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Abstract: In this paper, we study a family of dynamical systems with circulant symmetry, which are
obtained from the Lorenz-96 model by modifying its nonlinear terms. For each member of this
family, the dimension n can be arbitrarily chosen and a forcing parameter F acts as a bifurcation
parameter. The primary focus in this paper is on the occurrence of finite cascades of pitchfork
bifurcations, where the length of such a cascade depends on the divisibility properties of the
dimension n. A particularly intriguing aspect of this phenomenon is that the parameter values
F of the pitchfork bifurcations seem to satisfy the Feigenbaum scaling law. Further bifurcations can
lead to the coexistence of periodic or chaotic attractors. We also describe scenarios in which the
number of coexisting attractors can be reduced through collisions with an equilibrium.
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1. Introduction

The Lorenz-96 model, which was constructed by E.N. Lorenz [1], is a frequently used toy model
in studies that are related to predictability and weather forecasting. The so-called monoscale version
of the model is given by the equations

ẋj = xj−1(xj+1 − xj−2)− xj + F, j ∈ Z, (1)

where the indices of the variables xj are taken modulo a fixed integer n ≥ 1:

xj+n = xj for all j ∈ Z. (2)

Equation (2) can be interpreted as a periodic boundary condition. In fact, Lorenz [1] interpreted
the variables xj as values of some atmospheric quantity in n equispaced sectors of a latitude circle,
where the index j plays the role of longitude. The dimension n ∈ N and forcing parameter F ∈ R are
free parameters.

Low-dimensional atmospheric models that were used in earlier predictability studies, such as
the Lorenz-63 and Lorenz-84 models, were derived as Galerkin projections of partial differential
equations describing the laws of physics [2–5]. In contrast, the Lorenz-96 model was not constructed
as a physically realistic model, but rather as a model that is easy to use in numerical experiments.
Nevertheless, the model has physically relevant components, such as advection terms, damping terms,
and external forcing. The feature that the dimension n of the model can be chosen arbitrarily large
allows for much richer dynamics in comparison to the aforementioned Lorenz-63 and Lorenz-84 models.
The latter property has made the Lorenz-96 model an attractive model for studies on forecasting [6–9],
predictability [10–12], high-dimensional chaos [13–16], and data assimilation schemes [17–20].
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The broad interest in the Lorenz-96 model has inspired several authors to introduce and
study modifications of the model. Kerin and Engler [21] identified the desired properties for the
nonlinear advection terms and provided a classification of all advection terms that are quadratic,
energy-preserving, and equivariant with respect to circulant permutations of coordinates, and localized
up to some degree. Vissio and Lucarini [22] supplement the Lorenz-96 model with temperature-like
variables. This addition allows for the existence of an energy cycle, in which conversion between
kinetic and potential energy is possible.

In this paper, we introduce our own variant of the Lorenz-96 model. Instead of deriving our
modification from physical considerations, we stay closer to the structure of the nonlinear terms in
Equation (1). Specifically, we modify the nonlinear terms by simply changing indices: for a given triple
(α, β, γ) ∈ Z3, we consider the system

ẋj = xj+α(xj+β − xj+γ)− xj + F, j ∈ Z, (3)

which is again subject to the condition in Equation (2). Note that the boundary condition in Equation (2)
implies that the numbers α, β, and γ can always be taken modulo the dimension n, whenever this
is necessary. In the remainder of this paper, these systems will be identified by the symbol Lα,β,γ(n).
Note that L−1,1,−2(n) is just the original Lorenz-96 model of Equation (1). The dynamics of the latter
model has been studied in detail in the papers [23–25]. A particular phenomenon that was discovered
was the succession of pitchfork bifurcations, which, in combination with further bifurcations, leads to
the coexistence of attractors. The main purpose of this paper is to determine what extent this scenario
occurs in the systems Lα,β,γ(n). Rather than providing an exhaustive analysis of all possible cases,
we will highlight the differences and similarities for three concrete choices of (α, β, γ).

This paper is structured, as follows. In Section 2, we first discuss some general properties of the
system Lα,β,γ(n), such as the boundedness of orbits and stability properties. In Section 3, we first derive
sufficient conditions under which a pitchfork bifurcation occurs. Next, we numerically investigate
whether the first pitchfork bifurcation is followed by a cascade of such bifurcations. Section 4 shows
how pitchfork bifurcations in conjunction with other bifurcations lead to the coexistence of periodic
or chaotic attractors. Section 5 concludes the paper with a discussion of the open questions that arise
from our results.

2. General Properties

In this section, we study the properties that all members of the family Lα,β,γ(n) have in common,
such as boundedness of orbits and the stability of equilibria.

2.1. Boundedness of Orbits

In this section, we determine sufficient conditions under which orbits of the system Lα,β,γ(n)
remain bounded for all time. This is a necessary first step, since, unlike the generalized Lorenz-96
models that were introduced in [21], the quadratic advection terms in our model do not necessarily
preserve the total energy. Although unbounded orbits are not of physical relevance, they can still
appear in physically relevant models, such as those that are derived from the shallow water equations,
see [26,27].

The discussion in this section closely follows the arguments that are presented in [26]. Let

Sn = {x = (x0, · · · , xn−1) ∈ Rn : x2
0 + · · ·+ x2

n−1 = 1}
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denote the unit sphere in Rn and define the following quantities:

An := max
x∈Sn

n−1

∑
j=0

xjxj+α(xj+β − xj+γ),

Cn := max
x∈Sn

F
n−1

∑
j=0

xj,

where we take the indices of the variables xj modulo n. Note that An, Cn ≥ 0, since both of the
quantities are obtained by maximizing a polynomial of odd degree. If we define R2 = ∑n−1

i=0 x2
i , then it

follows that

R
dR
dt

=
1
2

d
dt
(R2) =

n−1

∑
j=0

xj ẋj =
n−1

∑
j=0

xjxj+α(xj+β − xj+γ)−
n−1

∑
j=0

x2
j +

n−1

∑
j=0

Fxj,

which implies that
dR
dt
≤ AnR2 − R + Cn.

Now, assume that 1− 4AnCn > 0, or, equivalently,

AnCn <
1
4

. (4)

If An = 0, then this condition trivially holds and dR/dt < 0 whenever R > Cn, which means that
the orbits of the system Lα,β,γ(n) are bounded for all t > 0. If An > 0, then dR/dt < 0 whenever
R− < R < R+, where

R± =
1±
√

1− 4AnCn

2An
.

Orbits for which R(t1) < R+ for some t1 ≥ 0 satisfy R(t) < R+ for all t ≥ t1, which gives a sufficient
condition for the boundedness of orbits. Orbits for which R(t1) ≥ R+ for some t1 ≥ 0 are potentially
unbounded. Hence, we are mainly interested in the region R < R+.

The next question is for which the values of n and F the condition in Equation (4) holds. For the
original Lorenz-96 model L−1,1,−2(n), it can be easily verified that An = 0 for all n ∈ N, which,
in particular, implies that all of the orbits are bounded. Another example is given by the system
L−1,−2,1(n). More generally, if the system Lα,β,γ(n) has the property that An = 0 for all n ∈ N, then so
does the system Lα,γ,β(n). However, for some systems, it may occur that An > 0 for some n ∈ N.
A concrete example is the system L−1,0,−2(n) for which An = 0 when n = 4, but An > 0 when n = 5.
In such cases, it is useful to know how An and Cn vary with n in order to check the condition in
Equation (4).

The equality case of the Cauchy–Schwarz inequality implies that Cn =
√

n|F|. However, an exact
expression for the quantity An is not so easy to derive analytically: for example, when applying the
method of Lagrange multipliers, a system of quadratic equations needs to be solved as a result of
the cubic terms in the expression for An. Therefore, we perform a numerical experiment in order
to determine the dependence of An on n. For a fixed choice of (α, β, γ) and n, the quantity An is
approximated by taking the largest value of the sum

n−1

∑
j=0

xjxj+α(xj+β − xj+γ)

over 105 randomly chosen points (x0, · · · , xn−1) ∈ Sn. These maxima are plotted as a function of n in
Figure 1; increasing the number of points in the maximization procedure only produces very minor
differences. The figure clearly suggests, for several choices of the triple (α, β, γ) ∈ Z3, that An = O(np)
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with p ≈ −1, which implies that AnCn = O(|F|np+1/2). In these cases, the condition presented in
Equation (4) will be satisfied for sufficiently large n and sufficiently small |F|. Moreover, a larger n
allows for a larger value of |F|.

Note that Figure 1 only shows the results for small values of the triple (α, β, γ) ∈ Z3. For the
larger range −50 ≤ α, β, γ ≤ 50, the decay of An with n is the same as in Figure 1 (not shown). In the
remainder of this paper, we will restrict ourselves to small values of (α, β, γ). This is motivated by the
observation that the Lorenz-96 model and its generalizations shown in Equation (3) have a similar
structure as finite-difference discretisations of partial differential equations in which the interaction
between the nonlinear terms are often local in nature; also see the discussion in [21].

 0.01

 0.1

 1

 10  100
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n
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(-1,  1,  0)
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( 0,  0, -1)
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( 1,  0,  0)

Figure 1. Numerical estimates of the quantity An plotted as a function of n for seven different choices
of the triple (α, β, γ) ∈ Z3. Note that a logarithmic scale is used for both axes. The two dashed lines
represent the curves An = 5/n and An = 10/n, which suggest that An = O(np) with p ≈ −1.

2.2. Stability of Equilibria

All of the systems Lα,β,γ(n) have an equilibrium solution that is given by xF = (F, F, · · · , F).
The eigenvalues of the Jacobian matrix at this equilibrium can be expressed explicitly in terms of
(α, β, γ) and n, as the next result shows.

Lemma 1. The eigenvalues of the Jacobian matrix of Lα,β,γ(n) at xF are given by

λj = −1 + F
[
η(j, n; β, γ) + iξ(j, n; β, γ)

]
, j = 0, 1, · · · , n− 1, (5)

where

η(j, n; β, γ) = cos
(2π jβ

n

)
− cos

(2π jγ
n

)
,

ξ(j, n; β, γ) = sin
(2π jγ

n

)
− sin

(2π jβ
n

)
.

Moreover, the eigenvector vj corresponding to the eigenvalue λj is given by

vj =
1√
n
(1, ρj, · · · , ρn−1

j )>,

where ρj = e−2πij/n are the n-th roots of unity.
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Proof. Without a loss of generality we may assume that 0 ≤ α, β, γ ≤ n− 1. Note that the Jacobian
matrix of System (3) evaluated at xF is circulant, which means that each row is a cyclic right shift
of the row above. If we denote the first row by (c0, c1, · · · , cn−1), then it follows from [28] that the
eigenvalues and corresponding eigenvectors are given by

λj =
n−1

∑
k=0

ckρk
j , vj =

1√
n
(1, ρj, · · · , ρn−1

j )>, j = 0, 1, · · · , n− 1.

Because we have that c0 = −1, cβ = F, cγ = −F, and ck = 0 for all k 6= 0, β, γ, it follows that

λj = −1 + Fρ
β
j − Fρ

γ
j

= −1 + F exp
(−2πijβ

n

)
− F exp

(−2πijγ
n

)
= −1 + F

(
cos

(−2π jβ
n

)
+ i sin

(−2π jβ
n

))
− F

(
cos

(−2π jγ
n

)
+ i sin

(−2π jγ
n

))
= −1 + F

(
cos

(2π jβ
n

)
− cos

(2π jγ
n

))
+ iF

(
sin
(2π jγ

n

)
− sin

(2π jβ
n

))
.

This completes the proof.

Note that the parameter α does not influence the stability of the equilibrium xF. Hence, in the
remainder of the paper, we will mainly focus on the case α = −1. The next result follows directly from
Lemma 1.

Proposition 1. For a fixed integer n ≥ 1, we have the following:

1. If η(j, n; β, γ) = 0 for some j = 0, 1, · · · , n − 1, then <(λj) = −1 and, hence, the eigenvalue λj
cannot cross the imaginary axis upon varying F. In particular, if β = ±γ, then η(j, n; β, γ) = 0 for all
j = 0, · · · , n− 1, which implies that the equilibrium xF is stable for all F ∈ R.

2. If η(j, n; β, γ) 6= 0 for some j = 0, 1, · · · , n− 1, then the eigenvalue λj will cross the imaginary axis at
the parameter value F = 1/η(j, n; β, γ).

3. If η(j, n; β, γ) ≤ 0 for all j = 0, · · · , n− 1, then bifurcations of the equilibrium xF can only occur for
F < 0. In particular, this holds when γ = 0.

4. If η(j, n; β, γ) ≥ 0 for all j = 0, · · · , n− 1, then bifurcations of the equilibrium xF can only occur for
F > 0. In particular, this holds when β = 0.

Lemma 1 also implies that the equilibrium xF is stable for |F| sufficiently small. The shape of the
graphs of the functions η and ξ strongly determines the nature of the first bifurcation of xF.

2.3. Degenerate Cases

For specific choices of (α, β, γ), the bifurcations of the system Lα,β,γ(n) can be degenerate.
For example, consider the system L−1,0,2(n). If n = 4k, where k ∈ N, Lemma 1 implies that
λk = λ3k = 0 for F = 1

2 , which means that the equilibrium xF becomes unstable by two real eigenvalues
crossing zero. The occurrence of a Bogdanov–Takens bifurcation can be ruled out, since the Jacobian
matrix at xF is diagonalizable [29]. In fact, the next result shows that two lines of equilibria appear at
F = 1

2 .

Proposition 2. For system L−1,0,−2(n) with n = 4k and F = 1
2 , the following sets are equilibrium solutions:

L1 =
{
( 1

2 , t, 1
2 , 1− t, 1

2 , t, 1
2 , 1− t, · · · , 1

2 , t, 1
2 , 1− t) : t ∈ R

}
,

L2 =
{
(t, 1

2 , 1− t, 1
2 , t, 1

2 , 1− t, 1
2 , · · · , t, 1

2 , 1− t, 1
2 ) : t ∈ R

}
.
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Proof. For F = 1
2 , the right hand side of System (3) reads as

f j = xj−1(xj − xj−2)− xj +
1
2 , j = 0, · · · , n− 1.

A vector (x0, · · · , xn−1) ∈ Rn belongs to L1 if and only if one the following cases is satisfied:

1. (xj−2, xj−1, xj) = (1− t, 1
2 , t);

2. (xj−2, xj−1, xj) = (t, 1
2 , 1− t);

3. (xj−2, xj−1, xj) = ( 1
2 , t, 1

2 ); and,
4. (xj−2, xj−1, xj) = ( 1

2 , 1− t, 1
2 ).

Straightforward computations show that, in each of theses cases, f j = 0 for all j = 0, · · · , n − 1.
This proves that elements of L1 are indeed equilibria of System (3). The proof for L2 is similar.

The previous result implies that the equilibrium xF undergoes a degenerate bifurcation at F = 1
2 .

For F > 1
2 , the equilibrium xF is unstable and numerical experiments show that orbits can become

unbounded when their initial point is not contained in a compact invariant set, such as an equilibrium
or periodic orbit.

The occurrence of multiple zero eigenvalues is not limited to the specific system L−1,0,−2(n).
More generally, the Jacobian matrix of the system Lα,0,γ(n) at xF has precisely |γ| eigenvalues that
are equal to zero when n is a multiple of 2|γ| and F = 1

2 . Indeed, if β = 0 and γ 6= 0, then Lemma 1
implies that the eigenvalues are given by

λj = −1 + F
(

1− cos
(

2π jγ
n

))
+ iF sin

(
2π jγ

n

)
.

Solving the equation λj = 0 for F = 1
2 gives

j =
n

2|γ| (2k + 1) where k ∈ Z.

The restriction 0 ≤ j ≤ n− 1 leads to the restriction 0 ≤ 2k + 1 < 2|γ|. Hence, if 2|γ| divides n, then
there precisely exist |γ| integers 0 ≤ j ≤ n− 1 for which λj = 0.

In the remainder of this paper, we will only consider systems Lα,β,γ(n) for which degeneracies, as
described above, do not occur.

3. Finite Cascades of Pitchfork Bifurcations

In this section, we first discuss under which conditions on the triple (α, β, γ) the equilibrium
xF = (F, · · · , F) loses stability through a pitchfork bifurcation. Next, we discuss the resulting
bifurcation scenario for specific choices of (α, β, γ). Rather than providing an exhaustive analysis of all
possible cases, we will restrict the discussion to three concrete examples. In particular, we discuss to
what extent these examples differ from the original Lorenz-96 system.

3.1. Conditions for a First Pitchfork Bifurcation

For xF to loose stability through a pitchfork bifurcation, it is necessary that one of the eigenvalues
equals zero, whereas all other eigenvalues have a negative real part. A sufficient condition on (α, β, γ)

for which this holds is given in the next result.

Proposition 3. Assume that, for β, γ ∈ Z, the function

η̃(x) = cos(βx)− cos(γx)

attains a unique global maximum or minimum on the interval [0, 2π] at x = π. Subsequently, it follows that:
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1. If n is odd, then zero eigenvalues of the equilibrium xF must occur at least in pairs; and,
2. If n is even, then one eigenvalue equals zero for F = −1/η̃(π), whereas the other eigenvalues have a

negative real part.

Proof. Recall, from Lemma 1, that the eigenvalues λj, where j = 0, · · · , n − 1, of xF satisfy
<(λj) = −1 + η̃(2π j/n). It is straightforward to check that η̃(2π − x) = η̃(x). This implies that
<(λj) = <(λn−j), which means that eigenvalues cross the imaginary axis in pairs.

When n is even, it follows that λn/2 = 0 for F = −1/η̃(π). Because η̃ is assumed to have a unique
global maximum or minimum at x = π, it immediately follows that all of the other eigenvalues have a
negative real part at F = −1/η̃(π).

It is straightforward to verify that the Lorenz-96 model satisfies the conditions of Proposition 3.
Other choices of (β, γ) given by (−1, 2), (1, 0), and (0,−1) which will be discussed in more detail
below. In addition, observe that

η̃(π) =


−2 if γ is odd and β is even,

0 if γ and β have the same parity,

2 if γ is even and β is odd.

Therefore, if the equilibrium xF loses stability through a zero eigenvalue crossing, then this will
necessarily occur at F = 1/2 or F = −1/2.

A zero eigenvalue crossing is a signature of a saddle-node bifurcation, a transcritical bifurcation,
or a pitchfork bifurcation. The saddle-node bifurcation can be ruled out, since the equilibrium xF
continues to exist after the eigenvalue crossing has taken place. However, further analysis is needed
in order to distinguish between a transcritical and a pitchfork bifurcation. A typical approach is to
compute a normal form while using a center manifold reduction [29], but these computations are
rather long. For the Lorenz-96 model, such computations are provided in [30], but below we shall
adopt a more elementary and quicker approach. The next result shows, for certain members of the
family Lα,β,γ(n), a supercritical pitchfork bifurcation of the equilibrium xF takes place when n = 2k
and F = ±1/2.

Proposition 4. If n = 2k, with k ∈ N, then it follows that, for the systems L−1,1,−2(n), L−1,−1,−2(n), and
L−1,−1,0(n), the equilibrium xF loses stability through a supercritical pitchfork bifurcation at F = −1/2, while,
in the system L−1,0,−1(n), a supercritical pitchfork bifurcation occurs at F = 1/2.

Proof. As an ansatz, we assume that System (3) has an equilibrium of the form xP,1 =

(a, b, a, b, · · · , a, b), in which case by circulant symmetry xP,2 = (b, a, b, a, · · · , b, a) is also an equilibrium.
For the system L−1,1,−2(n), it then follows that

b(b− a)− a + F = 0,

a(a− b)− b + F = 0.
(6)

Of course, a = b = F is a solution, but this would lead to the already known equilibrium xF =

(F, · · · , F). Solving a from the first equation gives a = (b2 + F)/(b + 1), so that the second equation
yields a cubic equation for b:

−2b3 + (2F− 2)b2 + (F− 1)b + F(F + 1) = 0.
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If r1, r2, and r3 denote the roots of the latter equation, then Vieta’s formulas give

r1 + r2 + r3 = F− 1,

r1r2 + r2r3 + r3r1 = (1− F)/2,

r1r2r3 = F(F + 1)/2.

Without loss of generality, we can take r3 = F, in which case we find

r1 + r2 = −1,

r1r2 = (F + 1)/2.

Solving r1 and r2 from these equations is straightforward and it gives the following expressions for a
and b:

a =
−1 +

√
−1− 2F
2

and b =
−1−

√
−1− 2F
2

.

This means that, for F < −1/2, two new equilibria appear that coalesce with xF at F = −1/2.
Because the two new branches of equilibria extend in the direction, in which xF becomes unstable, we
conclude that a supercritical pitchfork bifurcation takes place.

For the systems L−1,−1,−2(n) and L−1,−1,0(n), we obtain the same result and, therefore,
the computations are omitted. For the system L−1,0,−1(n), we obtain the equations

b(a− b)− a + F = 0,

a(b− a)− b + F = 0,

which reduces to Equation (6) by substituting (−a,−b,−F) for (a, b, F). Hence, we obtain the solutions

a =
1 +
√
−1 + 2F
2

and b =
1−
√
−1 + 2F
2

.

This means that, for F > 1/2, two new equilibria appear, which coalesce with xF at F = 1/2. Again,
because the two new branches of equilibria extend in the direction in which xF becomes unstable,
we conclude that a supercritical pitchfork bifurcation takes place.

3.2. Beyond the First Pitchfork Bifurcation

In [25], it was numerically shown for the Lorenz-96 model L−1,1,−2(n) that the first supercritical
pitchfork bifurcation is, in fact, followed by a finite cascade of subsequent supercritical pitchfork
bifurcations. More precisely, for dimension n = 2p, the equilibrium xF and the subsequent branches
that emanate from it undergo a finite cascade of p pitchfork bifurcations at the parameter values FP,k
for k = 1, · · · , p. The numerically computed parameter values that are listed in Table 1 suggest that
the following scaling law is satisfied:

lim
k→∞

FP,k−1 − FP,k−2

FP,k − FP,k−1
= δF, (7)

where δF ≈ 4.669 is Feigenbaum’s constant.
In addition to this scaling law, the pitchfork cascade satisfies another property, which has an

analogy with the classical period doubling cascade of periodic points in iterated maps. We say that
a vector x = (x0, · · · , xn−1) ∈ Rn is periodic with period p if xi+p = xi for all i = 0, · · · , n− 1− p.
Numerical computations show that, after each pitchfork bifurcation, the period of newly born equilibria
is being doubled. This observation forms the motivation for the ansatz, which was used in the proof of
Proposition 4.
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The following result implies that, if a pitchfork bifurcation occurs in system Lα,β,γ(n) for dimension
n, then this pitchfork bifurcation will also occur for dimensions that are multiples of n.

Proposition 5. Assume that x = (x0, · · · , xn−1) ∈ Rn is an equilibrium of system Lα,β,γ(n).

1. For k ∈ N, the point x′ = (x, x, · · · , x) ∈ Rkn, where the coordinates of x are repeated k times, is an
equilibrium of system Lα,β,γ(kn).

2. Denote the Jacobian matrices evaluated at these equilibria with Jx ∈ Rn×n and Jx′ ∈ Rkn×kn, respectively.
Subsequently, the spectrum of Jx is contained in the spectrum of Jx′ .

In particular, if the equilibrium x undergoes a bifurcation at some parameter value F = F0, then the equilibrium
x′ will undergo the same bifurcation at the same parameter value.

Proof. Note that the components of x′ are related to those of x by

x′j+in = xj for all i = 0, · · · , k− 1, j = 0, · · · , n− 1.

Denote, by f j and f ′j , the right hand sides of System (3) for dimensions n and kn, respectively.
Subsequently, by using the relation between the components of x and x′, it follows that

f ′j+in = x′j+in+α(x′j+in+β − x′j+in+γ)− x′j+in + F

= xj+α(xj+β − xj+γ)− xj + F

= f j.

In particular, f j = 0 for all j = 0, · · · , n− 1 implies that f ′j = 0 for all j = 0, · · · , kn− 1. This proves
statement 1.

If v ∈ Rn is any vector, then the j-th components of the righthand side of (3) evaluated at x + v
and x− v are given by

gj := (xj+α + vj+α)(xj+β + vj+β − xj+γ − vj+γ)− xj − vj + F,

hj := (xj+α − vj+α)(xj+β − vj+β − xj+γ + vj+γ)− xj + vj + F,

respectively. Because System (3) only has uadratic nonlinearities, it follows that the j-th component of
the Jacobian matrix evaluated at x multiplied by v is given by

gj − hj

2
= vj+α(xj+β − xj+γ) + xj+α(vj+β − vj+γ)− vj.

In particular, if v is an eigenvector of the Jacobian matrix that corresponds to an eigenvalue λ, then it
follows that

vj+α(xj+β − xj+γ) + xj+α(vj+β − vj+γ)− vj = λvj for all j = 0, · · · , n− 1.

A similar reasoning as for statement 1 then shows that v′ = (v, v, · · · , v) ∈ Rkn is an eigenvector of
the Jacobian matrix of (3) with dimension kn that corresponds to the eigenvalue λ. This completes the
proof.

However, note that Proposition 5 does not guarantee that the equilibrium x′ in system Lα,β,γ(kn)
is stable whenever the equilibrium x in system Lα,β,γ(n) is stable. Indeed, it may happen that the
equilibrium x′ undergoes bifurcations that do not occur for the equilibrium x. Indeed, becuase the
matrix Jx′ has more eigenvalues than the matrix Jx, there are more possibilities for the equilibrium
x′ to bifurcate. A concrete example for which this happens is system L−1,−1,−2(n), which will be
discussed below.
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In the next sections, we will discuss to what extent a cascade of pitchfork bifurcation is observed
in system Lα,β,γ(n) for three particular choices of (α, β, γ). The analysis will mainly rely on numerical
computations that are performed by the continuation software AUTO-07p [31].

3.3. The System L−1,−1,−2(n)

In dimension n = 2p, a cascade of p pitchfork bifurcations occurs; see Table 1 for the parameter
values up to p = 9. Note that the numerical results suggest that the parameter values of the pitchfork
bifurcations satisfy the Feigenbaum scaling of Equation (7). This bifurcation scenario is the same as for
the Lorenz-96 model, albeit that the parameter values of the pitchfork bifurcations are different.

However, apart from this quantitative difference, there is also a qualitative difference. In the
Lorenz-96 model with n = 8 the four equilibria created at the second pitchfork bifurcation lose stability
through a Hopf bifurcation before they bifurcate again through a third pitchfork bifurcation, and this
leads to 8 unstable equilibria after the pitchfork cascade. For (α, β, γ) = (−1,−1,−2) and n = 8 a Hopf
bifurcation only takes place after the third pitchfork bifurcation; see Figure 2. For n = 16, the scenario
is again the same as for the Lorenz-96 model: now, a Hopf bifurcation occurs again after the second
pitchfork bifurcation, as in the case n = 4; see Figure 2.
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Figure 2. Bifurcation diagrams for the system L−1,−1,−2(n) with n = 8 and n = 16. For dimension
n = 8 a Hopf bifurcation (marked with a bullet) destabilizes the equilibria after the last pitchfork
bifurcation, whereas, for dimension n = 16, the Hopf bifurcation already occurs before the last
pitchfork bifurcation.

3.4. The System L−1,1,0(n)

This case is very different from the Lorenz-96 model: for dimension n = 4, the second pitchfork
bifurcation is subcritical. This means that the two stable equilibria that were born at the first pitchfork
bifurcation for FP,1 = −1/2 become unstable at FP,2 = −1 and four new unstable equilibria come
into existence for F > FP,2, as opposed to stable equilibria being created for F < FP,2; see Figure 3.
By Proposition 5, this bifurcation scenario will carry over to all dimensions n that are a multiples of four.
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Figure 3. Bifurcation diagram for system L−1,1,0(n) with n = 4. The equilibrium xF = (F, F, F, F)
becomes unstable through a supercritical pitchfork bifurcation at F = −1/2 and the two newly created
branches bifurcate through a subcritical pitchfork bifurcation at F = −1. The bullet marks a Hopf
bifurcation of xF at F = −1.

3.5. The System L−1,0,−1(n)

In dimension n = 2p, a succession of p pitchfork bifurcations occurs; see Table 1 for the parameter
values up to p = 9. Again, the numerical results suggest that the parameter values of the pitchfork
bifurcations satisfy the Feigenbaum scaling of Equation (7). However, from a qualitative point of
view, this case is different from the Lorenz-96 model. Numerical computations show that, up to
p = 9, the equilibria that were created in the pitchfork bifurcations do not lose stability before the
last pitchfork bifurcation has occurred. Hence, there is a coexistence of 2p stable equilibria. A Hopf
bifurcation occurs only after the last pitchfork bifurcation, which leads to the coexistence of 2p stable
periodic orbits. The latter may bifurcate into chaotic attractors. Section 4 discusses some particular
routes to chaos.

Table 1. Numerically computed parameter values FP,k for which a pitchfork bifurcation takes place
in the system Lα,β,γ(n) with dimension n = 2k for k = 1, · · · , 9. Note that L−1,1,−2(n) is the original
Lorenz-96 model. In addition, the ratio rk = (FP,k−1 − FP,k−2)/(FP,k − FP,k−1) is listed, except for
the system L−1,−1,0(n), in which case the second pitchfork bifurcation is subcritical and the cascade
terminates. See the main text for explanations.

L−1,1,−2(n) L−1,−1,−2(n) L−1,−1,0(n) L−1,0,−1(n)

k FP,k rk FP,k rk FP,k FP,k rk

1 −0.5000000 −0.5000000 −0.5000000 0.5000000
2 −3.0000000 −1.0000000 −1.0000000 0.6000000
3 −6.6000000 0.694 −1.0908967 5.501 0.6178351 5.607
4 −8.0107123 2.552 −1.1113355 4.447 0.6214900 4.880
5 −8.4360408 3.317 −1.1156935 4.690 0.6222663 4.708
6 −8.5275625 4.647 −1.1166297 4.655 0.6224320 4.685
7 −8.5474569 4.600 −1.1168299 4.676 0.6224675 4.668
8 −8.5517234 4.663 −1.1168729 4.656 0.6224751 4.671
9 −8.5526377 4.663 −1.1168821 4.674 0.6224767 4.750
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4. Multistability in the System L−1,0,−1(n)

The system L−1,0,−1(n) is of particular interest. For odd dimensions n, it follows from Lemma 1
that the equilibrium xF = (F, · · · , F) loses stability through a complex conjugate pair of eigenvalues
that cross the imaginary axis. The periodic orbits that are born through this Hopf bifurcation typically
bifurcate further through period doublings or Neı̆mark–Sacker bifurcations. Because these scenarios
are very common, they will not be discussed further in the present paper. Instead, we will focus on
dimension n = 2p for which a cascade of p pitchfork bifurcations is followed by a Hopf bifurcation.
In this section, we discuss the fate of the 2p coexisting stable periodic orbits that arise in this way.
To that end, we will numerically compute Lyapunov exponents as a function of the parameter F to
detect the relevant bifurcations. In particular, we will show that the number of coexisting attractors
may become smaller than 2p due to collisions.

4.1. Lyapunov Exponents for Coexisting Attractors

A convenient way to detect bifurcations of attractors is by computing Lyapunov exponents as
a function of the continuation parameter. In systems that exhibit multistability, i.e., the coexistence
of attractors, care must be taken in selecting the initial condition. However, in System (3), coexisting
attractors are related by circulant shifts of coordinates. We will now explain that the Lyapunov
exponents for such attractors are equal.

Denote, with C, the n× n matrix that has the following circulant shift property:

C(x0, x1, · · · , xn−1)
> = (x1, · · · , xn−1, x0).

If f : Rn → Rn denotes the right-hand side of Equation (3), then C f (x) = f (Cx) for all x ∈ Rn.
In particular, if x(t) is a solution of (3), then it is Cx(t). If two vectors u, v ∈ Rn satisfy the relation
u = Cv, then the fact that f only has quadratic nonlinearities implies that

CD f (x)v = 1
2 C
[

f (x + v)− f (x− v)
]
= 1

2
[

f (Cx + u)− f (Cx− u)
]
= D f (Cx)u.

In particular, if v(t) satisfies the variational equation v̇ = D f (x(t))v, then u(t) = Cv(t) satisfies
the variational equation u̇ = D f (Cx(t))u. The usual algorithm for computing Lyapunov exponents
consists of integrating the variational equations and applying the Gram–Schmidt procedure to the
variational vectors [32,33]; see [34,35] for alternative methods. It is clear that the matrix C is unitary
and, thus, preserves the Euclidean inner product. Hence, the Lyapunov exponents that are computed
for the orbits x(t) and Cx(t) must be the same. By induction, the Lyapunov exponents will be the same
for the orbits Ckx(t) for all k = 0, · · · , n− 1.

For a fixed parameter value F, we first perform a transient integration in order to obtain an initial
condition x(0) on an attractor. For the attractor, we then compute the Lyapunov exponents while
using the algorithm described in [32,33]. As explained above, the attractors with initial condition
Ckx(0) have the same Lyapunov exponents for all k = 0, · · · , n− 1. During the computation, we also
minimize the x0-coordinate along the attractors:

µk = min
{
[Ckx(t)]0 : 0 ≤ t ≤ T

}
, (8)

where T is the total integration time is used in our computations. If µj 6= µk for j 6= k, then the attractors
with initial points Cjx(0) and Ckx(0) are different. In case that µj = µk, we have a strong indication
that the attractors with initial points Cjx(0) and Ckx(0) are equal. Hence, the quantities µk help to
detect collisions of attractors. To the final point x(T) on the attractor, a small random perturbation is
added, the parameter F is increased by a small step size, and the computations are repeated. The two
largest Lyapunov exponents λ1 ≥ λ2 and the quantities µ0, · · · , µn−1 are then plotted as a function
of F. In the resulting diagram, bifurcations of attractors manifest themselves as parameter values
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for which a Lyapunov exponent becomes zero, and collisions of attractors manifest themselves as
parameter values for which at least two of the quantities µk attain the same value.

4.2. Dimension n = 4

Figure 4 shows the Lyapunov diagram for dimension n = 4. After the second pitchfork
bifurcation at F = 0.6, four stable equilibria coexist. At F ≈ 0.64546, these equilibria become unstable
through a supercritical Hopf bifurcation, which leads to the coexistence of four stable periodic orbits;
for F = 0.672, these orbits are shown in Figure 5 (left panel). At F ≈ 0.6740, one pair of periodic
orbits collides with an equilibrium, while another pair of periodic orbits collides with a different
equilibrium. This leads to the creation of four homoclinic orbits that form two curves in a “figure
eight” configuration, see Figure 5 (middle panel). After the collision, each of the “figure eight” curves
split into two coexisting stable periodic orbits, see Figure 5 (right panel). This shows how the number
coexisting attractors can change due to the collision of an attractor with another invariant object.

A similar scenario, as described above, can also increase the number of coexisting attractors.
At F ≈ 0.7080, two stable periodic orbits collide with an equilibrium. This gives rise to four homoclinic
orbits forming two “figure eight” curves. After the homoclinic bifurcation, there are again four
coexisting stable periodic orbits, see Figure 6.
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Figure 4. Top panel: the two largest Lyapunov exponents plotted as a function of the parameter F for
the system L−1,0,−1(n) for dimension n = 4. Bottom panel: the quantities µ0, · · · , µ3, as defined in
Equation (8) plotted as a function of F.

Figure 5. Collision of two pairs of periodic orbits with an equilibrium (middle); the equilibria are
marked by a bullet. Before the collision (left), four periodic stable periodic orbits coexist. After the
collision (right), only two stable periodic orbits coexist. Hence, the collision of periodic orbits
with an equilibrium reduces the number of coexisting attractors. All panels represent the square
[−0.2, 1]× [−0.2, 1] in the (x0, x2)-plane. The used parameter values are: F = 0.6740 (left), F = 0.6740
(middle), and F = 0.675184 (right).
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Figure 6. Similar to Figure 5, but now the collision of periodic orbits with an equilibrium increases
the number of coexisting attractors; the equilibria are marked by a bullet. All panels represent the
square [−0.4, 1]× [−0.4, 1] in the (x0, x2)-plane. The used parameter values are: F = 0.707264 (left),
F = 0.708032 (middle), and F = 0.716384 (right).

4.3. Dimension n = 6

Figure 7 shows the Lyapunov diagram for dimension n = 6. Despite the dimension being larger,
the bifurcation scenario is somewhat simpler in this case, since periodic orbits do not collide with
equilibria, as in the case n = 4. There is only one pitchfork bifurcation at F = 0.6 after which two stable
equilibria coexist. Each of these equilibria becomes unstable through a supercritical Hopf bifurcation
at F ≈ 0.61611, which leads to the coexistence of two stable periodic orbits. Each of these bifurcates
through a period doubling cascade, which leads to the coexistence of two chaotic attractors. Figure 8
shows periodic orbits after one period doubling (F = 0.6495), after two period doublings (F = 0.6539),
and the chaotic attractors after the cascade (F = 0.6545). Chaotic attractors that arise after a period
doubling cascade are typically observed to have a Hénon-like structure, which means that the attractors
are formed by the closure of the unstable manifold of saddle periodic orbit [23,36,37].
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Figure 7. As Figure 4, but for dimension n = 6. Period doubling bifurcations take place for parameter
values where the second Lyapunov exponent λ2 equals zero. Observe that the number of coexisting
attractors remains the same across this range of parameters.
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Figure 8. Period doubled versions of two coexisting periodic orbits (left and middle) and the
coexistence of two chaotic attractors after a full cascade (right). All of the panels represent the
square [−0.1, 0.9]× [−0.1, 0.9] in the (x0, x2)-plane. The used parameter values are: F = 0.6495 (left),
F = 0.6539 (middle), and F = 0.654502 (right).

4.4. Dimension n = 8

Figure 9 shows the Lyapunov diagram for dimension n = 8. After the last pitchfork bifurcation at
F ≈ 0.61784, eight stable equilibria coexist. Each of these equilibria becomes unstable at F ≈ 0.62336
through a supercritical Hopf bifurcation, which leads to the coexistence of eight stable periodic
orbits. These periodic orbits undergo a period doubling bifurcation at F ≈ 0.6255 and a period
halving bifurcation at F ≈ 0.6263. At F ≈ 0.6268, the periodic orbits disappear through a saddle-node
bifurcation. For F > 0.6268, eight different stable periodic orbits coexist. The latter have more windings
than the formerly existing periodic orbits, which suggests that the new periodic orbits already have
bifurcated through a succession of period doubling bifurcations. Finally, a period doubling cascade
takes place, which leads to the formation of eight coexisting chaotic attractors; for F = 0.62698, these are
plotted in Figure 10.
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Figure 9. As Figure 4, but for dimension n = 8.
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Figure 10. Coexistence of eight chaotic attractors. All of the panels represent a square in the
(x0, x2)-plane, but, for visual clarity, pairs of attractors are plotted in different windows. The parameter
value is F = 0.6269818.

5. Discussion

In this paper, we have considered a family of generalized Lorenz-96 models, of which each
member is parameterized by a triple (α, β, γ) ∈ Z3. In particular, we have shown for two concrete
members in this family that a finite cascade of pitchfork bifurcations takes place, just as in the original
Lorenz-96 model. In particular, in the system L−1,0,−1(n), the equilibria remain stable up to the last
pitchfork bifurcation. This is a qualitative difference with the Lorenz-96 model, in which equilibria
already undergo a Hopf bifurcation after the second pitchfork bifurcation. The Hopf bifurcations of
the stable equilibria lead to the coexistence of periodic attractors. Further bifurcations of the latter can
result in the coexistence of chaotic attractors. The number of attractors that coexist can change due
to collisions.

The results that are presented in this paper give rise to several open questions that warrant further
research. The first question is whether the pitchfork cascade in the models L−1,1,−2(n), L−1,−1,−2(n),
and L−1,0,−1(n) continues indefinitely when the dimension n increases. Numerical computations show
the occurrence of pitchfork bifurcations up to dimension n = 512, but this does not guarantee that the
pitchfork bifurcations will persist for n > 512. Indeed, in the model L−1,1,0(n), the second pitchfork
bifurcation becomes subcritical and the cascade comes to a halt.

How to check whether the pitchfork bifurcations persist for dimensions n > 512? An attempt
at explicitly computing all of the equilibria and their bifurcations would not be useful for at least
two reasons. The first reason is that an analytical computation is simply not feasible due to the fact
that the equilibria born through pitchfork bifurcations will have complicated expressions involving
radicals; already after two pitchfork bifurcations, analytical expressions become unwieldy. The second
reason is that an explicit computation would only provide information regarding one particular model,
whereas our numerical computations suggest that properties of the pitchfork cascade are common to
at least three members of the family Lα,β,γ(n).
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Another open question is whether there exist dynamical systems with a finite-dimensional state
space, in which an infinite cascade of pitchfork bifurcations occurs. Most likely, such systems cannot
have only polynomial nonlinearities. Indeed, as a consequence of Bezout’s theorem, generically one
expects only finitely many equilibria in such systems. Exceptions are degenerate cases, such as system
L−1,0,−2(n), which has infinitely many equilibria for certain parameter values. However, for systems
with transcendental nonlinearities, the situation might be different. These open questions will have to
be addressed in future research.

It is an intriguing numerical observation that the parameter values of the pitchfork bifurcations
that are described above satisfy the Feigenbaum scaling in Equation (7). The latter scaling was
originally discovered in period doubling cascades of periodic points in unimodal maps [38,39]. A key
feature is its universal nature, which means that the scaling holds for an entire class of unimodal maps
possesing a quadratic maximum, rather than just one particular map. Lanford [40] and Eckmann
and Wittwer [41] provided computer assisted proofs of the Feigenbaum conjectures. A computer-free
proof was given by Lyubich [42]. Briggs [43,44] carried out high-precision computations of the
Feigenbaum constants.

The fact that the Feigenbaum scaling for the pitchfork bifurcations occurs in at least three different
members of the family Lα,β,γ(n) suggests that it might be a universal property within a suitably chosen
class of systems. However, it is not clear a priori how this could be analytically proven. Proof strategies,
as in [40–42], are not applicable in the context of System (3) because of several conceptual differences.
Firstly, (3) is not a map but a differential equation. Secondly, the pitchfork cascade in System (3) is
finite and the dimension needs to increase in order to observe a longer cascade. If one is interested in
universality, then the first step is to identify an appropriate class of systems for which a universal result
can be conjectured. Perhaps pitchfork cascades can occur in systems that are different from Equation (3)
provided a sufficient amount of symmetry is present. However, to the best of our knowledge, examples
of such systems are unknown to us.

Finally, the results that are presented in this paper also illustrate the important point that
bifurcation scenarios in the models Lα,β,γ(n) strongly depend on divisibility properties of the dimension
n. The relevance of this phenomenon extends beyond the context of this paper. As an example,
for discretisations of Burgers’ equation, it has been observed that, for odd degrees of freedom,
the dynamics are confined to an invariant subspace, whereas, for even degrees of freedom, this is not
the case. In turn, this has an effect on the bifurcation diagrams that one observes in this model [45].
Similar phenomena can be expected in the discretisations of partial differential equations, in which
periodic boundary conditions lead to circulant symmetries.
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