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Abstract: The study concerns the winding head thermal design of electrical machines in difficult
thermal environments. The new approach is adapted for all basic shapes and solves the thermal
behaviour of a random wire layout. The model uses the nodal method but does not use the common
homogenization method for the winding slot. The layout impact can be precisely studied to find
different hotspots. To achieve this a Delaunay triangulation provides the thermal links between
adjoining wires in the slot. Voronoï tessellation gives a cutting to estimate thermal conductance
between adjoining wires. This thermal behaviour is simulated in cell cutting and it is simplified with
the thermal bridge notion to obtain a simple solving of these thermal conductances. The boundaries
are imposed on the slot borders with Dirichlet condition. Then solving with many Dirichlet conditions
is described. Some results show different possible applications with rectangular and round shapes,
one ore many boundaries, different limit condition values and different layouts. The model can be
integrated into a larger model that represents the stator to have best results.

Keywords: thermal equivalence circuit; Voronoï tessellation; winding heads; nodal method; thermal
resistances

1. Introduction

The study of increasingly compacted electrical machines in severe thermal environments is today
an important tendency in electrical engineering [1,2]. The electrical machines with concentrated
windings exhibit many advantages like high slot-filling factor, short end-winding, high fault tolerance
capability, and automated winding process. Those advantages allow the high power density
applications like electrical vehicles, electric aircraft, and wind turbines [3]. For such applications,
accurate thermal models are necessary to describe the system behaviour. One of the main problems in
the thermal study of electrical machines concerns their winding, where the temperature rises to its
maximum value [2,4]. Moreover the study of thermal field becomes more and more important because
the electrical designs are more compacted with more electrical density. The use of numerical tools, like
the finite element method (FEM), to estimate thermal field and find hot spots in coils leads to excessive
simulation time. Thus, some methods such as the nodal method like lumped thermal model have been
introduced to solve quickly a thermal field in end-windings [3–8]. The objective of the present study is
then to create an adaptable winding model, that reproduces a similar thermal behaviour. This model
can solve all simple slot shapes with random wire layouts. Moreover, this study does not use the
homogenisation technique commonly used in winding thermal calculation methods. This technique
provides a homogeneous distribution of temperature while a random layout distorts this distribution
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and can create other hot spots. To do this, a specific tessellation obtained via the Voronoï diagram
is used. This tessellation allows evaluating thermal conductance between each adjoining wire and
between a wire and its adjoining boundary. The solving is given and different applications show the
results for different shapes, different layouts and different boundary conditions. The advantages of
this method are to keep the fast solving from a nodal method with the exact layout of wires in winding
in all simple shapes.

First, we describe four problems to be solved, the geometric choices and simplifications as well as
the different simplifications applied to the model. The graph of the nodal network and the boundary
conditions are given as showed with green flow-chart Figure 1. Then, in the second step, we provide
two different way to estimate the thermal conductance that will be applied in the network. The first
way describes a simple equation based on the shortest distance between adjoining wires. The second
way gives a numerical integration which is more adapted as showed with blue flow-chart Figure 1.
In a third step, the network solving is described thanks to adapted matrices. The temperature of each
wire and the heat flux between each adjoining wire are solved as showed with red flow-chart Figure 1.
Finally, the last step solves the thermal nodal networks of the four examples. The tool process used is
described. Moreover, a comparison with Finite Volume Method (FVM) is provided to evaluate the
nodal model.

Step 2 : Thermal conductance
evaluation 

Method A
Shortest path

Intern edges Boundary edges

Method B
Numerical
integration 

Boundary edgesIntern edges

Shortest path 
direct edge

Matrix adaptation
and network solving

Shortest path
indirect edge

Step 1 : Choice of shapes, wire layouts
and temperature boundaries (Dirichlet) 

Rectangular slot, 21 wires,
4 different boundary 

conditions

Square layout Random layout Hexagonal
layout

Random
layout

Round slot, 19 wires
1 boundary condition{

4 thermal equivalent circuits 
(or 4 nodal graphs)
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4 geometry cutting 
Voronoï Tesselation
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Temperature for each wire core and thermal
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Shape:
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Step 3 : Thermal network solving

Type of winding (shape, number of wires, and boundaries...)

Layout generated with a controlled or randomly

Choice of method to estimate each thermal conductance

Different calculation for boundary edges and intern edges

Different calculation for line boundaries or circle boundaries

Different calculation if the edge is direct
(provide by the Voronoï tesselation)

Extract incidence matrix from graph theory Add thermal conductances
in the incidence matrix

Provide a matrix equation
and solve

Figure 1. Flow-chart to define different steps of the thermal model with its different possibilities.

2. Thermal Equivalent Circuit

2.1. Application to a Lot of Slot Shapes with a Random Layout of Round Wires

To the best of our knowledge, the analytic solutions for the thermal modelling of an electrical
winding slot in 2D use homogenisation techniques [4–6]. These techniques use the homogeneous
conductivities [9–11] for the material slot and a homogeneously distributed thermal power.
A numerical solution such as the finite element method, boundary element method, finite volume
method or finite difference method should be implemented. These methods refine the results and
obtain a more realistic thermal distribution and also to answer the random character of wire layout in
the slots. Although these solutions are accurate, they cannot meet the industrial request in terms of
speed, flexibility and design purpose. For this situation, the best solving method consists of a nodal
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network method. This approach is known to be faster than the others [12]. The heat sources are injected
in nodes like current source in an electrical field. The difficult parts are to cut the slot into regions
(stated as cells) with a homogeneous temperature and to evaluate correctly thermal resistances [13].
The thermal resistances depend on geometrical dimensions and thermal material properties. Between
two nodes i and j, in steady-state, the thermal Ohm’s law is applied with ∆Tij as temperature gradient,
Rthij as thermal resistance and qij as heat flow:

∆Tij = Rthij × qij. (1)

Many geometrical and physical parameters characterise a coil. Our study concerns a section in
a slot. The wires have the same geometrical and thermal characteristics. The wires are composed of
insulation materials and core materials. The thin protection paper used around wires in the slot is
neglected and the materials around wires can be air or resin.

A winding is composed of wires tightened to each other. However, their arrangement is not
perfect. The part of wire section (∑I

i=1 swire,i) compared to the part of the slot section (Sslot) is obtained
with the ratio in Equation (2).

τslot =
∑I

i=1 swire,i

Sslot
. (2)

The ratio between slot the surface and the wire cross-section surfaces is between 0.5 and
0.8 depending on the manufacturing process [14]. The improvement of electrical machines’ slot
filling factors is still studied today [15]. The wire layout is hardly controlled on the machine-made
end-windings. So each coil is different for the same product and the ratio is not optimal. More compact
layouts are possible for the hand-made end-windings. For specific electrical machines, a specific tool
can be used to obtain a flat wire layout [16]. However, this study considers a constant layout along the
wire axis. Heat transfer appears only in wire layout sections. Thus the problem is reduced to a 2D
study in a cross-section

If the winding is not in resin, the air is trapped between the wires. We consider during all this
study that low values of 1 − τslot create only small air cavities. If the buoyancy forces created by the
heat flow through these air cavities cannot overcome the viscous forces [17], then the air trapped in the
winding is supposed to be motionless. Convection can be neglected which is ensured by a low number
of Rayleigh that is, Ra < 1708. So, our model considers only conductive thermal transfers.

The big advantage of this model is the possibility of solving any wire layout for any slot shape,
some examples are presented in Figure 2. This flexibility makes it possible to test a large number of
random cases in order to detect the worst and best cases in terms of thermal heating. This gives the
designer a possibility of decision for the design choices of these electric winding.

a: Rectangular slot 
with square layout

b: Rectangular slot
with random layout

d: Round slot
with random layout

c: Round slot
with hexagonal layout
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Figure 2. Example of different possibilities of shapes and layouts.
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To create an efficient thermal nodal network, some regions are identified as uniform in
temperature. Computable thermal resistances must be found between regions. Each core, made of
copper, has its thermal source and its thermal conductivity kcore and each core is surrounded by
insulation. With kcore � kins, we will suppose that cores have a homogeneous temperature and that
they will be each one a node. The temperature at the slot border in real conditions is dependant of the
type of electrical machine. It should be noted that the method has been successfully modded to take
into account Neumann or Robin boundary conditions. The goal of the present study is to describe
the core of the method. Therefore a Dirichlet boundary condition is taken here and each boundary
temperature is labelled as Tbnd,i. It should be noticed that the temperature imposed may vary spatially.

The temperature Ti rises due to copper losses (Joule effect) inside each core. The heat sources Qi
from Joule losses is calculated with Equation (3) where the electrical resistivity ρ is supposed to be
constant. Ii is the nominal current of each wire in steady-state and score, i the core section of each wire.

Qi =
ρ · l

score, i
× I2

i . (3)

2.2. Creation of the Internal Thermal Circuit

The heat fluxes along the wire axis are neglected. The resolution only considers the heat flow in a
2D section. This network is created thanks to Delaunay triangulation [18].

In the Delaunay diagram, each node represents a wire. All of the nodes are positioned thanks
to the wire layouts. It should be noted that the determination of the layout for an industrial case is
not easy and should be made via a circle packing algorithm [19]. Delaunay triangulation is applied to
find all the links between the adjoining wires (blue lines in Figure 3). In the network, these links are
labelled edges and they are connected to the nodes corresponding to each wire.

The nodes are the temperature potential in the corresponding wire cores and the edges could
be seen as the heat fluxes between two nodes. The resolution of this thermal circuit is analogous to
the resolution of an electrical circuit. So, each edge is arbitrarily oriented (blue arrow cf. Figure 3)
and weighted with thermal conductances. Joules losses are added on each node like a thermal source.
This thermal network is simple and its solving is very fast.

Delaunay graph:
Delaunay node
Delaunay edges
Added boundary edges
Deleted Delaunay edges

Voronoï graph:
Voronoï node
Added Voronoï nodes
Deleted Voronoï nodes
Voronoï edges
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slot limits

Section of winding slot

Section of wire

Geometrical parameter:
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a: Random layout
in a rectangular slot
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15 16 17

18 19 20

b: Square layout
in a rectangular slot

Figure 3. The equivalent thermal circuit for a 2D view of a rectangular slot with a random layout (a)
and a square layout (b).
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These thermal conductances are dependent on the materials between each temperature gradient
and the thermal characteristics of these materials. The thermal conductances solving is presented in
Section 3.

Some modifications of the Delaunay diagram will allow simplifying a special case and
adding appropriate boundary conditions. To do this, the dual graph of Delaunay triangulation,
Voronoï tessellation, is used [20] (black lines Figure 3). The Voronoï cells give several details. First of
all, each node which is out of the end-winding slot is deleted and its links to each other node are cut at
the slot border. Three examples are given in Figure 3a for triangles (node numbers: 10, 13, 16), (6, 9,
12) and (17, 19, 20). The semi-infinite edges of Voronoï (dotted black line) can enable to identify all
the Delaunay nodes which are located at the periphery of Delaunay graph. Each peripheral Delaunay
node is then connected with a new edge (green edge) to one or several boundaries. These new edges
are weighted with thermal conductances adapted to the shape of the slot. In Figure 3 the green line
represents the border.

Another simplifying can be done when a local square layout of Delaunay node exits, as on
Figure 3b. It is considered no thermal flux between diagonal wires. So, each crossed Delaunay edge is
just deleted. For example, all deleted edges are symbolized with blue dotted lines in Figure 3b.

2.3. Selection of Boundary Conditions to the Thermal Circuit

As part of this work, the boundary conditions are added directly to the inner edge of the slot.
However, this nodal network can easily be added to another thermal network which solves thermal
field in an electric machine. In this study, the boundary conditions are imposed at the inner edges
of the slot. The thermal phenomenon on geometry borders in a thermal circuit is translated by these
boundary conditions: Dirichlet condition which represents a known temperature or a Robin condition
which represents a convection phenomenon between temperature fluid and walls surface. In this
study, only resolutions based on Dirichlet conditions are presented. However, Robin’s condition
can also be used following Saulnier’s recommendations [13] and an iterative resolution will have to
be implemented.

A single boundary condition as presented in Figure 3 requires that all the walls of the slot are at
the same known temperature. To be the most representative of the thermal environment, it is possible
to add several boundary conditions. For example Figure 4 shows a possibility to apply different
boundary conditions. It is possible to cut the border in another way and add as many boundary
conditions as desired. It is important to check if the two boundary conditions are separated by a
node of the Voronoï graph to have distinct Delaunay edges for the different boundary conditions.
If not, like on each slot angle in Figure 4, the corresponding Delaunay node must be linked to the
two boundary conditions in a distinct Delaunay edge. Two edges instead of one are used. A node
corresponding to the boundary separation is added to the Voronoï graph. It will be used to determine
the corresponding thermal conductances in Section 3.
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Figure 4. Several boundary conditions for a rectangular slot with a random layout (a) and a square
layout (b).

3. Thermal Conductance Determination

In a thermal network, the real difficulty is to find the thermal conductance between each node to
estimate the heat transfer between each adjoining wire and calculate the temperature rise created by
the Joule losses. This study proposes an estimation of thermal resistances which represent the inverse
of thermal conductances (Rth = 1/G). It is based on the principle of the thermal bridge and provides
a direct calculation of resistances.

The Voronoï tessellation is used to find the thermal conductances corresponding to each Delaunay
edge (cf. Section 2). Each node is now included in a cell and each Delaunay edge can intersect with a
Voronoï’s cell edge. We consider 2 cases:

• A direct case when the 2 edges intersect.
• An indirect case when the 2 edges do not intersect. This case appears when the shortest distance

between 2 adjacent nodes does not coincide with the Delaunay edge.

Figure 5a presents the first case and Figures 5b and 6 presents the second case. Also, when a cell is
connected to the boundary, the Delaunay node is directly linked to the boundary and the Voronoï cell
is truncated (see Figure 7). The Voronoï edge is not necessary a segment and can respect a circular slot
border as shown on Figure 7c,d. In these figures, the proportion of the insulation is increased for a
better understanding. It is assumed that the heat flow between two wires is only exchanged through
their shared Voronoï edge.

The Delaunay nodes give uniform core temperatures of wires. The edges represent the heat flux
across insulation and around media (trapped air or resin). Each material gives a thermal resistance.
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a direct edge b indirect edge

insulation (ins) core (c or core) medium (med)

Figure 5. Cutting an internal cell with the 2 possible cases: direct edge (a) and indirect edge (b).

0

1

2

3

Figure 6. Layout where wire 0 and 2 have an indirect edge.

For an internal edge (cf. Figure 5), the sum of these resistances in series provides their thermal
resistances as follows:

Rtheij = Rthins,ij + Rthmedi j + Rthmedji + Rthins,ji. (4)

It is assumed that the heat flow from the core to the Voronoï edge is only radial. The wires are all
identical and the cells on both side of a Voronoï edge are symmetrical. So, on the same edge, the two
thermal resistances of insulation are equal (i.e., Rthins,ij = Rthins,ji). The insulation resistance is given
with the cylindrical known resistances [17] as follow:

Rthins,ij =
1

Θikins
· ln
(

rw,i

rc,i

)
. (5)

To determine the medium thermal resistance in a cell, it is assumed that the Voronoï edge is at a
uniform temperature. With the symmetry, it is determined thermal resistances between the insulation
and the Voronoï edge (Rthmedi j and Rthmedji). Two geometrical cases are possible like direct internal
edge (Figure 5a) or indirect internal edges (Figure 5b). Two methods to estimate medium thermal
resistances are implemented. The first method (Method A) is based on a very simple assumption
which is based on the shortest path. The second method (Method B) consider that there is an infinite
sum of elementary resistance in parallel between the Voronoï edge and the insulation edge.

3.1. Method A: Shortest Path

The thermal behaviour shows that the heat flow favours the easiest path. So in a uniform domain,
it is the shortest path. In the a case, the shortest path is the distance between the two wires. So, in this
segment, it is defined two identical lengths dmini and dminj. In the b case, the segment between two
nodes does not cut the Voronoï edge, then the lengths dmini and dminj are defined by the shortest
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segment between the Delaunay nodes and the Voronoï edges. It corresponds to the shortest cell border.
Then it is assumed to simplify the domain with the previous cylindrical resistances which symbolize
the thermal resistance between the dotted arc and the insulation arc as follow:

Rthmed,ij = Rthmed,ji =
1

Θikmed
· ln
(

dmini
rw,i

)
. (6)

So with symmetrical context and Equations (4)–(6), the internal thermal resistance of edge is:

Rtheij = 2 × Rthins,ij + 2 × Rthmed,ij =
2

Θikins
· ln
(

rw,i

rc,i

)
+

2
Θikmed

· ln
(

dmini
rw,i

)
. (7)

For boundary edges, the thermal resistances follow the same principle with some adaptations.
The cell studied is defined by the Delaunay node at the wire centre and the two Voronoï nodes added
at the slot limit. Moreover, the Voronoï edge can be a segment or an arc according to the slot shape.
Then we have to check which is the shortest path to best determine the dmini as shown in the Figure 7.

direct edge indirect edge

(a) (b)

(c) (d)

boundary edge
with line

boundary edge
with circle

Figure 7. Cutting a boundary cell with the 4 possible cases: direct edge with a line border (a) or an arc
border (c) and indirect edge with a line border (b) or an arc border (d).

When the dmini is found, the thermal resistances could be evaluated as follows:

Rthe(bnd−i) = Rthins,bnd−i + Rthmed,bnd−i =
1

Θikins
· ln
(

rw,i

rc,i

)
+

1
Θikmed

· ln
(

dmini
rw,i

)
. (8)

3.2. Method B: Numerical Integration

This first method gives the smallest conceivable resistance but the real value is mandatory higher.
A second method is proposed to find a more precise resistance. These resistances are not directly
soluble. They need a numerical integration.

The assumption made is that the flow is radial from the insulation to Voronï line. The principle is
using an infinity of parallel resistances to represent the flow as shown in Figure 8. With this supposition,
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the effect of minimal distance is represented. Indeed, the resistance discretized for the minimum
distance has the smallest value than the other radial discretized resistances. The solving of parallel
discretized resistance show a value slightly higher than the smallest value.

with

Figure 8. Determination of parallel thermal resistance in a Voronoï cell.

The integral which represents this parallel resistance is written in function of angle θ, the origin is
imposed at the centre of the study wire and the x-axis at the bottom line of the cells, as follows:

1
Rthmed,ij

=
∫ Θi

0

1
Rth (θ)

(9)

with

Rth(θ) =
ln (d(θ)/rw,i)

kmed dθ
(10)

The distance d (θ) represents the distance between centre of studied wire and Voronï line.
For internal edges or boundary edges composed by a line, this distance is written as follow:

d (θ) =
p

sin θ − m × cos θ
(11)

m and p represent the line coefficients like y = m.x + p. If the Voronoï nodes in the local coordinate
system is at this position: Nvor,1 (xvor,1, yvor,1) and Nvor,2 (xvor,2, yvor,2) so m = yvor,2−yvor,1/xvor,2−xvor,1 and
p = yvor,1 − m.xvor,1.

For boundaries where the slot shape is circular, the distance d (θ) is written as follow:

d (θ) = max
(

rcnt. cos (θ − ϕ)± 0.5
√

4.Rbnd − 4.rcnt2. sin2 (θ − ϕ)

)
. (12)

As previously, the origin of the coordinate system is at the studied wire centre and the x-axis at
the bottom line of the cells. Rbnd is the shape radius, rcnt is the distance between the origin and the
centre shape position, ϕ is the cylindrical angle of shape centre from the coordinate system.

In this second method, the resistance of internal edges is deduced from the numerical estimation
of Equation (9) with adapt application of d (θ) and the Equation (7) as follow:

Rtheij = 2 × Rthins,i + 2 × Rthmed,ij =
2

Θikins
· ln
(

rw,i

rc,i

)
+ 2 ×

(∫ Θi

0

1
Rth (θ)

)−1

. (13)

For the resistance of boundary edges with the same deduction from Equation (9) and Equation (8)
as follow:

Rthe(bnd−i) = Rthins,i + Rthmed,ij =
1

Θikins
· ln
(

rw,i

rc,i

)
+

(∫ Θi

0

1
Rth (θ)

)−1

. (14)

4. Nodal Network Solving

The heat sources in each electrical wire are generated by Joule losses and are noted Qi. This heat
source Qi is incoming on the node ni representing a wire on a Delaunay graph. The temperatures
corresponding to Dirichlet conditions Tbnd,i will be imposed at the boundary nodes. The temperatures
at each internal node are not known and will be noted Ti. The heat flows through edges will be noted
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qij. These flows qij are algebraic terms and can be negative or positive. In this paper we -arbitrarily-
impose the orientation of the flow from node i to node j with j > i. In this section, each linear system
and matrix respects the network of Figure 4a. The nodes are listed starting with the internal nodes
first then the boundary nodes like [n0, n1, · · · , n10, · · · , n20, nbnd0, · · · nbnd3]. For the edges we use a
double increasing system starting with the internal edges and then the edges cutting the boundaries
like [e0,1, e0,2, · · · , e1,2, · · · , e19,20, e0,bnd0, e1,bnd0, · · · e20,bnd3].

To find the temperatures, we make an energy balance on all the nodes. The linear system obtained
is composed of as many equations as there are nodes.

Qi = ∑ qeij,out − ∑ qeij,in. (15)

The Equation (15) applied for random layout in a rectangular slot (Figure 4a) gives a linear system
as follows:
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n0 Q0 = q0,1 + q0,2 + q0,3 + q0,bnd0
n1 Q1 = −q0,1 + q1,2 + q1,4 + q1,bnd0 + q1,bnd2

...
...

n20 Q20 = −q17,20 − q18,20 + q20,bnd1 + q20,bnd3
nbnd0 −Qbnd0 = −q0,bnd0 − q1,bnd0 − q3,bnd0

...
...

nbnd3 −Qbnd3 = −q3,bnd3 − q6,bnd3 − q9,bnd3 − q12,bnd3 − q15,bnd3 − q18,bnd3 − q20,bnd3

(16)

A specificity in thermal balance is written in boundary equation. The heat sources Qbndi237

correspond to the heat flow which leaves the system. Qbndi is not know but the energy conservation238

provide this equation: ∑ Qi = ∑ Qbnd.239

If the thermal conductance is defined as Gij = Rth−1
ij , the heat flux is developed as follows:240

qi,j = Gi,j ×
(
Tj − Ti

)
= Gi,j.Tj − Gi,j.Ti (17)

The linear system 16 combined with Equation 17 applied to all nodes gives a linear system where241

the unknowns are the temperatures Ti. To simplify the solving, the system is written with matrix242

thanks to the graph theory. First, the incidence matrix ([Inc] in Equation 18) that connects edges and243

nodes with a sign convention. Inci,j = 1 if the heat flux leaves the node i and respectively Inci,j = −1244

if it enters into node i. It should be noted that the transposed incidence matrix [Inc]T gives the two245

nodes connected by a specific edge. And the weighted incidence matrix [G] (Equation 19) gives the246

thermal conductance oriented and connected at each node according to edges.247

[Inc] =




e0,1 e0,2 · · · e18,20 ebnd0,0 · · · ebnd3,20
1 1 · · · 0 1 · · · 0 n0

−1 0 · · · 0 1 · · · 0 n1
...

...
. . .

...
...

. . .
...

...
0 0 · · · −1 0 · · · 1 n20

0 0 · · · 0 −1 · · · 0 nbnd0
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · −1 nbnd3




(18)

[G] =




e0,1 e0,2 · · · e18,20 ebnd0,0 · · · ebnd3,20
G0,1 G0,2 · · · 0 Gbnd0,0 · · · 0 n0

−G0,1 0 · · · 0 Gbnd0,0 · · · 0 n1
...

...
. . .

...
...

. . .
...

...
0 0 · · · −Gbnd18,20 0 · · · Gbnd3,20 n20

0 0 · · · 0 −Gbnd0,0 · · · 0 nbnd0
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · −Gbnd3,20 nbnd3




(19)

With these different matrices which come from the graph theory, the vector of edges temperature248

potential is given with Equation 20. This vector coupled with matrix [G] lets us write the previous249

linear system to matrix system as Equation 21 with an efficient and computable tool:250

(
[Inc]T · [T]

)T
=
[ e0,1 e0,2 · · · ebnd0,0 · · · ebnd3,20
T0 − T1 T0 − T2 · · · T0 − Tbnd0 · · · T20 − Tbnd3

]
(20)

(16)

A specificity in thermal balance is written in boundary equation. The heat sources Qbndi
correspond to the heat flow which leaves the system. Qbndi is not know but the energy conservation
provide this equation: ∑ Qi = ∑ Qbnd.

If the thermal conductance is defined as Gij = Rth−1
ij , the heat flux is developed as follows:

qi,j = Gi,j ×
(
Tj − Ti

)
= Gi,j.Tj − Gi,j.Ti. (17)

The linear system (16) combined with Equation (17) applied to all nodes gives a linear system
where the unknowns are the temperatures Ti. To simplify the solving, the system is written with matrix
thanks to the graph theory. First, the incidence matrix ([Inc] in Equation (18)) that connects edges and
nodes with a sign convention. Inci,j = 1 if the heat flux leaves the node i and respectively Inci,j = −1
if it enters into node i. It should be noted that the transposed incidence matrix [Inc]T gives the two
nodes connected by a specific edge. And the weighted incidence matrix [G] (Equation (19)) gives the
thermal conductance oriented and connected at each node according to edges.
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(19)

With these different matrices which come from the graph theory, the vector of edges temperature248

potential is given with Equation 20. This vector coupled with matrix [G] lets us write the previous249

linear system to matrix system as Equation 21 with an efficient and computable tool:250

(
[Inc]T · [T]

)T
=
[ e0,1 e0,2 · · · ebnd0,0 · · · ebnd3,20
T0 − T1 T0 − T2 · · · T0 − Tbnd0 · · · T20 − Tbnd3

]
(20)

(18)
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(
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(19)

With these different matrices which come from the graph theory, the vector of edges temperature
potential is given with Equation (20). This vector coupled with matrix [G] lets us write the previous
linear system to matrix system as Equation (21) with an efficient and computable tool:

Version October 13, 2020 submitted to Math. Comput. Appl. 10 of 21





n0 Q0 = q0,1 + q0,2 + q0,3 + q0,bnd0
n1 Q1 = −q0,1 + q1,2 + q1,4 + q1,bnd0 + q1,bnd2

...
...

n20 Q20 = −q17,20 − q18,20 + q20,bnd1 + q20,bnd3
nbnd0 −Qbnd0 = −q0,bnd0 − q1,bnd0 − q3,bnd0

...
...

nbnd3 −Qbnd3 = −q3,bnd3 − q6,bnd3 − q9,bnd3 − q12,bnd3 − q15,bnd3 − q18,bnd3 − q20,bnd3

(16)

A specificity in thermal balance is written in boundary equation. The heat sources Qbndi237

correspond to the heat flow which leaves the system. Qbndi is not know but the energy conservation238

provide this equation: ∑ Qi = ∑ Qbnd.239

If the thermal conductance is defined as Gij = Rth−1
ij , the heat flux is developed as follows:240

qi,j = Gi,j ×
(
Tj − Ti

)
= Gi,j.Tj − Gi,j.Ti (17)

The linear system 16 combined with Equation 17 applied to all nodes gives a linear system where241

the unknowns are the temperatures Ti. To simplify the solving, the system is written with matrix242

thanks to the graph theory. First, the incidence matrix ([Inc] in Equation 18) that connects edges and243

nodes with a sign convention. Inci,j = 1 if the heat flux leaves the node i and respectively Inci,j = −1244

if it enters into node i. It should be noted that the transposed incidence matrix [Inc]T gives the two245

nodes connected by a specific edge. And the weighted incidence matrix [G] (Equation 19) gives the246

thermal conductance oriented and connected at each node according to edges.247

[Inc] =




e0,1 e0,2 · · · e18,20 ebnd0,0 · · · ebnd3,20
1 1 · · · 0 1 · · · 0 n0

−1 0 · · · 0 1 · · · 0 n1
...

...
. . .

...
...

. . .
...

...
0 0 · · · −1 0 · · · 1 n20

0 0 · · · 0 −1 · · · 0 nbnd0
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · −1 nbnd3




(18)

[G] =




e0,1 e0,2 · · · e18,20 ebnd0,0 · · · ebnd3,20
G0,1 G0,2 · · · 0 Gbnd0,0 · · · 0 n0

−G0,1 0 · · · 0 Gbnd0,0 · · · 0 n1
...

...
. . .

...
...

. . .
...

...
0 0 · · · −Gbnd18,20 0 · · · Gbnd3,20 n20

0 0 · · · 0 −Gbnd0,0 · · · 0 nbnd0
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · −Gbnd3,20 nbnd3




(19)

With these different matrices which come from the graph theory, the vector of edges temperature248

potential is given with Equation 20. This vector coupled with matrix [G] lets us write the previous249

linear system to matrix system as Equation 21 with an efficient and computable tool:250

(
[Inc]T · [T]

)T
=
[ e0,1 e0,2 · · · ebnd0,0 · · · ebnd3,20
T0 − T1 T0 − T2 · · · T0 − Tbnd0 · · · T20 − Tbnd3

]
(20)(20)

[G] · [Inc]T︸ ︷︷ ︸
[M]

· [T] = [Q] . (21)

This matrix system is detailed in Equation (22). It can not be solved directly. In the vector [Q],
the Joule losses are known but the heat flows out of the system on boundary nodes are unknown
(Qbndi). However, the number of unknowns (temperature of the internal nodes) corresponds to the
number of internal nodes. It is not mandatory to keep the corresponding equations at the boundary
nodes to solve. So, the first simplification, we remove equations from boundary nodes in [M] and [Q]

(i.e., equations from nbnd0 to nbnd3 in grey part). Then the system is horizontally split into 2 matrices
labelled ML∗ and MR∗. This allows to separate the unknown internal temperatures (red part) from the
unknown boundary condition temperatures (green part).
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T0 T1 · · · T20 Tbnd0 · · · Tbnd3
n0 ∑ Gij ∑ Gij
n1

...
n20

nbnd0
...

nbnd3




︸ ︷︷ ︸
[M]

×




T0

T1
...

T20

Tbnd0
...

Tbnd3
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[T]

=




Q0

Q1
...

Q20

−Qbnd0
...

−Qbnd3




︸ ︷︷ ︸
[Q]

(22)

Equation 22 could be rewritten as :

ML∗ × TL + MR∗ × TR = Q∗ (23)

Equation 23 could be easily transform a now solvable Equation 24 with
[
ML∗], [Q∗],

[
MR∗],

[
TR]

259

known and
[
TL] unknown.260




T0 T1 · · · T20

n0 ∑ Gij
n1

...
n20




︸ ︷︷ ︸
[ML∗]

×




T0

T1
...

T20




︸ ︷︷ ︸
[TL]

=




Q0

Q1
...

Q20




︸ ︷︷ ︸
[Q∗ ]

−




Tbnd0 · · · Tbnd3

∑ Gij



︸ ︷︷ ︸
[MR∗]

×




Tbnd0
...

Tbnd3




︸ ︷︷ ︸
[TR]

(24)

To determine all the heat fluxes in the system
[
qedge

]
we could rely on the vector [T] previously261

determined. We just create the conductance vector
[

Gedge

]
262

[
Gedge

]T
= [G0,1, G0,2, · · · , G1,2, · · · , G18−20, Gbnd0,0, · · · , Gbnd3,20] (25)

With the Equations 17, 20 and the known vector [T], we could determine
[
qedge

]
thanks to the263

following equation :264

[
qedge

]
= [Inc]T · [T] ·

[
Gedge

]
(26)

(22)

Equation (22) could be rewritten as:

ML∗ × TL + MR∗ × TR = Q∗. (23)

Equation (23) could be easily transform a now solvable Equation (24) with
[
ML∗], [Q∗],

[
MR∗],[

TR] known and
[
TL] unknown.
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]T
= [G0,1, G0,2, · · · , G1,2, · · · , G18−20, Gbnd0,0, · · · , Gbnd3,20] (25)

With the Equations 17, 20 and the known vector [T], we could determine
[
qedge
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thanks to the263

following equation :264

[
qedge

]
= [Inc]T · [T] ·

[
Gedge

]
(26)

(24)

To determine all the heat fluxes in the system
[
qedge

]
we could rely on the vector [T] previously

determined. We just create the conductance vector
[

Gedge

]

[
Gedge

]T
= [G0,1, G0,2, · · · , G1,2, · · · , G18−20, Gbnd0,0, · · · , Gbnd3,20] (25)

with the Equations (17), (20) and the known vector [T], we could determine
[
qedge

]
thanks to the

following equation:

[
qedge

]
= [Inc]T · [T] ·

[
Gedge

]
(26)

5. Application and Validation

Four applications corresponding to Figure 2 with the two thermal conductance determinations
(cf. Section 3) are given in this section. The thermal properties, slot dimensions and wire positions
are mentioned in Appendix A. These results show different temperature fields with different coil
implementations. These cases are not representative of existing electric coils in an electrical machine in
terms of dimensions but they tend to prove the ability of the method to be applied to several applications.

Figure 9 shows a clear understanding of tool process presented in this paragraph. A comparison
with a Finite Volume Method (FVM) used in ANSYS FLUENT is done with the same boundaries and
assumptions. All materials are solid domains, so only the thermal equation is solved. The domain
discretization uses triangle elements and it is applied with GMSH meshing [21]. The common interface
between the different materials is meshed with conforming mesh. The mesh is refined at core and
insulation boundaries until the results are independent of the mesh. For the nodal model, to apply the
mathematical process, the PYTHON code is used with some libraries. First, the random layouts are
generated from a 2-dimensional real-time rigid body physics engine: PYMUNK library as described in
a previous work [22]. The Delaunay and Voronoï networks are created thanks to Nocaj study [20] with
different library tools in SCIPY library like Convexhull. The NETWORKX library [23] is used to save and
transform Delaunay and Voronoï network. Each node and each edge is provided with full data like
position, weight, dual edges id ... These tools provide the incidence matrix and the weighted incidence
matrix. The Quadpack routine [24] via the SCIPY library is used to solve numerical integrals in the
determination of thermal resistances. Finally, Equation (24) is solved with a standard linear algebra
routine from Scipy based on the GESV Lapack routine [25].
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Geometric
Data

-Quantity of 
wires in a slice

-Type of shape

-Dimensions 
of the shape 
and the wires

Thermo-
physic
Data

- Boundary
temperatures

-thermophysic
data for the 
materials

Random
layout

-Using Pymunk 
library
-Example of 
code from 
Petitgirard[22]

To generate 
easily a lot of 
random case.

PYTHON

Square or  
hexa layout

- The 
coordinates of 
the wires are 
determinated 
directly with 
simple 
deductions.

No tools

Pre-processing

Nodal graphs

- Using NetworkX 
library[23] and
Convexhull tool.
- Find Delaunay and
Voronoï graphs 
thanks to Nocaj[20] 
To generate easily 
two graphs from 
wire coordinates.

Networkx provides a 
data storage to save 
each geometric data 
for the two graphs.

PYTHON

Thermal
conductance

- Using NetworkX 
library[23].
To calculate thermal 
conductance from the 
geometric data storage 
in the Voronoï graph 
and thermophysics 
data provided.
- Using of Quadpack 
routines[24]
To solve numeric 
integration from 
Method B.

PYTHON

Nodal solving

- Using NetworkX 
library[23].
To find incidence matrix 
and to weigth the 
incidence matrix.
- Using GESV Lapack 
routines[25].
To solve a matrix system 
and to find temperatures 
at each core.
The output data are 
saved in (.csv) format.

PYTHON

Meshing

- Python internal code
To create a text file  
geometry (.geo) 
directly from the 
layout data.
- GMSH meshing[21]
To generate the 
meshing with adapt 
number of cells  
automatically from 
(.geo) file. The meshing 
is saved in unv format.
This tool process ables 
to create very fastly a 
lot of layouts and 
meshing.

PYTHON/GMSH
Finite Volume

Method

- ANSYS Fluent
With TUI commands, 
the meshing and input 
data are provided and 
solved fastly.
The thermal field is 
export in (.csv) format.

This tools process ables 
to solve a lot of 
meshing previously 
generated.

ANSYS Fluent

Post-processing

- Using Rbf interpolation 
[26]
To create thermal contour 
from core and insulation 
temperatures.
- Using matplotlib library 
[27]
To show in a graph many 
thermal contours.
-Python code
To generate post-processing 
table with all core 
temperature.  

PYTHON

Thermal nodal model

Thermal FVM process for comparison
Post-processing

Figure 9. Software, programs and codes used to implement models, methods and comparison.

All the contours of the nodal model results are obtained with a radial basis function (Rbf)
interpolation [26] on a sufficiently refined grid. The Rbf interpolation is directly available in SCIPY

library and could be easily plotted via the MATPLOTLIB library [27].
To guide the interpolation, all the node’s temperatures are known as the boundary condition

ones. Also, we could determine several temperatures on the insulation of each node. As an example to
determine the temperature of the insulation of the node i along the Delaunay edge between node i and
j (Tins,i,j), we could use the heat flux qij and Rins,i.

Tins,i,j = Ti + Rins,i × qij. (27)

These additional temperatures are used in the interpolation process to obtain a more detailed contour,
as shown on Figure 10 and in Appendix B.

5.1. Comparison between Two Conductance Methods and a Commercial Software

To identify the different results the indices A and B correspond to the model result with
respectively the first method and the second method cited in the section of conductance determination.
The acronym FVM corresponds to commercial software results. In all this section, each heat-up and
each relative difference are based on the temperature: Tbnd0.

Table 1 shows that the model A with thermal conductances based on the minimum length
underestimates the temperature compared to the results of the FVM. This solution is not protective
and the gaps are large. The relative gaps are around 30.8% on the random layout and 18.3% on the
square layout. These gaps are up to 30 ◦C on a heating estimated by the FVM of 137 ◦C (wire 10 of
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the square layout). Despite these gaps, the qualitative distribution of the temperature is respected
(see contour Figure A1 and Figure A4).

Table 1. Results for square and random layout in rectangular slot with the model A, B and Finite
Volume Method (FVM) compared. Corresponding thermal contour in Appendix B respectively in
Figure A1 and Figure A2.

Square Layout in Rectangular Slot cf. Figure 2a Random Layout in Rectangular Slot cf. Figure 2b

T [◦C] Model
A

Model
B FVM Model A−FVM

FVM−Tbnd0
Model B−FVM

FVM−Tbnd0
T [◦C] Model

A
Model

B FVM Model A−FVM
FVM−Tbnd0

Model B−FVM
FVM−Tbnd0

T0 110.9 127.7 121.5 −14.9% 8.6% T0 109.0 146.3 135.5 −31.0% 12.7%
T1 125.2 150.5 140.6 −16.9% 10.9% T1 117.9 162.8 149.7 −31.9% 13.2%
T2 109.7 126.5 119.7 −14.3% 9.8% T2 126.2 173.1 159.2 −30.2% 12.7%
T3 125.8 153.2 140.8 −16.5% 13.6% T3 102.8 136.4 126.2 −30.7% 13.5%
T4 147.0 189.4 168.9 −18.5% 17.2% T4 102.4 137.7 128.4 −33.2% 11.9%
T5 124.4 151.6 139.9 −17.2% 13.1% T5 129.4 180.1 166.1 −31.6% 12.0%
T6 131.7 162.9 148.6 −17.2% 14.5% T6 109.7 146.3 135.2 −29.9% 13.0%
T7 155.5 204.6 183.9 −21.2% 15.5% T7 103.5 139.6 130.4 −33.5% 11.4%
T8 130.1 161.2 148.1 −18.3% 13.4% T8 131.6 183.2 168.6 −31.2% 12.4%
T9 132.8 165,0 151.4 −18.3% 13.5% T9 129.7 182.1 166.6 −31.6% 13.3%
T10 157.1 207.9 187,0 −21.8% 15.2% T10 103.9 140.4 131.4 −33.8% 11.1%
T11 131.2 163.3 149.2 −18.1% 14.3% T11 133.8 185.4 171.1 −30.8% 11.8%
T12 129.9 161.2 147.9 −18.4% 13.6% T12 112.9 151.2 140.4 −30.4% 12.0%
T13 152.0 202.0 181.7 −21.8% 15.4% T13 124.0 174.3 160.4 −33.0% 12.6%
T14 128.3 159.5 146.4 −18.7% 13.6% T14 129.4 178.5 164.8 −30.8% 12.0%
T15 120.9 148.3 137.1 −18.6% 12.9% T15 111.1 147.8 137.9 −30.5% 11.2%
T16 140.1 182.3 165.9 −22.3% 14.2% T16 99.4 130.1 122.9 −32.2% 9.9%
T17 119.4 146.7 135,0 −18.4% 13.7% T17 116.1 157.2 144.7 −30.2% 13.2%
T18 98.6 114.9 108.4 −16.8% 11.2% T18 105.5 138.2 129.9 −30.5% 10.5%
T19 109.7 133.9 124.8 −20.2% 12.2% T19 91.7 110.5 105.7 −25.1% 8.5%
T20 97.4 113.7 106.9 −16.7% 11.9% T20 104.8 133.1 123.7 −25.6% 12.7%
Tbnd0 50.0 Tbnd0 50.0
Tbnd1 80.0 Tbnd1 80.0
Tbnd2 65 Tbnd2 65
Tbnd3 62 Tbnd3 62
Ii [A] 7.5 Ii [A] 7.5
Qi [W] 13.15 Qi [W] 13.15

Model B always overestimates the temperature. For the square layout the deviation is approximately
13.3% and for the random layout is around 12.0%. In the random case this gaps ranging from 4.8 ◦C
(wire 19) to 15.6 ◦C (wire 9) for heat-ups ranging from 55.7 ◦C (wire 19) to 121.1 ◦C (wire 11).

The observations for the round slots are similar (Table 2). With method A, the temperatures are
underestimated. The relative gaps for the hexagonal layout are around 63.5% and the relative gaps for
the random layout are around 42.5%. In the random case, the heat-up differences between the method
A and FVM range between 26.4 ◦C (wire 17) and 61.5 ◦C (wire 6). The FVM corresponding heat-ups
range between 64.7 ◦C (wire 8) and 145.9 ◦C (wire 6).

The B model is still protective for this slot shape. For the hexagonal layout, the relative deviation
is around 6.5%. The heat-up differences range between 3 and 4.5 ◦C for heat-up between 43.3 and
79.7 ◦C. For the random layout, the relative gap is around 12.1% with heat-up differences of 8.0 ◦C
(wire 8) to 16.4 ◦C (wire 6) for FVM heat-up between 64.7 ◦C (wire 8) and 145.9 ◦C (wire 6).

Method A has the advantage of being very fast with a direct calculation of thermal conductances.
It qualitatively represents the thermal behaviour but greatly underestimates the temperatures.
Method B is always protective, more precise and the temperature distribution is also preserved
(Appendix B). Its disadvantage is the estimation of the integral when calculating the thermal
conductance. This solution requires a bit more IT resources but remains faster than the solving
of finite element methods.



Math. Comput. Appl. 2020, 25, 70 15 of 21

Table 2. Results for hexagonal and random layout in round slot with the model A, B and FVM
compared. Corresponding thermal contour in Appendix B respectively in Figure A3 and Figure A4.

Hexa. Layout in Round Slot cf. Figure 2c Random Layout in Round Slot cf. Figure 2d

T [◦C] Model
A

Model
B FVM Model A−FVM

FVM−Tbnd1
Model B−FVM

FVM−Tbnd1
T [◦C] Model

A
Model

B FVM Model A−FVM
FVM−Tbnd0

Model B−FVM
FVM−Tbnd0

T0 81.9 134.2 129.7 −60.0% 5.6% T0 90.3 132.0 122.6 −44.4% 13.0%
T1 78.5 127.1 122.7 −60.8% 6.1% T1 124.5 198.7 181.7 −43.5% 12.9%
T2 78.5 127.2 122.9 −60.8% 5.9% T2 117.4 187.2 171.7 −44.7% 12.7%
T3 78.5 127.2 122.9 −60.8% 5.9% T3 90.5 133.6 123.8 −45.1% 13.2%
T4 78.5 127.1 122.9 −60.8% 5.8% T4 90.8 131.7 122.2 −43.5% 13.2%
T5 78.5 127.2 122.9 −60.8% 5.8% T5 127.4 198.6 183.1 −41.9% 11.6%
T6 78.5 127.2 122.8 −60.8% 6.0% T6 134.4 212.3 195.9 −42.2% 11.2%
T7 73.7 117.7 113.4 −62.5% 6.9% T7 117.7 184.4 170.6 −43.94% 11.4%
T8 73.7 117.7 113.2 −62.5% 7.1% T8 81.5 122.7 114.7 −51.4% 12.4%
T9 64.2 96.2 93.3 −67.2% 6.7% T9 109.1 169.2 156.1 −44.3% 12.4%
T10 64.5 96.7 93.7 −66.8% 7.0% T10 128.1 195.2 181.0 −40.4% 10.8%
T11 74.0 118.1 113.7 −62.3% 7.0% T11 125.0 188.5 174.9 −40.0% 10.9%
T12 73.7 117.7 113.3 −62.5% 6.9% T12 127.2 199.4 184.2 −42.5% 11.3%
T13 64.5 96.7 93.7 −66.7% 7.0% T13 110.1 171.4 158.0 −44.4% 12.4%
T14 73.7 117.7 113.5 −62.6% 6.7% T14 87.0 124.6 116.4 −44.3% 12.4%
T15 74.0 118.1 113.7 −62.3% 6.9% T15 93.7 129.4 121.0 −38.4% 11.9%
T16 64.2 96.2 93.3 −67.1% 6.9% T16 96.1 132.6 123.7 −37.4% 12.2%
T17 64.5 96.7 93.7 −66.8% 7.0% T17 94.8 129.9 121.3 −37.1% 12.1%
T18 64.5 96.7 93.7 −66.8% 6.9% T18 93.4 130.0 121.2 −39.0% 12.4%
Tbnd0 50.0 Tbnd0 50.0
Ii [A] 7.5 Ii [A] 7.5
Qi [W] 13.15 Qi [W] 13.15

5.2. Comparison between the Different Shapes and the Wire Layouts

For the next results, only the method B is presented and discussed. For the Figure 10a,b four
distinct boundary conditions are applied such as Tbnd,0 = 50 ◦C, Tbnd,1 = 80 ◦C, Tbnd,2 = 65 ◦C and
Tbnd,3 = 62 ◦C. For the Figure 10c,d, only one boundary temperature is imposed at Tbnd,0 = 50 ◦C.
For all cases in this figure, the electrical current in each wire is 7.5 A which corresponds to a heat flow
of 13.15 W to Joule losses.

a Square layout b Random layout

0
1 2 3

4
5 6 7 8

9
10

11

12 13

14

15
16

17

18

01

2 3

4

56

7

8

9

10 11

12

13

14

15

16

1718

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20 0
1

2
3

4
5

6

7
8

9

10
11

12

13
14

15

16
17

18

19 20

d Random layout

c Hexa layout

50 75 100 125 150 175 200 225

Figure 10. Temperatures contour for 2 shapes and 2 layouts. Results data from Tables 1 and 2.
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The results prove that the modelling technique can provide individual wire temperatures. With a
central area hotter than the periphery, the thermal field between (a) and (b) are very similar: the hotspot
is in the centre of rectangle, that is, on wires 7, 10, 13 for the square layout and on wires 5, 8, 9, 11, 13
and 14 for the random layout. However, in detail, the number of wires in the hot spot is 3 for a square
layout against 6 for the random layout. So, in the random layout, the temperature is lower (180 to
185 ◦C against 202 to 207 ◦C) but the hot spot is spread over a larger area. The boundary conditions
greatly influence the temperature field. Consequently, in a random geometry, a bigger distance to the
border decreases the influence of the boundary temperatures. This influence is visible between wires
18, 19, 20 of Figure (a) and wires 0, 1, 3 of Figure (b). Indeed in Figure b wire 0 is very close and has a
minimal temperature influenced by the boundary conditions while wires 1 and 3 are warmer. The same
phenomenon is visible in Figures (c) and d when we consider wires 15, 17, 18 to (c) and 0, 1, 2, 3 to (d).

The heat-up between the hexagonal (c) and random (d) layout for the round shapes is not of the
same order of magnitude. The heat-up in the hexagonal layout is very lower than the random layout.
Indeed the hexagonal layout optimises a small and constant space between each wire. The insulation
created by the air is minimised. Many wires are close to boundary and they help the heat flow to escape.

The comparison between the shapes is interesting despite the lower number of wires in the round
geometry (19 wires) than in the rectangular geometry (21 wires). The comparison shows that the round
shape has the lowest (c) and the biggest (d) global temperature between all the cases. This shows the
importance of the wire layout and the choice of shapes to design the coil.

6. Conclusions

This study provides a methodology for analysing the heat-up of any set of wires in a end-winding
or any other device. Based on geometrical assumptions (Delaunay triangulation and Voronoï
tessellation), the model creates a thermal network that could solve easily the temperature field.
The evaluation of the thermal transfer thanks to thermal resistances and conductances is also provided.
A second estimation more precise of thermal resistances and conductances is provided. Network set-up,
adaptation, matrix writing and resolution are detailed. The model has been compared with FVM and
several experiments are planned. To refine the model several issues should be tackled:

• Add convection by using the Robin type conditions or control the outgoing heat flow at the limit
with Neumann conditions.

• Refine the determination of the thermal resistance between each wire (i.e., Rth)
• Integrate this end-winding slot model into a larger model which includes the stator.
• Thermophysical data can be made temperature dependent with an iterative convergence

process in which the matrices containing the resistances and thermal conductances are
updated synchronously.

• Finally, the model could be transformed into a transient model by the addition of thermal
capacitors at each node.
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Appendix A. Application: Materials Properties, Dimensions and Wire Positions

Appendix A.1. Materials Properties

• Media thermal conductivity (trapped air): 0.028 W/mK
• Insulation thermal conductivity: 0.2 W/mK
• Copper electrical resistivity: 18.7 × 10−9 Ωm

Appendix A.2. Slot Dimension, Slot Properties and Wire Positions

The Table A1 gives all geometry data of wires and slots corresponding at rectangular and
round slot.

Table A1. Type and dimension of slot application.

Rectangular slot Round slot
Figure 2a,b Figure 2c,d

wire number 21 wire number 19
wire section[

mm2] 0.785
wire section[

mm2] 0.785

insulation thickness
[µm]

1, 25 insulation thickness
[µm]

1, 25

Surface ratio 0.62 Surface ratio 0.73 Fig. c
0.62 Fig. d

slot height
[mm]

7.88 slot diameter
[mm]

5.13 Fig. c
5.55 Fig. d

slot width
[mm]

3.38

The Table A2 gives all wire positions for the 4 slot applications.

Table A2. Wire positions in 4 slot applications cf. Figures 2 and 10, the origin point is at the slot
gravity center.

Rectangular Slot Round Slot
position (x, y) [mm]

Wire Square layout Random layout Hexa layout Random layout
0 (−1.1,−3.3375) (0.14, 3.35) (0.0, 0.0) (−1.53, 1.61)
1 (0.0, −3.3375) (−0.74, 2.8) (−1.025, 0.0) (−0.5, 1.3)
2 (1.1, −3.3375) (0.19, 2.27) (−0.512, 0.888) (0.54, 1.43)
3 (−1.1,−2.225) (1.13, 2.8) (0.512, 0.888) (1.57, 1.58)
4 (0.0, −2.225) (−1.15, 1.81) (1.025, 0.0) (−2.11, 0.74)
5 (1.1, −2.225) (−2.2, 1.28) (0.512, −0.888) (−1.04, 0.42)
6 (−1.1,−1.1125) (1.13, 1.73) (−0.512,−0.888) (0, 0.35)
7 (0.0, −1.1125) (−1.15, 0.74) (−1.538, 0.888) (1.1, 0.57)
8 (1.1, −1.1125) (−0.22, 0.2) (−1.538,−0.888) (2.14, 0.7)
9 (−1.1, 0.0) (0.71, 0.74) (−2.05, 0.0) (−1.83,−0.25)
10 (0.0, 0.0) (−1.15,−0.34) (−1.025,−1.775) (−0.86,−0.65)
11 (1.1, 0.0) (0.19, −0.79) (0.0, −1.775) (0.04, −1.18)
12 (−1.1, 1.1125) (1.13, −0.25) (1.538, -0.888) (0.71, −0.4)
13 (0.0, 1.1125) (−0.74,−1.33) (1.025, −1.775) (1.73, −0.26)
14 (1.1, 1.1125) (0.19, −1.86) (1.538, 0.888) (−1.82,−1.3)
15 (−1.1, 2.225) (1.13, −1.33) (0.0, 1.775) (−1,−1.95)
16 (0.0, 2.225) (−1.15,−2.32) (2.05, −0.0) (−0.01,−2.22)
17 (1.1, 2.225) (−0.22,−2.86) (1.025, 1.775) (1,−1.95)
18 (−1.1, 3.3375) (1.13, −2.4) (−1.025, 1.775) (1.8,−1.3)
19 (0.0, 3.3375) (−1.15,−3.39)
20 (1.1, 3.3375) (0.71, −3.39)

Appendix B. Results Data

The Figures A1 and A2 give respectively a temperature comparison between the two methods
and FVM for the rectangular shape with a square layout and the rectangular shape with a random
layout. The Figures A3 and A4 give respectively a temperature comparison between the two methods
and FVM for the round shape with a hexagonal layout and the round shape with a random layout.
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Figure A1. Comparison of thermal contours for rectangular shape with a square layout between
method A (a), method B (b) and FVM (c). Results data from Table 1.
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Figure A2. Comparison of thermal contours for rectangular shape with a random layout between
method A (a), method B (b) and FVM (c). Results data from Table 1.
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Figure A3. Comparison of thermal contours for round shape with a hexagonal layout between method
A (a), method B (b) and FVM (c). Results data from Table 2.
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