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1. Performance Metrics

Definition 1. Positive (P). The number of real positive cases/samples.

Definition 2. Negative (N) The number of real negative cases/samples.

Definition 3. True Positive (TP) Number of correctly predicted positive

values (i.e., both the values of the actual class and the predicted class are

yes.)

Definition 4. False Positive (FP) Number of mistakes in predicted pos-

itive values (i.e., the value of the actual class is no, however the value of the

predicted class is yes.)

Definition 5. True Positive (TN) Number of correctly predicted negative

values (i.e., both the values of the actual class and the predicted class are no.)
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Definition 6. False Negative (FN) Number of mistakes in predicted neg-

ative values (i.e., the value of actual class is yes, however the value of the

predicted class is no.)

Definition 7. Accuracy The ratio of the number of correctly predicted sam-

ples and the number of total samples.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Definition 8. Precision The ratio of correctly predicted positive samples

to the total predicted positive samples

Precision =
TP

TP + FP
(2)

Definition 9. Recall The ratio of correctly predicted positive samples to the

all samples in actual class.

Recall =
TP

TP + FN
(3)

Definition 10. F1-Score F1-Score is the weighted average of Precision and

Recall.

F1− Score =
2 ∗ Precision ∗Recall

Precision + Recall
(4)

Definition 11. Matthews Correlation Coefficient(MCC) The MCC

is in a correlation coefficient between the actual and predicted binary classifi-

cations. It returns a value between -1 and +1. A coefficient of +1 represents

a perfect prediction. A coefficient of 0 means random prediction and -1 means

total dissimilarity between prediction and actual labels.
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MCC =
TP ∗ TN − TN ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(5)

2. Historical Background on Exploiting Homoglyphs

With the globalization of the Internet, utilizing Unicode characters has

become a common matter. Unicode consists of a huge set of letters, punctua-

tion marks, mathematical and technical symbols, arrows, emojis, hieroglyph-

ics from a great number of written languages. Although it contains around

136K characters [1], Unicode potentially has the capacity to contain around

1M letters.

a Trend of increase in number of Unicode
characters

b Trend of increase in number of Unicode
scripts

Figure 1: Status of Unicode progression with each new version release

Now, detecting homoglyphs becomes easier if a list is present with such

confusing and visually similar looking characters. However, manually build-

ing such a list using only eye-test will be really cumbersome since the number

of potential character pair combination is huge. In fact, after the release of

Unicode standard version 10.0 in June, 2017, there exists 136, 755 characters

[2, 1]. Therefore, a manual inspection may require 1010 individual inspec-

tions, which is a daunting task. Since the release of Unicode version 1.0
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more and more characters with unique identifying names are being mapped

to fixed code points in various categories. There are still many scripts that

are yet to be included in Unicode. For example, Mayan and RongoRongo

scripts are still awaiting approval. Tengwar, being a modern invented script

is also awaiting its inclusion [2]. Clearly, the possibility of exploitation of

visually similar characters will increase with the expansion of Unicode char-

acter set. As a result, with such expansions, probabilities of attacks will

rise too. Finding homoglyphs can be seen as the first step to the key de-

fence mechanism against such spoofing attacks. Fig. 1 demonstrates how

with each new version, the number of characters as well as the scripts that

Unicode contains increases.

Due to Internationalized Domain Names (IDN) and Internationalized Re-

source Identifiers (IRI), it is now possible to use characters from many lan-

guages. A person not only can use an uncommon language in the domain

space but also can use letters outside ASCII in web pages, email addresses,

and contents. Such exposure to IDNs opened up the path to IDN homo-

graph attacks [3] (which are also done by exploiting homoglyphs). In an

IDN homograph attack, a user is deceived by being presented with a URL

link, which contains one or more replaced characters, while looking similar

[4]. A casual eye can not distinguish the fake address, and thus falls into

the trap. For example, a regular user may click a link, https://apple.com,

where all the characters in the link come from Cyrillic script instead of Latin.

Also, another example is replacing the Latin ‘a’ (U+0061) with the Cyrillic

‘a’ (U+0430) in “PAYPAL.com” and thereby redirecting the user to a fake

PAYPAL website for stealing confidential credentials once she clicks the link.
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A real-world phishing incident was reported in Austria located at www.

ba-ca.com by registering the fake domain ba-cq.com, where the target was

to exploit the visual similarity between the two characters ‘a’ and ‘q’. The

target was the Bank Austria Web site. Since, it is a major financial institu-

tion, phishing such a site can easily allow a malicious user to steal millions of

dollars from naive Internet users. Clearly, a homoglyph based attack could

be even more harmful.

3. Transfer Learning Architectures:

Concepts of several of the architectures that are used in pre-trained mod-

els (in the context of transfer learning) are presented in the following sub-

sections:

3.1. VGG-16 and VGG-19 Network Architecture

VGG-16 [5] network consists of 16 convolutional layers in a flat uniform

style. The layers use 3 × 3 filters only, with 2 × 2 size maxpooling layers

in between them. Fully connected layers with softmax activation at the end

complete the network. First few layers learn the low-level features (such as

edges, shapes, colors), while the remaining layers gradually learn the high-

level ones. Figure 2 shows the layer-stacking property of the architecture of

the VGG-16 network. VGG-19 network architecture follows the same rule,

with the difference being in the number of layers.

Figure 2: VGG-16 Network Architecture
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3.2. ResNet Network Architecture

Deeper networks do not always relate to better performance. In fact,

with the increase in network depth, accuracy eventually starts to saturate

and degrades quickly [6]. The authors of [6] proposed a hypothesis that direct

mapping is hard to approximate. They proposed that instead of training a

network to learn a direct mapping from x to H(x), it is better to make it

learn the residual between the two, which is H(x)−x. Figure 3 demonstrates

the intuition behind a residual block in ResNet. Such an architecture allows

CNN models to be deeper than usual by stacking lots of layers with residual

blocks.

a F (x) = y direct mapping is hard, therefore
identity mapping, y = x becomes hard to
achieve.

b F (x) = 0 mapping is easier compared to F (x) = y di-
rect mapping, therefore identity mapping, y = x becomes
easier.

Figure 3: Identity mapping in a Residual Block of ResNet

3.3. Inception Architecture

Inception architecture [7] also relies on stacking layers. While such stack-

ing leads to more depth, this architecture is also wider. Each module rec-

ognizes features at multiple scale length, i.e., filters of different sizes in the

stacked modules. In order to tackle high computational cost, 1 × 1 size fil-

ters are usually used for dimensionality reduction. As a result, training such
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architectures is even less expensive than the VGG-16 architecture. Figure 4

shows how an inception module may look like.

Figure 4: Inception Architecture

3.4. Additional Detail about the Dataset

According to our problem formulation, the model requires to take two

different images as input. We generated the character images in such a way

that each image has a dimension of 75× 75 pixels with three channels. Most

of the images had the characters in the center, however several of them were

slightly dislocated from the center. The input to our neural networks is fed

as a concatenation of a pair of images. Therefore, the input to the neural

networks can be thought of as a single 75 × 75 pixels image. Our models

do not impose any restrictions with respect to the number of channels in

the input image pair, i.e., given a dataset with colour patches the networks

could be trained to further increase performance. We chose to use gray-scale

images. In all cases, the characters have been drawn in black color over a

white background.

Our dataset was split into training and validation datasets in a careful

manner. However, the independent test dataset was chosen randomly to

avoid any specific bias. If a particular character appears in both training
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and validation dataset as part of some confusable character pairs, but never

appears as part of some non-confusable character pairs therein, it is possi-

ble that the neural network will learn its features to predict a confusable

character pair whenever that character belongs to the character pair to be

predicted. For example, suppose in the confusable character pair set, the

letter ‘k’ appears more frequently than other characters (that is, there are

many characters that are visually similar to ‘k’ ). What may happen is that

a neural network with great capacity may learn a feature that, the presence

of ‘k’ in any of a character pair means that the characters in the pair are

visually similar, which is absolutely not acceptable. As a result, we carefully

built the dataset in a way so that such cases do not make the model include

features in its prediction task which eventually will be useless in detecting

homoglyphs. We think that it is very important to build a labeled dataset in

a cautious manner which assists the model for generalization purposes (i.e.,

predictive tasks). In our case, we had the freedom to design the dataset of

visually dissimilar character pairs.

4. Various Other Attempts

Below we describe some of our earlier experiments that were not upto

expectations along with some qualitative discussions. Notably, the early

experiments actually provided on the rationale behind finding our first three

model architectures.

4.1. Selection of optimizers

We choose Stochastic Gradient Descent (SGD) as the optimizer based on

its performance on a series of experiments. We fix all the hyperparameters
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except optimizers and we only vary the optimizers. We train the models for a

number of times for each of the optimizers and measure the average accuracy

for all of them. Figure 5 indicates that although they are almost identical in

performance, SGD is slightly better compared to others.

Figure 5: All optimizers perform well, with SGD having a slight edge.

4.2. CNN utilizing higher filter size

When we use filters with 5×5, 10×10 size or higher instead of 3×3 size,

performance becomes poor.

a b

Figure 6: Greater filter size somewhat reduces accuracy. The inclusion of a dense layer
reduces it even further, to around 50%, which indicates that the network is learning almost
nothing.
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4.2.1. Transfer Learning with VGG-19 Network

The VGG-19 architecture is similar to the VGG-16 architecture, however,

it has more layers than the former and thus represents a deeper network. The

VGG-19 network has an almost identical performance to that of the VGG-16

network. It has 91.80% validation accuracy, which is 4.20% less than the

VGG-16 network. Figure 7a and 7b shows the training of the model.

a Optimum validation accuracy value is reached
very quickly.

b Loss value of validation starts to diverge early
in the training.

Figure 7: Validation accuracy from Transfer Learning from VGG-19 Network reaches upto
91.80%

4.2.2. Other pre-trained Networks

Figure 8: All the architectures display very poor performance compared to that of the
VGG-19 network.
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Figure 9: VGG-16 performs best accuracy-wise, followed by VGG-19. All other models
fail to perform upto expectation.

All other architectures used in our preliminary experiments have better

top-5 (i.e, whether the actual class belongs in the top 5 of the predicted

classes) accuracy in the ImageNet dataset than VGG-16 and VGG-19 archi-

tecture. Thus, it may appear that feature extraction from these architectures

should also result in similar, if not higher, performance in accuracy. How-

ever, our experiments demonstrate that they are not suitable for the pur-

pose of classifying homoglyphs and non-homoglyphs. In fact, only mobilenet

manages to cross the 80% threshold in our experiments. Xception remains

consistent at around 72.14% accuracy. ResNet, NasNet Mobile, Inception

and DenseNet- all four of them have only achieve an accuracy closer to 50%.

Since this is a binary classification with equal number of training and vali-

dation samples, 50% can be least possible accuracy and hence is the baseline

for our experiments. Figure 8 reports the training of the models.

Our experiments require networks to learn all types of edges and shapes
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as well partial symmetry. These architectures are clearly unable to learn

such features, whereas VGG-16 and VGG-19 shine despite their simplistic

architecture compared to the rest. Figure 9 presents the comparison of the

accuracy metric of the all the models that we leveraged for transfer learning.

5. Brief Discussion

The purpose of transfer learning is knowledge transfer across differ-

ent domains or tasks [12]. Heterogeneous transfer learning, as it is known,

is characterized by the source and target domains having different feature

spaces, label spaces, and even dissimilar probabilistic distribution of data.

Here, our source domain is ImageNet dataset, which helped in lots of com-

puter vision problems [13, 14, 15, 16]. The target domain is the classification

of Unicode character image pairs on the basis of their similarities. We dis-

cover in our experiments (discussed in previous sections) that despite the

apparent heterogeneity transfer learning can still provide enough pre-trained

features for our target domain from the source domain. The experimental

results show that transfer learning adoption can achieve strong homoglyph

detection capability.

The problem of finding relevant fonts that can render many of the

scripts of the Unicode refrained us from producing image data for many of the

rarely used Unicode characters. Moreover, we decided to leave out the private

use area [17] code characters since they are third party dependent and are not

under any obligation by the Unicode consortium for quality assurance. Deep

learning, in general, requires a lot of data samples in case of high dimensional

or complex data form. Obtaining good accuracy in classification problems are
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in general difficult when a limited number of labelled training examples are

provided [18]. Both CNN |1Scratch and CNN |2Scratch had very high accuracy.

It is expected that with a larger dataset the model performance will be even

better.

Normalization techniques such as batch-normalization and dropout

were used to prevent overfitting. We do not want our models to associate

too much with the features of the characters (that appear more frequently

in training examples) as high-level features and look for them during the

classification task. To overcome overfitting (that is, having a higher train-

ing accuracy than validation accuracy), we adopted aggressive regularization

measures so that it becomes hard for the network to memorize more frequent

characters, and to learn and use their features for predictive tasks.

6. Future Research

Google has a project that aims to unify all Unicode characters under

a single font family, known as Noto sans family [19]. The project is still

halfway but is progressing at a good pace. We aim to use the full Noto sans

font family to negate the effect of lack of fonts for many scripts and extend

our current work. It will allow us to increase our labeled dataset where every

image rendered by fonts will have a unified theme. After we obtain the full

Unicode character dataset, we expect to build a better model. The model

along with its weights will be released for public use.

Another interesting avenue would be to use generative adversarial net-

works (GAN ) [20] to artificially create many more characters and augment

the available dataset size for the homoglyph dataset.
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Siamese Network is another interesting neural network architecture for

similarity metric calculation, which has been applied to many interesting

problems [21]. We plan to extend our research with Siamese network-based

models.

7. False Positives by CNN |Xfer

Table 1: These are the scripts that the false positive prediction outcomes of CNN |Xfer

Script of the first glyph Script of the second glyph No. of false pos-
itives

CJK Unified Ide. CJK Compatibility Ide. 2
CJK Unified Ide. CJK Radical Supplement 5
CJK Compatibility Ide.s CJK Compatibility Ide. 2
CJK Compatibility Ide. Kangxi Radicals 1
CJK Compatibility Ide. CJK Compatibility Ide. 2
CJK Compatibility Ide. CJK Radical Supplement 1
CJK Radical Supplement CJK Radical Supplement 1
CJK Radical Supplement Kangxi Radicals 1
CJK Com. Ide. Sup. CJK Radical Supplement 2
CJK Radical Supplement Khmer 1
Khmer Kangxi Radicals 1
Arrows Miscellaneous Technical 1
Hangul Compatibility Jamo Katakana 1
Khmer Spacing Modifier Letters 1
Tamil Katakana 1
Vertical Forms Hangul Compatibility Jamo 1
Vertical Forms U.C.A.S. 1
Vertical Forms Khmer 1
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