
cd are two edges in E. This shows that dG(ab) + (m1,m2,m3) 6= dG(cd) + (m1,m2,m3). This implies that
dG(ab) + (αN (ab), γN (ab), βN (ab)) 6= dG(cd) + (αN (cd), γN (cd), βN (cd)). Thus tdG(ab) 6= tdG(cd), where ab

and cd are two edges in E. Since the edges ab and cd, were taken to be arbitrary this demonstrates every two
edges in G have different total degrees. Hence G is a strongly edge TI-SFG.
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Figure 14. Strongly edge TI-SFG G.

By direct computation, we have dG(a) = (0.6, 0.7, 0.8), dG(b) = (0.5, 0.9, 0.7), dG(c) =

(0.9, 0.7, 0.8), and dG(d) = (1.0, 0.5, 0.9). The degree of every edge is dG(ab) = (0.7, 0.6, 0.9), dG(bc) =

(0.8, 0.8, 0.7), dG(cd) = (0.7, 0.6, 0.9), and dG(ad) = (0.8, 0.8, 0.7). From this, we can see that dG(ab) =
dG(cd) and dG(bc) = dG(ad). Thus, G is not a strongly EI-SFG. The total degree of every edge is
tdG(ab) = (0.9, 1.1, 1.2), tdG(bc) = (1.1, 1.2, 1.1), tdG(cd) = (1.3, 0.9, 1.3), and tdG(ad) = (1.2, 1.0, 1.2).
Since every edge in G have different total degree, G is a strongly edge TI-SFG.

Theorem 3. If G = (M, N) is a strongly edge irregular connected SFG, where N is a constant function.
Then G is a strongly edge TI-SFG.

Proof. Let G = (M, N) be a strongly edge irregular connected SFG. Consider N is a constant function.
Then αN(ab) = m1, γN(ab) = m2 and βN(ab) = m3, for all ab ∈ E, where m1, m2, and m3 are
constants. Consider two edges ab and cd in E. Since G is a strongly EI-SFG therefore dG(ab) 6= dG(cd),
where ab and cd are two edges in E. This shows that dG(ab) + (m1, m2, m3) 6= dG(cd) + (m1, m2, m3).
This implies that dG(ab) + (αN(ab), γN(ab), βN(ab)) 6= dG(cd) + (αN(cd), γN(cd), βN(cd)). Thus
tdG(ab) 6= tdG(cd), where ab and cd are two edges in E. Since the edges ab and cd, were taken to
be arbitrary, this demonstrates every two edges in G have different total degrees. Hence G is a strongly
edge TI-SFG.

Theorem 4. If G = (M, N) is a strongly edge totally irregular connected SFG, where N is a constant function.
Then G is a strongly EI-SFG.

Proof. Let G = (M, N) be a strongly edge totally irregular connected SFG. Consider N is a constant
function. Then αN(ab) = m1, γN(ab) = m2, and βN(ab) = m3, for all ab ∈ E, where m1, m2, and m3

are constants. Consider the edges ab and cd in E. Since G is a strongly edge TI-SFG, therefore tdG(ab) 6=
tdG(cd), where ab and cd are edges in E. This shows that dG(ab) + (αN(ab), γN(ab), βN(ab)) 6=
dG(cd) + (αN(cd), γN(cd), βN(cd)). This implies that dG(ab) + (m1, m2, m3) 6= dG(cd) + (m1, m2, m3).
Thus dG(ab) 6= dG(cd), where ab and cd are edges in E. Since the edges ab and cd, were taken
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to be arbitrary this demonstrates every two edges in G have different degrees. Hence G is a
strongly EI-SFG.

Remark 3. If G = (M, N) is both strongly EI-SFG and strongly edge TI-SFG, then it is not necessary that Y
is a constant function.

Example 17. Consider a SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d, e, f , g}
and E = {ab, bc, cd, de, e f , f g, ag}, as shown in Figure 15.

Theorem 3.26. If G = (M,N) is a strongly edge totally irregular connected SFG, where N is a constant
function. Then G is a strongly EI-SFG.

Proof. Let G = (M,N) be a strongly edge totally irregular connected SFG. Consider N is a constant function.
Then αN (ab) = m1, γN (ab) = m2 and βN (ab) = m3, for all ab ∈ E, where m1, m2 and m3 are constants.
Consider the edges ab and cd in E. Since G is a strongly edge TI-SFG therefore tdG(ab) 6= tdG(cd), where ab

and cd are edges in E. This shows that dG(ab)+(αN (ab), γN (ab), βN (ab)) 6= dG(cd)+(αN (cd), γN (cd), βN (cd)).
This implies that dG(ab) + (m1,m2,m3) 6= dG(cd) + (m1,m2,m3). Thus dG(ab) 6= dG(cd), where ab and cd

are edges in E. Since the edges ab and cd, were taken to be arbitrary this demonstrates every two edges in G
have different degrees. Hence G is a strongly EI-SFG.

Remark 3.3. If G = (M,N) is both strongly EI-SFG and strongly edge TI-SFG, then it is not necessary
that Y is a constant function.

Example 3.27. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d, e, f, g}
and E = {ab, bc, cd, de, ef, fg, ag}, as shown in Figure 15.

b

b b

b

bb

b

a(0.7, 0.4, 0.3)

b(0.5, 0.7, 0.2)

c(0.2, 0.5, 0.4)

d(0.3, 0.8, 0.4)e(0.6, 0.4, 0.3)

f(0.8, 0.2, 0.5)

G(0.4, 0.3, 0.6)

(0.4, 0.3, 0.2)

(0
.1
,
0
.5
,
0
.4
)

(0
.2
, 0
.4
, 0
.3
)

(0.2, 0.4, 0.3)

(0.5, 0.1, 0.4)

(0
.4
,
0
.2
,
0
.5
)

(0.3,
0.2, 0

.6)

Figure 15: SFG G

By direct computation, we have dG(a) = (0.7, 0.5, 0.8), dG(b) = (0.5, 0.8, 0.6), dG(c) = (0.3, 0.9, 0.7), dG(d) =
(0.4, 0.8, 0.6), dG(e) = (0.7, 0.5, 0.7), dG(f) = (0.9, 0.3, 0.9) and dG(g) = (0.7, 0.4, 1.1). The degree of every
edge is dG(ab) = (0.4, 0.7, 1.0), dG(bc) = (0.6, 0.7, 0.5), dG(cd) = (0.3, 0.9, 0.7), dG(de) = (0.7, 0.5, 0.7), dG(ef) =
(0.6, 0.6, 0.8), dG(fg) = (0.8, 0.3, 1.0) and dG(ag) = (0.8, 0.5, 0.7). From this, we can see that every edge has
different degree. So, G is a strongly EI-SFG. The total degree of every edge is tdG(ab) = (0.8, 1.0, 1.2), tdG(bc) =
(0.7, 1.2, 0.9), tdG(cd) = (0.5, 1.3, 1.0), tdG(de) = (0.9, 0.9, 1.0), tdG(ef) = (1.1, 0.7, 1.2), tdG(fg) = (1.2, 0.5, 1.5)
and tdG(ag) = (1.1, 0.7, 1.3). Since every edge has a different total degree, so G is a strongly edge TI-SFG.
From this, we can see that G = (M,N) is both strongly EI-SFG and strongly edge TI-SFG, but N is not a
constant function.

Theorem 3.28. Let G = (M,N) be a strongly EI-SFG. Then G is a neighborly EI-SFG.

Proof. Let G be a strongly EI-SFG. Then every edge in G has a different degree. This demonstrates that
every two adjacent edges in G have different degrees. So, G is a neighborly EI-SFG.

Theorem 3.29. Let G = (M,N) be a strongly edge TI-SFG. Then G is a neighborly edge TI-SFG.

Proof. Let G be a strongly edge TI-SFG. Then every edge in G has a different total degree. This demonstrates
that every two adjacent edges in G have different total degrees. So, G is a neighborly edge TI-SFG.

Remark 3.4. If G is a neighborly EI-SFG then it is not compulsory that G is a strongly EI-SFG.

Example 3.30. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, bc, cd}, as shown in Figure 16.
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Figure 15. SFG G.

By direct computation, we have dG(a) = (0.7, 0.5, 0.8), dG(b) = (0.5, 0.8, 0.6), dG(c) =

(0.3, 0.9, 0.7), dG(d) = (0.4, 0.8, 0.6), dG(e) = (0.7, 0.5, 0.7), dG( f ) = (0.9, 0.3, 0.9) and dG(g) =

(0.7, 0.4, 1.1). The degree of every edge is dG(ab) = (0.4, 0.7, 1.0), dG(bc) = (0.6, 0.7, 0.5), dG(cd) =

(0.3, 0.9, 0.7), dG(de) = (0.7, 0.5, 0.7), dG(e f ) = (0.6, 0.6, 0.8), dG( f g) = (0.8, 0.3, 1.0) and dG(ag) =

(0.8, 0.5, 0.7). From this, we can see that every edge has a different degree. So, G is a strongly EI-SFG.
The total degree of every edge is tdG(ab) = (0.8, 1.0, 1.2), tdG(bc) = (0.7, 1.2, 0.9), tdG(cd) =

(0.5, 1.3, 1.0), tdG(de) = (0.9, 0.9, 1.0), tdG(e f ) = (1.1, 0.7, 1.2), tdG( f g) = (1.2, 0.5, 1.5) and tdG(ag) =
(1.1, 0.7, 1.3). Since every edge has a different total degree, so G is a strongly edge TI-SFG. From this, we can see
that G = (M, N) is both strongly EI-SFG and strongly edge TI-SFG, but N is not a constant function.

Theorem 5. Let G = (M, N) be a strongly EI-SFG. Then G is a neighborly EI-SFG.

Proof. Let G be a strongly EI-SFG. Then every edge in G has a different degree. This demonstrates
that every two adjacent edges in G have different degrees. So, G is a neighborly EI-SFG.

Theorem 6. Let G = (M, N) be a strongly edge TI-SFG. Then G is a neighborly edge TI-SFG.

Proof. Let G be a strongly edge TI-SFG. Then every edge in G has a different total degree.
This demonstrates that every two adjacent edges in G have different total degrees. So, G is a neighborly
edge TI-SFG.
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Remark 4. If G is a neighborly EI-SFG then it is not compulsory that G is a strongly EI-SFG.

Example 18. Consider a SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d} and
E = {ab, bc, cd}, as shown in Figure 16.
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Figure 16: SFG G

By direct computation, we have dG(a) = (0.5, 0.2, 0.6), dG(b) = (1.0, 0.4, 1.2), dG(c) = (1.0, 0.4, 1.2)
and dG(d) = (0.5, 0.2, 0.6). The degree of every edge is dG(ab) = (0.5, 0.2, 0.6), dG(bc) = (1.0, 0.4, 1.2) and
dG(cd) = (0.5, 0.2, 0.6). Since every two adjacent edges in G have different degrees, i.e, dG(ab) 6= dG(bc) and
dG(bc) 6= dG(cd). Therefore, G is a neighborly EI-SFG. From this, we can see that dG(ab) = dG(cd). So, G is
not a strongly EI-SFG.

Remark 3.5. If G is a neighborly edge TI-SFG then it is not compulsory that G is a strongly edge TI-SFG.

Example 3.31. Consider a SFG G = (M,N) as shown in Figure 16. The total degree of every edge is
tdG(ab) = (1.0, 0.4, 1.2), tdG(bc) = (1.5, 0.6, 1.8) and tdG(cd) = (1.0, 0.4, 1.2). Since every two adjacent edges
in G have different total degrees, i.e, tdG(ab) 6= tdG(bc) and tdG(bc) 6= tdG(cd). Therefore, G is a neighborly
edge TI-SFG. From this, we can see that tdG(ab) = tdG(cd). So, G is not a strongly edge TI-SFG.

Theorem 3.32. Let G = (M,N) be a strongly edge irregular connected SFG, with N as constant function.
Then G is an I-SFG.

Proof. Let G = (M,N) be a strongly edge irregular connected SFG, with N as constant function. Then
αN (ab) = m1, γN (ab) = m2 and βN (ab) = m3 for every edge ab ∈ E, where m1, m2 and m3 are constants.
Also, every edge in G has a different degree, so G is a strongly EI-SFG. Let ab and bc be any two adjacent edges
in G such that dG(ab) 6= dG(bc). This implies that dG(a)+dG(b)−2(αN (ab), γN (ab), βN (ab)) 6= dG(b)+dG(c)−
2(αN (bc), γN (bc), βN (bc)). This implies that dG(a) + dG(b)− 2(m1,m2,m3) 6= dG(b) + dG(c)− 2(m1,m2,m3).
This shows that dG(a) 6= dG(c). Thus ∃ a vertex b in G which is adjacent to the vertices with different degrees.
This demonstrates that G is an I-SFG.

Theorem 3.33. Let G = (M,N) be a strongly edge totally irregular connected SFG, with N as constant
function. Then G is an I-SFG.

Proof. Let G = (M,N) be a strongly edge totally irregular connected SFG, with N as constant function.
Then αN (ab) = m1, γN (ab) = m2 and βN(ab) = m3 for every edge ab ∈ E, where m1, m2 and m3 are
constants and every edge in G has a different total degree, so G is strongly edge TI-SFG. Let ab and bc be any
two adjacent edges in G such that tdG(ab) 6= tdG(bc). This implies that dG(ab) + (αN (ab), γN (ab), βN (ab)) 6=
dG(bc)+(αN(bc), γN (bc), βN (bc)). This implies that dG(a)+dG(b)−(αN (ab), γN (ab), βN(ab)) 6= dG(b)+dG(c)−
(αN (bc), γN (bc), βN (bc)). This implies that dG(a) + dG(b) − 2(m1,m2,m3) 6= dG(b) + dG(c)− 2(m1,m2,m3).
This shows that dG(a) 6= dG(c). Thus ∃ a vertex b in G which is adjacent to the vertices with different degrees.
This demonstrates that G is an I-SFG.

Remark 3.6. If G = (M,N) is an I-SFG, with N as a constant function. Then it is not compulsory that G
is a strongly EI-SFG.

Example 3.34. Consider a SFG G = (M,N) on a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and
E = {ab, bc, bd, cd, ad}, as shown in Figure 17.
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Figure 16. SFG G.

By direct computation, we have dG(a) = (0.5, 0.2, 0.6), dG(b) = (1.0, 0.4, 1.2), dG(c) = (1.0, 0.4, 1.2)
and dG(d) = (0.5, 0.2, 0.6). The degree of every edge is dG(ab) = (0.5, 0.2, 0.6), dG(bc) = (1.0, 0.4, 1.2) and
dG(cd) = (0.5, 0.2, 0.6). Since every two adjacent edges in G have different degrees, i.e., dG(ab) 6= dG(bc) and
dG(bc) 6= dG(cd). Therefore, G is a neighborly EI-SFG. From this, we can see that dG(ab) = dG(cd). So, G is
not a strongly EI-SFG.

Remark 5. If G is a neighborly edge TI-SFG then it is not compulsory that G is a strongly edge TI-SFG.

Example 19. Consider an SFG G = (M, N) as shown in Figure 16. The total degree of every edge is
tdG(ab) = (1.0, 0.4, 1.2), tdG(bc) = (1.5, 0.6, 1.8) and tdG(cd) = (1.0, 0.4, 1.2). Since every two adjacent
edges in G have different total degrees, i.e., tdG(ab) 6= tdG(bc) and tdG(bc) 6= tdG(cd). Therefore, G is a
neighborly edge TI-SFG. From this, we can see that tdG(ab) = tdG(cd). So, G is not a strongly edge TI-SFG.

Theorem 7. Let G = (M, N) be a strongly edge irregular connected SFG, with N as constant function. Then G
is an I-SFG.

Proof. Let G = (M, N) be a strongly edge irregular connected SFG, with N as constant function.
Then αN(ab) = m1, γN(ab) = m2 and βN(ab) = m3 for every edge ab ∈ E, where m1, m2, and m3

are constants. Also, every edge in G has a different degree, so G is a strongly EI-SFG. Let ab and
bc be any two adjacent edges in G such that dG(ab) 6= dG(bc). This implies that dG(a) + dG(b) −
2(αN(ab), γN(ab), βN(ab)) 6= dG(b) + dG(c) − 2(αN(bc), γN(bc), βN(bc)). This implies that dG(a) +
dG(b) − 2(m1, m2, m3) 6= dG(b) + dG(c) − 2(m1, m2, m3). This shows that dG(a) 6= dG(c). Thus ∃ a
vertex b in G which is adjacent to the vertices with different degrees. This demonstrates that G is
an I-SFG.

Theorem 8. Let G = (M, N) be a strongly edge totally irregular connected SFG, with N as constant function.
Then G is an I-SFG.
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Proof. Let G = (M, N) be a strongly edge totally irregular connected SFG, with N as constant
function. Then αN(ab) = m1, γN(ab) = m2 and βN(ab) = m3 for every edge ab ∈ E, where m1, m2,
and m3 are constants and every edge in G has a different total degree, so G is strongly edge
TI-SFG. Let ab and bc be any two adjacent edges in G such that tdG(ab) 6= tdG(bc). This implies
that dG(ab) + (αN(ab), γN(ab), βN(ab)) 6= dG(bc) + (αN(bc), γN(bc), βN(bc)). This implies that
dG(a) + dG(b)− (αN(ab), γN(ab), βN(ab)) 6= dG(b) + dG(c)− (αN(bc), γN(bc), βN(bc)). This implies
that dG(a) + dG(b)− 2(m1, m2, m3) 6= dG(b) + dG(c)− 2(m1, m2, m3). This shows that dG(a) 6= dG(c).
Thus ∃ a vertex b in G which is adjacent to the vertices with different degrees. This demonstrates that
G is an I-SFG.

Remark 6. If G = (M, N) is an I-SFG, with N as a constant function. Then it is not compulsory that G is a
strongly EI-SFG.

Example 20. Consider a SFG G = (M, N) on a crisp graph G∗ = (V, E) such that V = {a, b, c, d} and
E = {ab, bc, bd, cd, ad}, as shown in Figure 17.

b

b b
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Figure 17: I-SFG G

By direct computation, we have dG(a) = (0.6, 0.8, 1.0), dG(b) = (0.9, 1.2, 1.5), dG(c) = (0.6, 0.8, 1.0) and
dG(d) = (0.9, 1.2, 1.5). The degree of every edge is dG(ab) = (0.9, 1.2, 1.5), dG(bc) = (0.9, 1.2, 1.5), dG(bd) =
(1.2, 1.6, 2.0), dG(cd) = (0.9, 1.2, 1.5) and dG(ad) = (0.9, 1.2, 1.5). From this, we can see that dG(ab) =
dG(bc) = dG(cd) = dG(ad) 6= dG(bd). So, G is not a strongly EI-SFG.

Remark 3.7. If G = (M,N) is an I-SFG, with N as a constant function. Then it is not compulsory that G
is a strongly edge TI-SFG.

Example 3.35. Consider a SFG G = (M,N) as shown in Figure 17. The total degree of every edge
is tdG(ab) = (1.2, 1.6, 2.0), tdG(bc) = (1.2, 1.6, 2.0), tdG(bd) = (1.5, 2.0, 2.5), tdG(cd) = (1.2, 1.6, 2.0) and
tdG(ad) = (1.2, 1.6, 2.0). From this, we can see that tdG(ab) = tdG(bc) = tdG(cd) = tdG(ad) 6= tdG(bd). So, G
is not a strongly edge TI-SFG.

4 Applications to decision making

Decision-making is a process of selecting a right and effective course of action from two or more alternatives
to achieve the desired result. A group decision-making problem regarding the ‘Selection of best critical
union accomplice in national bank of Pakistan (NBP)’ is presented to illustrate the applicability of SFGs in
real-world problems.

Definition 4.1. [?] A spherical fuzzy preference relation R on a set of choices V = {v1, v2, ..., , vn} is
described by a matrix R = (rpq)n×n ⊂ V × V, where rpq = (α(vpvq), γ(vpvq), β(vpvq)) for all p, q = 1, 2, ..., n.
Let rpq = (αpq , γpq, βpq) is a spherical fuzzy value, possessed by the truthness degree αpq to which vp is
preferred to vq, the falseness degree βpq to which vp is not preferred to vq and γpq indicates the indeterminacy-
membership degree, with αpq, γpq, βpq ∈ [0, 1], 0 ≤ α2

pq + γ2
pq + β2

pq ≤ 1, αpq = βqp, βpq = αqp, γpq = γqp and
αpp = γpp = βpp = 0.5 for all p, q = 1, 2, ..., n.

4.1 Selection of Best Critical Union Accomplice in NBP

National Bank of Pakistan (NBP) is an important Pakistani business deal with a record with home office in
Karachi. Despite the way that state-guaranteed, it keeps running as a business bank, although more than
that proceeding to work as a trustee of open resources and as the agent to the State Bank of Pakistan (SBP)
in districts where SBP does not have a nearness, as SBP is the prevalent investor of NBP. The bank gives both
money related and common area managing an account administrations. It is a lead player in the obligation
value market, retail and shopper keeping money, corporate venture saving money, treasury administrations,
rural financing. National Bank of Pakistan to support business and give to the unmistakable sections of
society and oblige its social duties, plans to build up an essential partnership with a transnational enterprise.
After different meetings, five transnational organizations might want to set up a significant union with
(NBP); they are Bank of Maharshtra (BM) a1: Sindh bank (SB) a2: Dubai islami bank (DIB) a3: Islamic
Development Bank (IsDB) a4 and International Exchange Bank (IEB) a5. To choose the suitable critical
union accomplice, six experts et (t = 1, 2, · · · , 6) are welcome to take an interest in a choice examination, who
originate from (NBP). In light of their encounters, the experts analyze each pair of choices and give singular
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Figure 17. I-SFG G.

By direct computation, we have dG(a) = (0.6, 0.8, 1.0), dG(b) = (0.9, 1.2, 1.5), dG(c) =

(0.6, 0.8, 1.0) and dG(d) = (0.9, 1.2, 1.5). The degree of every edge is dG(ab) = (0.9, 1.2, 1.5), dG(bc) =

(0.9, 1.2, 1.5), dG(bd) = (1.2, 1.6, 2.0), dG(cd) = (0.9, 1.2, 1.5) and dG(ad) = (0.9, 1.2, 1.5). From this,
we can see that dG(ab) = dG(bc) = dG(cd) = dG(ad) 6= dG(bd). So, G is not a strongly EI-SFG.

Remark 7. If G = (M, N) is an I-SFG, with N as a constant function. Then it is not compulsory that G is a
strongly edge TI-SFG.

Example 21. Consider an SFG G = (M, N), as shown in Figure 17. The total degree of every edge is
tdG(ab) = (1.2, 1.6, 2.0), tdG(bc) = (1.2, 1.6, 2.0), tdG(bd) = (1.5, 2.0, 2.5), tdG(cd) = (1.2, 1.6, 2.0),
and tdG(ad) = (1.2, 1.6, 2.0). From this, we can see that tdG(ab) = tdG(bc) = tdG(cd) = tdG(ad) 6=
tdG(bd). So, G is not a strongly edge TI-SFG.

4. Application to Decision Making

Decision-making is a process of selecting a right and effective course of action from two or more
alternatives to achieve the desired result. In this section, we solve a multi-criteria group decision
making (MCGDM) problem regarding the ‘selection of best critical union accomplice in the National
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Bank of Pakistan (NBP)’ in a spherical fuzzy environment within the framework of spherical fuzzy
preference relations (SFPR), illustrating the applicability of SFGs in real-world problems.

Definition 22. A spherical fuzzy preference relation R on a set of choices V = {v1, v2, . . . , , vn} is described by
a matrix R = (rpq)n×n ⊂ V × V, where rpq = (α(vpvq), γ(vpvq), β(vpvq)) for all p, q = 1, 2, . . . , n.
Let rpq = (αpq, γpq, βpq) be a spherical fuzzy value, possessed by the truthness degree αpq, to which
vp is preferred to vq, the falseness degree βpq, to which vp is not preferred to vq, and γpq indicates the
indeterminacy-membership degree, with αpq, γpq, βpq ∈ [0, 1], 0 ≤ α2

pq + γ2
pq + β2

pq ≤ 1, αpq = βqp, βpq =

αqp, γpq = γqp, and αpp = γpp = βpp = 0.5 for all p, q = 1, 2, . . . , n.

Selection of the Best Critical Union Accomplice in the NBP

The National Bank of Pakistan (NBP) is an important Pakistani business deal with a home office
in Karachi. Despite being state-guaranteed, it continues to run as a business bank, although more
than that, proceeding to work as a trustee of open resources and as the agent to the State Bank of
Pakistan (SBP), in districts where SBP does not have a nearness, as SBP is the prevalent investor of
NBP. The bank gives both money related and common area managing account administrations. It is a
lead player in the obligation value market, retail, and shopper money, corporate venture saving money,
treasury administrations, and rural financing. The National Bank of Pakistan supports businesses and
gives back to society and obliges its social duties, as well as plans to build up an essential partnership
with a transnational enterprise.

After different meetings, five transnational organizations might want to set up a significant union
with (NBP: they are Bank of Maharshtra (BM) a1; Sindh Bank (SB) a2; Dubai Islami Bank (DIB) a3;
Islamic Development Bank (IsDB) a4; and the International Exchange Bank (IEB) a5. To choose a suitable
critical union accomplice, six experts et (t = 1, 2, · · · , 6) are welcome to take an interest in a choice
examination, who originate from (NBP). In light of their encounters, the experts analyze each pair of
choices and give singular decisions utilizing the accompanying SFPRs Rt = (r(t)pq )5×5 (t = 1, 2, · · · , 6).
The spherical fuzzy digraphs Gt corresponding to SFPRs Rt (t = 1, 2, · · · , 6) given below, are shown
in Figure 18.

R1 =


(0.5, 0.5, 0.5) (0.3, 0.4, 0.7) (0.7, 0.4, 0.3) (0.6, 0.3, 0.4) (0.8, 0.2, 0.3)
(0.7, 0.4, 0.3) (0.5, 0.5, 0.5) (0.4, 0.5, 0.6) (0.9, 0.2, 0.1) (0.6, 0.7, 0.3)
(0.3, 0.4, 0.7) (0.6, 0.5, 0.4) (0.5, 0.5, 0.5) (0.7, 0.4, 0.2) (0.4, 0.7, 0.5)
(0.4, 0.3, 0.6) (0.1, 0.2, 0.9) (0.2, 0.4, 0.7) (0.5, 0.5, 0.5) (0.4, 0.3, 0.6)
(0.3, 0.2, 0.8) (0.3, 0.7, 0.6) (0.5, 0.7, 0.4) (0.6, 0.3, 0.4) (0.5, 0.5, 0.5)

 ,

R2 =


(0.5, 0.5, 0.5) (0.5, 0.8, 0.3) (0.4, 0.5, 0.7) (0.6, 0.4, 0.5) (0.8, 0.4, 0.2)
(0.3, 0.8, 0.5) (0.5, 0.5, 0.5) (0.3, 0.2, 0.6) (0.9, 0.2, 0.1) (0.2, 0.3, 0.9)
(0.7, 0.5, 0.4) (0.6, 0.2, 0.3) (0.5, 0.5, 0.5) (0.7, 0.3, 0.4) (0.4, 0.6, 0.3)
(0.5, 0.4, 0.6) (0.1, 0.2, 0.9) (0.4, 0.3, 0.7) (0.5, 0.5, 0.5) (0.6, 0.5, 0.4)
(0.2, 0.4, 0.8) (0.9, 0.3, 0.2) (0.3, 0.6, 0.4) (0.4, 0.5, 0.6) (0.5, 0.5, 0.5)

 ,

R3 =


(0.5, 0.5, 0.5) (0.4, 0.7, 0.2) (0.7, 0.3, 0.4) (0.8, 0.3, 0.4) (0.7, 0.4, 0.5)
(0.2, 0.7, 0.4) (0.5, 0.5, 0.5) (0.3, 0.4, 0.7) (0.6, 0.3, 0.2) (0.2, 0.9, 0.1)
(0.4, 0.3, 0.7) (0.7, 0.4, 0.3) (0.5, 0.5, 0.5) (0.4, 0.6, 0.5) (0.7, 0.2, 0.4)
(0.4, 0.3, 0.8) (0.2, 0.3, 0.6) (0.5, 0.6, 0.4) (0.5, 0.5, 0.5) (0.3, 0.7, 0.4)
(0.5, 0.4, 0.7) (0.1, 0.9, 0.2) (0.4, 0.2, 0.7) (0.4, 0.7, 0.3) (0.5, 0.5, 0.5)

 ,
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R4 =


(0.5, 0.5, 0.5) (0.7, 0.6, 0.3) (0.4, 0.2, 0.6) (0.4, 0.7, 0.2) (0.2, 0.8, 0.4)
(0.3, 0.6, 0.7) (0.5, 0.5, 0.5) (0.7, 0.3, 0.4) (0.3, 0.5, 0.6) (0.6, 0.4, 0.3)
(0.6, 0.2, 0.4) (0.4, 0.3, 0.7) (0.5, 0.5, 0.5) (0.5, 0.1, 0.4) (0.7, 0.6, 0.3)
(0.2, 0.7, 0.4) (0.6, 0.5, 0.3) (0.4, 0.1, 0.5) (0.5, 0.5, 0.5) (0.4, 0.2, 0.8)
(0.4, 0.8, 0.2) (0.3, 0.4, 0.6) (0.3, 0.6, 0.7) (0.8, 0.2, 0.4) (0.5, 0.5, 0.5)

 ,

R5 =


(0.5, 0.5, 0.5) (0.2, 0.4, 0.6) (0.7, 0.3, 0.4) (0.2, 0.7, 0.4) (0.6, 0.7, 0.3)
(0.6, 0.4, 0.2) (0.5, 0.5, 0.5) (0.5, 0.8, 0.3) (0.8, 0.4, 0.2) (0.6, 0.3, 0.5)
(0.4, 0.3, 0.7) (0.3, 0.8, 0.5) (0.5, 0.5, 0.5) (0.5, 0.3, 0.6) (0.8, 0.3, 0.4)
(0.4, 0.7, 0.2) (0.2, 0.4, 0.8) (0.6, 0.3, 0.5) (0.5, 0.5, 0.5) (0.7, 0.4, 0.2)
(0.3, 0.7, 0.6) (0.5, 0.3, 0.6) (0.4, 0.3, 0.8) (0.2, 0.4, 0.7) (0.5, 0.5, 0.5)

 ,

R6 =


(0.5, 0.5, 0.5) (0.4, 0.3, 0.6) (0.7, 0.4, 0.2) (0.3, 0.1, 0.9) (0.2, 0.7, 0.4)
(0.6, 0.3, 0.4) (0.5, 0.5, 0.5) (0.2, 0.4, 0.8) (0.8, 0.5, 0.2) (0.4, 0.5, 0.6)
(0.2, 0.4, 0.7) (0.8, 0.4, 0.2) (0.5, 0.5, 0.5) (0.8, 0.3, 0.4) (0.7, 0.3, 0.4)
(0.9, 0.1, 0.3) (0.2, 0.5, 0.8) (0.4, 0.3, 0.8) (0.5, 0.5, 0.5) (0.7, 0.5, 0.4)
(0.4, 0.7, 0.2) (0.6, 0.5, 0.4) (0.4, 0.3, 0.7) (0.4, 0.5, 0.7) (0.5, 0.5, 0.5)

 .
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We use the accumulation operator to combine all the individual SFPRs Rt = (r(t)pq )5×5 (t =
1, 2, 3, 4, 5, 6) into the collective R = (rpq)5×5. Here, we use spherical fuzzy weighted averagingSFWA
operator [41] to combine the individual SFPR. Thus, we have

SFWA(r(1)pq , r(2)pq , . . . , r(t)pq ) =

(√√√√1−
( t

∏
s=1

(1− (α2
pq)(s))

) 1
t
,
( t

∏
s=1

(γ
(s)
pq )
) 1

t
,
( t

∏
s=1

(β
(s)
pq + γ

(s)
pq )
) 1

t −
( t

∏
s=1

(γ
(s)
pq )
) 1

t

)
,

where √√√√1−
( t

∏
s=1

(1− (α2
12)

(s))
) 1

t

=

√
1−

(
(1− (0.3)2)(1− (0.5)2)(1− (0.4)2)(1− (0.7)2)(1− (0.2)2)(1− (0.4)2)

) 1
6

=

√
1−

(
(1− 0.09)(1− 0.25)(1− 0.16)(1− 0.49)(1− 0.04)(1− 0.16)

)0.17

=

√
1−

(
(0.91)(0.75)(0.84)(0.51)(0.96)(0.84)

)0.17

=0.4667,

( t

∏
s=1

(γ
(s)
12 )
) 1

t
= (0.4× 0.8× 0.7× 0.6× 0.4× 0.3)

1
6

= (0.016128)0.17

= 0.4958,

( t

∏
s=1

(β
(s)
12 + γ

(s)
12 )
) 1

t −
( t

∏
s=1

(γ
(s)
12 )
) 1

t
=

(
(0.7 + 0.4)(0.3 + 0.8)(0.2 + 0.7)(0.3 + 0.6)(0.6 + 0.4)(0.6 + 0.3)

) 1
6
− 0.4958

=

(
(1.1)(1.1)(0.9)(0.9)(1.0)(0.9)

)0.17

− 0.4958

= 0.9789− 0.4958

= 0.4831.

We find the collective SFPR:

R =


(0.5000, 0.5000, 0.5000) (0.4667, 0.4958, 0.4831) (0.6354, 0.3288, 0.4303) (0.5611, 0.3403, 0.5283) (0.6511, 0.4750, 0.3641)

(0.5129, 0.4958, 0.4066) (0.5000, 0.5000, 0.5000) (0.4550, 0.3885, 0.5927) (0.7960, 0.3188, 0.1988) (0.4873, 0.4670, 0.4829)

(0.4885, 0.3288, 0.6014) (0.6202, 0.3885, 0.3992) (0.5000, 0.5000, 0.5000) (0.6414, 0.2871, 0.4335) (0.6619, 0.3996, 0.4086)

(0.5896, 0.3403, 0.5125) (0.3086, 0.3188, 0.7347) (0.4450, 0.2871, 0.6247) (0.5000, 0.5000, 0.5000) (0.5623, 0.3944, 0.4887)

(0.3700, 0.4750, 0.6017) (0.5971, 0.4670, 0.4443) (0.3953, 0.3996, 0.6613) (0.5404, 0.3944, 0.5250) (0.5000, 0.5000, 0.5000)

 .

In the directed model relating to a collective SFPR above, as shown in Figure 19, we select those
spherical fuzzy numbers whose truthness degrees αpq ≥ 0.5 (p, q = 1, 2, 3, 4, 5), and resulting partial
model is shown in Figure 20.
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In the directed model relating to a collective SFPR above, as shown in Figure 19. We select those spherical
fuzzy numbers whose truthness degrees αpq ≥ 0.5 (p, q = 1, 2, 3, 4, 5), and resulting partial model is shown
in Figure 20.
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Figure 20: Partial directed model of the combined SFPR

Compute the out-degrees out-d(ap) (p = 1, 2, 3, 4, 5) in a partial directed model as follows:

out−d(a1) = (1.8476, 1.1441, 1.3227), out−d(a2) = (1.3089, 0.8146, 0.6054), out−d(a3) = (1.9235, 1.0752, 1.2413),

out−d(a4) = (1.1519, 0.7347, 1.0012), out−d(a5) = (1.1375, 0.8594, 0.9693).

As indicated by truthness degrees of out-d(ap) (p = 1, 2, 3, 4, 5), we get the positioning of the variables
ap(p = 1, 2, 3, 4, 5) as:

a3 ≻ a1 ≻ a2 ≻ a4 ≻ a5.

Thus, the best choice is a3.
Now, using spherical fuzzy weighted geometric (SFWG) operator [?],

SFWG(r(1)pq , r
(2)
pq , ..., r

(t)
pq ) =

(

(

t
∏

s=1

(α(s)
pq +γ(s)

pq )
)

1
t

−
(

t
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(γ(s)
pq )
)

1
t

,
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t
∏

s=1

(γ(s)
pq )
)

1
t

,

√

√

√

√1−
(

t
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(1 − (β2
pq)

(s))
)

1
t

)

,

we get the collective SFPR:

R =













(0.5000,0.5000,0.5000) (0.4066,0.4958,0.5129) (0.6014,0.3288,0.4885) (0.5125,0.3403,0.5896) (0.6017,0.4750,0.3700)

(0.4831,0.4958,0.4667) (0.5000,0.5000,0.5000) (0.3992,0.3885,0.6202) (0.7347,0.3188,0.3086) (0.4433,0.4670,0.5971)

(0.4303,0.3288,0.6354) (0.5927,0.3885,0.4550) (0.5000,0.5000,0.5000) (0.6247,0.2871,0.4450) (0.6613,0.3996,0.3953)

(0.5283,0.3403,0.5611) (0.1988,0.3188,0.7960) (0.4345,0.2871,0.6414) (0.5000,0.5000,0.5000) (0.5250,0.3944,0.5404)

(0.3641,0.4750,0.6511) (0.4829,0.4670,0.4873) (0.4086,0.3996,0.6619) (0.4887,0.3944,0.5623) (0.5000,0.5000,0.5000)













.

In the directed model relating to a collective SFPR above, as shown in Figure 21. We select those spherical
fuzzy numbers whose truthness degrees αpq ≥ 0.5 (p, q = 1, 2, 3, 4, 5), and resulting partial model is shown
in Figure 22.
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Figure 20. Partial directed model of the combined SFPR.

We compute the out-degrees out-d(ap) (p = 1, 2, 3, 4, 5) in a partial directed model as follows:

out−d(a1) = (1.8476, 1.1441, 1.3227), out−d(a2) = (1.3089, 0.8146, 0.6054), out−d(a3) = (1.9235, 1.0752, 1.2413),

out−d(a4) = (1.1519, 0.7347, 1.0012), out−d(a5) = (1.1375, 0.8594, 0.9693).
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As indicated by the truthness degrees of out-d(ap) (p = 1, 2, 3, 4, 5), we have the positioning of
the variables ap(p = 1, 2, 3, 4, 5) as:

a3 � a1 � a2 � a4 � a5.

Thus, the best choice is a3.
Now, using a spherical fuzzy weighted geometric (SFWG) operator [41],

SFWG(r(1)pq , r(2)pq , . . . , r(t)pq ) =

(( t

∏
s=1

(α
(s)
pq + γ

(s)
pq )
) 1

t −
( t

∏
s=1

(γ
(s)
pq )
) 1

t
,
( t

∏
s=1

(γ
(s)
pq )
) 1

t
,

√√√√1−
( t

∏
s=1

(1− (β2
pq)(s))

) 1
t

)
,

we find the collective SFPR:

R =


(0.5000, 0.5000, 0.5000) (0.4066, 0.4958, 0.5129) (0.6014, 0.3288, 0.4885) (0.5125, 0.3403, 0.5896) (0.6017, 0.4750, 0.3700)

(0.4831, 0.4958, 0.4667) (0.5000, 0.5000, 0.5000) (0.3992, 0.3885, 0.6202) (0.7347, 0.3188, 0.3086) (0.4433, 0.4670, 0.5971)

(0.4303, 0.3288, 0.6354) (0.5927, 0.3885, 0.4550) (0.5000, 0.5000, 0.5000) (0.6247, 0.2871, 0.4450) (0.6613, 0.3996, 0.3953)

(0.5283, 0.3403, 0.5611) (0.1988, 0.3188, 0.7960) (0.4345, 0.2871, 0.6414) (0.5000, 0.5000, 0.5000) (0.5250, 0.3944, 0.5404)

(0.3641, 0.4750, 0.6511) (0.4829, 0.4670, 0.4873) (0.4086, 0.3996, 0.6619) (0.4887, 0.3944, 0.5623) (0.5000, 0.5000, 0.5000)

 .

In the directed model relating to a collective SFPR above, as shown in Figure 21, we select those
spherical fuzzy numbers whose truthness degrees αpq ≥ 0.5 (p, q = 1, 2, 3, 4, 5), and resulting partial
model is shown in Figure 22.
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Figure 21: Directed model of the combined SFPR
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Figure 22: Partial directed model of the combined SFPR

Compute the out-degrees out-d(ap) (q = 1, 2, 3, 4, 5) in a partial directed model as follows:

out− d(a1) = (1.7156, 1.1440, 1.4481), out− d(a2) = (0.7347, 0.3188, 0.3086), out− d(a3) = (1.8787, 1.0752, 1.2953),

out− d(a4) = (1.0533, 0.7347, 1.1015), out− d(a5) = (0.0000, 0.0000, 0.0000).

As indicated by truthness degrees of out-d(ap) (p = 1, 2, 3, 4, 5), we get the positioning of the variables
ap(p = 1, 2, 3, 4, 5) as:

a3 ≻ a1 ≻ a4 ≻ a2 ≻ a5.

Thus, the best choice is a3.

5 Conclusions

Spherical fuzzy model deals with uncertainty problems more efficiently with the constraint 0 ≤ α2+γ2+β2 ≤
1, providing a vast space to appoint degrees of one’s own choice as compared to picture fuzzy model. As
fuzzy graph theory can deal with ambiguous and vague notions in natural way, thus has a large number of
applications in modeling such real-life systems where the levels of information inherent in the system varies
with different levels of precision. In graph-theoretical concepts, to tackle the situations when human opinions
are of types: yes, abstain, no and refusal, the proposed model can well express evaluation information in a

28

Figure 21. Directed model of the combined SFPR.
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Figure 21: Directed model of the combined SFPR
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Figure 22: Partial directed model of the combined SFPR

Compute the out-degrees out-d(ap) (q = 1, 2, 3, 4, 5) in a partial directed model as follows:

out− d(a1) = (1.7156, 1.1440, 1.4481), out− d(a2) = (0.7347, 0.3188, 0.3086), out− d(a3) = (1.8787, 1.0752, 1.2953),

out− d(a4) = (1.0533, 0.7347, 1.1015), out− d(a5) = (0.0000, 0.0000, 0.0000).

As indicated by truthness degrees of out-d(ap) (p = 1, 2, 3, 4, 5), we get the positioning of the variables
ap(p = 1, 2, 3, 4, 5) as:

a3 ≻ a1 ≻ a4 ≻ a2 ≻ a5.

Thus, the best choice is a3.

5 Conclusions

Spherical fuzzy model deals with uncertainty problems more efficiently with the constraint 0 ≤ α2+γ2+β2 ≤
1, providing a vast space to appoint degrees of one’s own choice as compared to picture fuzzy model. As
fuzzy graph theory can deal with ambiguous and vague notions in natural way, thus has a large number of
applications in modeling such real-life systems where the levels of information inherent in the system varies
with different levels of precision. In graph-theoretical concepts, to tackle the situations when human opinions
are of types: yes, abstain, no and refusal, the proposed model can well express evaluation information in a
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Figure 22. Partial directed model of the combined SFPR.

We compute the out-degrees out-d(ap) (q = 1, 2, 3, 4, 5) in a partial directed model as follows:

out− d(a1) = (1.7156, 1.1440, 1.4481),

out− d(a2) = (0.7347, 0.3188, 0.3086),

out− d(a3) = (1.8787, 1.0752, 1.2953),

out− d(a4) = (1.0533, 0.7347, 1.1015),

out− d(a5) = (0.0000, 0.0000, 0.0000).

As indicated by the truthness degrees of out-d(ap) (p = 1, 2, 3, 4, 5), we have the positioning of
the variables ap(p = 1, 2, 3, 4, 5) as:

a3 � a1 � a4 � a2 � a5.

Thus, the best choice is Dubai Islami Bank (DIB) a3.

5. Comparative Analysis

Spherical fuzzy sets are an extension of PFS, as they provides enlargement of the space of
degrees of truthness (α), abstinence (γ), and falseness (β) in the interval [0, 1], with the condition
0 ≤ α2 + γ2 + β2 ≤ 1. Picture fuzzy sets which were proposed by Cuong [4,5] have been studied
widely by various researchers, but the range of applicability of PFS is limited due to its constraint
0 ≤ α + γ + β ≤ 1. Under this condition, PFSs cannot express some decision evaluation information
effectively; as a decision-maker may provide information for a particular attribute, such that the sum
of the degrees of truthness, abstinence, and falseness become greater than one.

In order to solve such types of problems, SFSs were defined by Gündogdu and Kahraman [16] in
2018, whose prominent characteristic is that the square sum of the truthness, abstinence, and falseness
degrees is less than or equal to one. Thus, an SFS can solve a number of practical problems that cannot
be handled using a PFS. The flexibility and the effectiveness of an SF model can be proved by the
following example: If a decision maker provides the degrees of truthness, abstinence, and falseness as
0.4, 0.6, and 0.5, respectively. It is readily seen that 0.4 + 0.6 + 0.5 > 1, while 0.42 + 0.62 + 0.52 ≤ 1.
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Thus this situation cannot be illustrated by PFS. However, it is appropriate to apply SFS. Thus, the
SFS model is considerably more close to human thinking than those of prior concepts. The literature
shows that another extension is suggested by Li et al. [18] in 2018, known as q-rung picture fuzzy set
(q-RPFS). This proposed concept further relaxes the constraints of picture and spherical fuzzy sets with
0 ≤ αq + γq + βq ≤ 1, q ≥ 1.

It is noteworthy that the class of q-RPFSs extends the classes of PFSs and SFSs. Thus, it can express
vague information more flexibly and accurately with increasing q rungs. When q = 1, this model
reduces to the PF model, and when q = 2, it becomes the SF model. Thus, a wider range of uncertain
information can be expressed using the methods proposed in this paper, which are closer to real
decision-making. This helps us to deal with MCDM problems and to sketch real scenarios more
accurately. Hence our approach towards MCDM is more flexible and generalized, which provides
a vast space of acceptable triplets given by decision-makers, according to the different attitudes,
as compared to the PF model.

6. Conclusions

Spherical fuzzy models deal with uncertainty problems more efficiently, with the constraint
0 ≤ α2 + γ2 + β2 ≤ 1, providing a vast space to appoint degrees of one’s own choice as compared
to the picture fuzzy model. As fuzzy graph theory can deal with ambiguous and vague notions in a
natural way, and thus has a large number of applications in modeling such real-life systems where the
levels of information inherent in the system varies with different levels of precision. In graph-theoretical
concepts, to tackle the situations when human opinions are of types: yes, abstain, no, and refusal,
the proposed model can well express evaluation information in a broad manner.

In this research article, we have discussed some operations on SFGs and developed several
results related to their degrees and total degrees. Further, we have described certain novel concepts of
SFGs, such as irregularity and edge irregularity with illustrative examples. For the validity of these
properties, some necessary and sufficient conditions are proposed. These properties allow one to
deal with the many challenges associated with the analysis of graphs. As the DM problems in fuzzy
models present themselves to the various organs of the state, we have developed an MCGDM problem
regarding the selection of the best critical union accomplice in the NBP using SFGs. The applications
of SFGs serve us with innovative and optimal results that seem to be highly significant as they give
directions to MCDM. In the future, we plan to extend this study to (i) spherical fuzzy hypergraphs; (ii)
hesitant spherical fuzzy graphs; (iii) single-valued neurotrophic spherical graphs; and (iv) complex
spherical fuzzy Hamacher aggregation operators.
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