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Abstract: Problems where several incommensurable objectives have to be optimized concurrently
arise in many engineering and financial applications. Continuation methods for the treatment of such
multi-objective optimization methods (MOPs) are very efficient if all objectives are continuous since
in that case one can expect that the solution set forms at least locally a manifold. Recently, the Pareto
Tracer (PT) has been proposed, which is such a multi-objective continuation method. While the
method works reliably for MOPs with box and equality constraints, no strategy has been proposed yet
to adequately treat general inequalities, which we address in this work. We formulate the extension
of the PT and present numerical results on some selected benchmark problems. The results indicate
that the new method can indeed handle general MOPs, which greatly enhances its applicability.

Keywords: multi-objective optimization; Pareto Tracer; continuation; constraint handling

1. Introduction

In many real-world applications, the problem occurs that several conflicting and incommensurable
objectives have to be optimized concurrently. As general example, in the design of basically any product,
both cost (to be minimized) and quality (to be maximized) are relevant objectives, among others. Problems
of that kind are termed multi-objective optimization problems (MOPs). In the case all of the objectives are
continuous and in conflict with each other, it is known that there is not one single solution to be expected
(as it is the case for scalar optimization problems, i.e., problems where one objective is considered) but an
entire set of solutions. More precisely, one can expect that the solution set—the Pareto set, and, respectively
its image, the Pareto front—forms at least locally an object of dimension k− 1, where k is the number
of objectives involved in the problem. Due to this, “curse of dimensionality” problems with more than,
e.g., four objectives are also called many objective optimization problems (MaOPs).

In the literature, many different methods for the numerical treatment of MOPs and MaOPs can be
found (see also the discussion in the next section). One class of such methods is given by specialized
continuation methods that take advantage of the fact that the solution set forms—at least locally
and under certain mild assumption on the model as discussed in [1]—a manifold. Continuation
methods start with one (approximate) solution of the problem and perform a movement along the
Pareto set/front of the given M(a)OP via considering the underdetermined system of equations that
is developed out of the Karush–Kuhn–Tucker (KKT) equations of the problem. By construction,
continuation methods are of local nature. That is, if the Pareto set consists of different connected
components, such methods will have to be fed with several starting points in order to obtain
approximations of the entire solution set. On the other hand, continuation methods are probably most
effective locally (i.e., within each connected component). Thus far, several multi-objective continuation
methods have been proposed. Most of these continuation methods, however, are designed for or
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restricted to the treatment of bi-objective problems (i.e., MOPs with two objectives). The method of
Hillermeier [1] and the Pareto Tracer (PT [2]) have been proposed for general number k of objectives.
The method of Hillermeier is applicable to unconstrained and equality constrained MOPs, and the
PT in addition to box constrained problems. Thus far, no extensions for these two methods are
known for the treatment of general inequalities, which represents a significant shortcoming since such
constraints naturally arise in many applications (e.g., [3,4]). In this paper, we extend the PT for the
treatment of general inequality constraints. To this end, we utilize and adapt elements from active set
methods to decide which of the inequalities have to be treated as equalities at each candidate solution.
We demonstrate the strength of the novel algorithm on several benchmark test functions and present
comparisons to some other numerical multi-objective solvers. The results indicate that the new method
can indeed reliably handle MOPs with general constraints.

The remainder of this paper is organized as follows. In Section 2, we shortly present the required
background for the understanding of this work. In Section 3, we adapt the Pareto Tracer for the
treatment of general (equality and inequality) constraints. In Section 4, we present some results of the
PT as well as some other multi-objective numerical methods on selected benchmark problems. Finally,
we draw our conclusions in Section 5 and give possible paths for future research.

2. Background and Related Work

In this section, we briefly state the main concepts and notations that are used for the understanding
of this work (for details, we refer to, e.g., [5,6]).

We consider here continuous multi-objective optimization problem (MOPs) that can be defined
mathematically as

min
x

F(x),

s.t. hi(x) = 0, i = 1, . . . , p,
gi(x) ≤ 0, i = 1, . . . , m,

(1)

where F : Q ⊂ Rn → Rk, F(x) = ( f1(x), . . . , fk(x))T is the map of the k individual objectives
fi : Q ⊂ Rn → R. We assume that all objectives and constraint functions are twice continuously
differentiable. The domain Q of the functions is defined by the equality and inequality constraints
of (1):

Q := {x ∈ Rn : hi(x) = 0, i = 1, . . . , p and gi(x) ≤ 0, i = 1, . . . , m}. (2)

If a point x ∈ Rn satisfies all constraints of (1), i.e., if x ∈ Q, we call this point feasible. Points
x 6∈ Q are called infeasible. If k = 2 objectives are considered, the problem is also termed a bi-objective
optimization problem (BOP).

We say that a point x ∈ Q dominates a point y ∈ Q (in short: x ≺ y) if fi(x) ≤ fi(y) for all
i = 1, . . . , k, and there exists an index j such that f j(x) < f j(y). A point x∗ is called Pareto optimal
or simply optimal if there does not exist a vector y ∈ Q that dominates x∗. A point x∗ ∈ Q is called
locally optimal if there does not exist a vector y ∈ Q ∩ N(x∗) that dominates x∗, where N(x∗) is a
neighborhood of x∗. The set PQ of all Pareto optimal solutions is called the Pareto set, and its image
F(PQ) the Pareto front. In [1], it has been shown that one can expect that both Pareto set and front
typically form (k− 1)-dimensional objects under certain (mild) conditions on the problem.

If all objectives and constraint functions are differentiable, local optimal solutions can be
characterized by the Karush–Kuhn–Tucker (KKT) equations [7,8]:
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Theorem 1. Suppose that x∗ is locally optimal with respect to (1). Then, there exist Lagrange multipliers
α ∈ Rk, λ ∈ Rp and γ ∈ Rm such that the following conditions are satisfied

k

∑
i=1

αi∇ fi(x∗) +
p

∑
i=1

λi∇hi(x∗) +
m

∑
i=1

γigi(x∗) = 0 (3a)

hi(x∗) = 0, i = 1 . . . p, (3b)

gi(x∗) ≤ 0, i = 1 . . . m, (3c)

αi ≥ 0, i = 1 . . . k, (3d)
k

∑
i=1

αi = 1, (3e)

γi ≥ 0, i = 1 . . . m, (3f)

γigi(x∗) = 0, i = 1 . . . m. (3g)

Multi-objective optimization is an active field of research, and thus far many numerical methods
have been proposed for the treatment of such problems. There exist for instance many methods
that are designed to compute single solutions such as the weighted sum method [9], the ε-constraint
method [5,10], the weighted metric and weighted Tchebycheff method [5,11,12], as well as reference
point problems [13–15]. All of these methods transform the given MOP into a scalar optimization
problem (SOP) that can to a certain extent to include users’ preferences. These methods can either be
used as standalone algorithm (i.e., for the computation of single solutions) or be used to obtain a finite
size approximation of the entire Pareto set/front of the given MOP via utilizing a clever sequence of
these SOPs [5,16–19].

Further, there exist set oriented methods such as cell mapping techniques [20–23]), subdivision
techniques [24–27], and multi-objective evolutionary algorithms (MOEAs, e.g., [3,28–34]). All of these
methods manipulate an entire set of candidate solutions in each iteration and hence yield a finite size
approximation of the solution set in one run of the algorithm. Hybridizations of such techniques with
mathematical programming techniques can be found in [31,35–41].

Finally, a third class of numerical solvers for MOPs is given by specialized continuation methods
that take advantage of the fact that the Pareto set/front of a given problem forms at least locally a
manifold of a certain dimension. Methods of this kind start with a given (approximate) solution and
perform a movement along the Pareto set/front of the problem. The first such method is proposed
in [1], which can be applied to unconstrained and equality constrained MOPs of any number k
of objectives, while no strategies are reported on how to treat inequalities. ParCont [42,43] is a
rigorous predictor–corrector method that is based on interval analysis and parallelotope domains.
The method can deal with equality and inequality constraints, but it is restricted to bi-objective
problems. This restriction also holds for the method presented in [44], which has been designed to
provide an equispaced approximation of the Pareto front. The Zigzag method [45–47] obtains Pareto
front approximations via alternating optimizing one of the objectives. This approach is also limited to
the treatment of bi-objective problems.

In [48], a continuation method is presented that is applicable to box-constrained BOPs. In [49],
a variant of the method of Hillermeier is presented that is designed for the treatment of high-
dimensional problems.

Recently, the Pareto Tracer (PT) was proposed by Martin and Schütze [2]. Similar to the method
of Hillermeier, PT addresses the underdetermined nonlinear system of equations that is induced by
the KKT equations. However, unlike the method of Hillermeier, the PT aims to separate the decision
variables from the associated weight (or Lagrange) vectors whenever possible, leading to significant
changes. The latter is due to the fact that the nonlinearity of the equation system can be significantly
higher in the compound space compared to the corresponding system that is only defined in decision
variable space. As a by-product, the chosen approach allows to compute the tangent space of both
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Pareto set and front at every given regular point x. In [50], elements of the PT are used to treat many
objective optimization problems (i.e., MOPs with more than, e.g., five objectives). Thus far, PT is only
applicable to box and equality constrained problems which limits its application. In the following,
we propose and discuss an extension of this method to adequately treat general MOPs, i.e., MOPs that
in particular contain general inequalities.

3. Adapting the Pareto Tracer for General Inequality Constrained MOPs

In this section, we adapt the PT so that is can handle general inequality constraints. The core is
the predictor–corrector step that generates from a given candidate solution xi the following candidate
xi+1 that satisfies the KKT conditions, and so that F(xi+1)− F(xi) defines a pre-described movement
in objective space along the set of KKT points.

Assume we are given a MOP of form (1) and a feasible point x0 that satisfies the KKT conditions (3),
where αi > 0, i = 1, . . . , k. Let ε > 0 and define by

Ip(ε) := {j ∈ {1, . . . , m} : gj(x0) ≥ −ε} (4)

the set of indices corresponding to the nearly active inequalities at x0. If Ip(ε) = {j1, . . . , js}, s ≤
m, define

Gε :=

 ∇gj1 (x0)
T

...
∇gjs (x0)

T

 ∈ Rs×n. (5)

Further, let

J :=

 ∇ f1(x)T

...
∇ fk(x)T

 ∈ Rk×n

H :=

 ∇h1(x0)
T

...
∇hp(x0)

T

 ∈ Rp×n,

(6)

and α ∈ Rn, λ ∈ Rp, and γ ∈ Rs be the solution of

min
ᾱ,λ̄,γ̄

{∥∥∥JT ᾱ + HTλ̄ + GT
ε γ̄
∥∥∥2

2
: ᾱi ≥ 0, i = 1, . . . , k,

k

∑
i=1

ᾱi = 1

}
. (7)

Note that (7) yields the Lagrange multipliers at x0 for ε = 0 if x0 is a KKT point and if all active
inequalities are regarded as equalities. Using α, λ and γ, define the matrix

Wα,β,γ :=
k

∑
i=1

αi∇2 fi(x) +
p

∑
i=1

λi∇2hi(x) +
s

∑
i=1

γi∇2gji (x) ∈ Rn×n. (8)

To compute a predictor direction νµ ∈ Rn, we solve the the systemWα,λ,γ HT GT
ε

H 0 0
Gε 0 0


νµ

ζ

σ

 =

−JTµ

0
0

 . (9)
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Note that system (9) depends on µ ∈ Rk. Before we specify this vector, we first simplify (9).
Denote by

A :=

(
H
Gε

)
∈ R(p+s)×n, ξ :=

(
ζ

σ

)
∈ Rp+s, (10)

then (9) is equivalent to (
Wα,λ,γ AT

A 0

)(
νµ

ξ

)
=

(
−JTµ

0

)
. (11)

Let d ∈ Rk. It is straightforward to show that for a vector νµd that solves (11), where µd ∈ Rk is
chosen such that (

−JW−1
α,λ,γ JT

1 . . . 1

)
µd =

(
d
0

)
, (12)

it holds
Jνµd = d. (13)

That is, (infinitesimal) small steps from x0 into direction νµd (in decision variable space) will lead
to a movement from F(x0) into direction d (in objective space). It remains to select a suitable choice for
d. Since α is orthogonal to the linearized Pareto front at F(x0) [1], a suggesting choice is hence by (13)
to take d orthogonal to α. For this, let

α = QR = (q1, q2, ...., qk)R, (14)

where Q ∈ Rk×k is orthogonal and R ∈ Rk×1, be a QR-factorization of α. Then, any vector

d ∈ span{q2, . . . , qk} (15)

can be chosen so that a movement in direction νµd (in decision variable space) leads to a movement from
F(x0) along the Pareto front. Note that the second equation in (12) reads as ∑k

i=1 µi = 0. Hence, for the
special case of a bi-objective optimization problem (i.e., k = 2), there are—after normalization—only
two choices for µ:

µ(1) =

(
−1
1

)
, and µ(2) =

(
1
−1

)
. (16)

Analog to Martin and Schütze [2], one can show that µ(1) corresponds to a “right down” movement
along the Pareto front while µ(2) corresponds to a "left up" movement along the Pareto front.

After selecting the predictor direction νµ, the question is how far to step in this direction. Here,
we follow the suggestion made by Hillermeier [1] and use the step size

t =
τ

‖Jνµ‖2
(17)

for a (small) value τ > 0 so that
‖F(x0 + tνµ)− F(x0)‖2 ≈ τ. (18)

For the computations presented below, we make the following modifications: instead of Wα,β,γ,
we use the matrix

Wα :=
k

∑
i=1

αi∇2 fi(x) ∈ Rn×n. (19)

More precisely, for the computation of νµ, we use the system(
Wα AT

A 0

)(
νµ

ξ

)
=

(
−JTµ

0

)
(20)
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and to obtain µd we solve (
−JW−1

α JT

1 . . . 1

)
µd =

(
d
0

)
. (21)

We have observed similar performance for both approaches, while the usage of Wα compared
to Wα,β,γ comes with the advantage that no Hessians for any of the constraint functions have to
be computed.

Given a predictor point
x̃1 := x0 + tνµ (22)

the task of the upcoming corrector step is to find a KKT point x1 that is ideally near to x̃1. For this,
we suggest to apply the multi-objective Newton method proposed in [51]. In particular, we first
compute the solution (ν̃1, δ̃) of the following problem

min
(ν,δ)∈Rn×R

δ

s.t. ∇ fi(x̃1)
Tν +

1
2

νT∇2 fi(x̃1)ν ≤ δ, i = 1, ..., k,

hi(x̃1) +∇hi(x̃1)
Tν = 0, i = 1, ..., p.

(23)

ν̃1 is indeed the Newton direction for equality constrained MOPs as suggested in [2]. To adequately
treat the involved inequalities, however, we propose to use the solution of the following problem:

min
(ν,δ)∈Rn×R

δ

s.t. ∇ fi(x̃1)
Tν +

1
2

νT∇2 fi(x̃1)ν ≤ δ, i = 1, ..., k,

hi(x̃1) +∇hi(x̃1)
Tν = 0, i = 1, ..., p.

gi(x̃1) +∇gi(x̃1)
Tν = 0, i ∈ Ic(ε).

(24)

Note that problem (24) is identical to problem (23) except that |Ic(ε)| inequalities are treated as
equalities at x̃1. In particular, we propose to add an index i to Ic(ε) if

(a) gi(x̃1) > ε, i.e., if x̃1 significantly violates the constraint gi; or
(b) gi(x̃1) ∈ (−ε, ε) and ∇g(x̃1)

T ν̃1 > 0, i.e., if xi is either active but gi nearly active at xi or if xi
already slightly violates gi and a step into direction ν̃1 would lead to (further) violation of this
constraint, indicated by ∇g(x̃1)

T ν̃1 > 0.

Algorithm 1 shows the pseudo code to build the index set Ic(ε) at a predictor point x̃i. Given the
Newton direction, the Newton step can then be performed via using the Armijo rule described in [51],
as done in our computations. The set Ic(ε) is only computed once, it and remains fixed during the
Newton iteration in the corrector step.

Algorithm 2 shows the pseudo code of one predictor–corrector step of the PT for general (equality
and inequality constrained) MOPs. For bi-objective problems, µ can be chosen as in (16) leading either
to a “left up” or “right down” movement, as discussed above. The algorithm has to be stopped if α is
either close enough to (1, 0)T or (0, 1)T , depending of course on the chosen search direction. For k > 2,
one can use the box partition in objective space as described in [2] in order to mark the regions of the
Pareto front that have already been “covered” during the run of the algorithm.

For the realization of the predictor–corrector step several linear systems of equations have to be
solved, the largest one being (20). The cost is hence O((n+ p+ s)3) in terms of flops and O((n+ p+ s)2)

in terms of storage. Further, for the corrector step the SOP (7) has to be solved that contains k + p + s
decision variables. For the computation of the Newton direction, the SOPs (23) and (24) have to be
solved for the first Newton iteration that contains both n + 1 decision variables. For further Newton
iterations, only SOP (24) has to be solved since the index set Ic(ε) remains fixed within a corrector step.
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Finally, note that, if the method is realized as described above, the Hessians of all individual objectives
have to be computed at each candidate solution (including at each Newton iteration). Using ideas
from quasi-Newton methods, one can approximate the Hessians so that only gradient information is
needed at each candidate solution, as described in [2].

Algorithm 1 Build Ic(ε)

Require: x̃i: predictor, ν̃i: corrector direction for (23), ε > 0: tolerance
Ensure: Ic(ε): index set

1: I := ∅
2: for i = 1, ..., m do
3: if gi(x̃i) > ε then
4: I := I ∪ i
5: else if gi(x̃i) ∈ (−ε, ε) ∧∇g(x̃i)

T ν̃i > 0 then
6: I := I ∪ i
7: end if
8: end for
9: Return Ic(ε)

Algorithm 2 Predictor–corrector step of the Pareto Tracer for general MOPs
Require: xi: current candidate solution, τ > 0: desired distance in objective space, ε > 0: tolerance
Ensure: xi+1: new candidate solution

1: Compute α(i) ∈ Rk via solving (7)
2: Compute W(i)

α as in (19)
3: Compute A as in (10)
4: Select µ(i) as in (16) or via (15) and (21)
5: Compute ν

(i)
µ via solving (20)

6: t(i) := τ

‖Jν
(i)
µ ‖2

7: x̃i+1 := xi + t(i)ν(i)µ

8: Compute xi+1 via a Newton method starting at x̃i+1. For the Newton direction use the solution

of (24).
9: Return xi+1

As a demonstration example, we consider the problem

min

{
f1(x) = (x1 + 3)2 + (x2 − 2)2,

f2(x) = x2
1 + (x2 + 3)2,

s.t. g1(x) = (x1 + 1)2 + x2
2 ≤ 22,

g2(x) = (x1 + 2)2 + (x2 + 2)2 ≤ 22.

(25)

Figure 1a shows the Pareto set of the above problem where the two inequalities have been left
out (i.e., the line segment connecting (−3, 2)T and (0,−3)T), the sets gi(x) = 0, i = 1, 2, as well as the
Pareto set of this problem which is indeed the result of the PT. As starting point, we chose a point
which significantly violates both constraints (and, hence, |Ic(ε)| = 2 for ε = 1e− 4). An application of
the above-described Newton method leads to the point on the Pareto set with the smallest x1-value,
which is in fact the initial point for the PT. During the run of PT, first only g2 is “active” in the corrector
step (i.e., Ic(ε) = {2}), later none of the constraints (in the intersection of the Pareto fronts of the
constrained and the unconstrained MOP), and finally only g1.
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(a) (b)

Figure 1. Numerical result of the PT for MOP (25).

4. Numerical Results

In this section, we further demonstrate the behavior of the PT on five benchmark problems
that contain inequality constraints. For all problems, we used the quasi-Newton variant of PT that
only required function and Jacobian information (and no Hessians). To compare the results, we also
show the respective results obtained by the normal boundary intersection (NBI, [16]), the ε-constraint
method [5], and the multi-objective evolutionary algorithm NSGA-II. For NBI and the ε-constraint
method, we used the code that is available at [52], and for NSGA-II the implementation of PlatEMO [53].
Regrettably, no comparison to a multi-objective continuation method can be presented since none of
the respective codes are publicly available. For a comparison of the PT and the method of Hillermeier
on box and equality constrained MOPs, we refer to [2]. We chose also to include a comparison to the
famous NSGA-II since it is widely used and state-of-the-art for two- and three-objective problems
as we consider here. We stress that the comparisons only show (on the first four test problems) that
PT outperforms NSGA-II on these particular cases where the Pareto front consists of one connected
component. For highly multi-modal functions where the Pareto set/front falls into several connected
components, NSGA-II will certainly outperform the (standalone) PT. A fair comparison can only
be obtained when integrating PT into a global heuristic (as, e.g., done in [41]). This is certainly an
interesting task, however, beyond the scope of this work.

To compare the results, we compare the total number of function evaluations used for each
algorithm on each problem. For this, each Jacobian call is counted as four function calls assuming that the
derivative is obtained via automatic differentiation [54]. To measure the quality of the approximations,
we used the averaged Hausdorff distance ∆2 [55–57]. Since NSGA-II has stochastic components,
we applied this algorithm for each problem 10 times and present the median result (measured by ∆2).

4.1. Binh and Korn

Our first test example is a modification of the box-constrained BOP from Binh and Korn [58],
where we add two inequality constraints as follows:

min

{
f1(x) = 4x2

1 + 4x2
2,

f2(x) = (x1 − 5)2 + (x2 − 5)2,

s.t. (x1 − 2)2 + (x2 − 1)2 ≤ 2.32,

(x1 − 3)2 + (x2 − 3)2 ≥ 1.52,

0 ≤ x1 ≤ 5,

0 ≤ x2 ≤ 3.

(26)
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Table 1 shows the design parameters that have been used by NSGA-II for this problem,
Table 2 shows the computational efforts and the obtained approximation quality for each algorithm,
and Figures 2 and 3 show the obtained Pareto set and front approximations, respectively. For PT,
we chose τ = 0.6 leading to 52 solutions along the Pareto set/front in 4.48 s (the computations have
been done on a Ubuntu 20.04.1 LTS system with an Intel Core i7-855OU 1.80 GHz x 8 CPU and
12 GB of RAM). We then applied NBI and the ε-constraint model using this number of sub-problems.
For NSGA-II, we took the population size 100, which is a standard value for this algorithm. The results
show nearly perfect Pareto front approximations (at least from the practical point of view) for all
algorithms, which is also reflected by the low ∆2 values that are very close to the optimal value of
0.6 (at least for PT, defined by τ). In terms of function evaluations, PT clearly wins over NBI and the
ε-constraint method. A comparison to NSGA-II is not possible due to the choice of the population size.

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 2. Results in decision space for MOP (26).

Table 1. Parameters used by NSGA-II for MOP (26).

Population Size 100
Number of generations 20
Probability of crossover 0.9
Probability of mutation 0.5
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Table 2. Computational efforts and approximation quality of the algorithms for MOP (26).

PT NBI ε-Constr. NSGA-II

Solutions 52 52 52 100
Function Evaluations 151 427 336 2000
Jacobian Evaluations 133 425 336 -
Hessian Evaluations - 373 284 -
Total of Evaluations 683 8095 6224 2000

∆2 0.6050 0.6025 0.9272 0.5626

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 3. Results in objective space for MOP (26).

4.2. Chakong and Haimes

Next, we consider the bi-objective problem of Chankong and Haimes [59], which contains next to
the box constraints one linear and one nonlinear inequality.
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min

{
f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2,

f2(x) = 9x1 − (x2 − 1)2,

s.t. x2
1 + x2

2 ≤ 225,

x1 − 3x2 + 10 ≤ 0,

with − 20 ≤ x1, x2 ≤ 20.

(27)

Table 3 shows the parameter values used for the application of NSGA-II, Table 4 the computational
efforts and the approximation qualities, and Figures 4 and 5 the obtained approximations. We used
τ = 1 for PT, and proceeded as for the previous example for the other methods. The results are also
similar to the previous example: all methods are capable of detecting a nearly perfect Pareto front
approximation, and the overall cost is significantly less for PT, in 5.96 s.

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 4. Results in decision space for MOP (27).
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Table 3. Parameters used by NSGA-II for problem (27).

Population Size 100
Number of generations 30
Probability of crossover 0.9
probability of mutation 0.5

Table 4. Computational efforts and approximation qualities for problem (27).

PT NBI ε-Constr. NSGA-II

Solutions 80 80 80 100
Function Evaluations 540 678 578 3000
Jacobian Evaluations 499 678 578 -
Hessian Evaluations - 598 498 -
Total of Evaluations 2536 12,958 10,858 3000

∆2 1.1459 1.1457 1.2141 1.1871

(a) PT (b) NBI

(c) ε-constr. (d) NSGA-II

Figure 5. Results in objective space for MOP (27).
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4.3. Tamaki

Next, we considered a MOP with three objectives (28):

min


f1(x) = x1,

f2(x) = x2,

f3(x) = x3,

s.t. x2
1 + x2

2 + x2
3 ≥ 1,

0 ≤ x1, x2, x3 ≤ 4.

(28)

Both the Pareto set and front for this problem are a part of the unit sphere. Table 5 shows the design
parameters for NSGA-II, Table 6 shows the computational effort and the approximation quality for each
algorithm, and Figure 6 shows the Pareto front approximations (the respective Pareto set approximations
will look identically, albeit in x-space). For this problem, τ = 0.05 was used. The implementation of the
ε-constrained method did not yield a result. On the Tamaki problem, PT performs better than the other
algorithms both in approximation quality and in the overall computational cost.

(a) PT (b) NBI

(c) NSGA-II

Figure 6. Results in objective space for MOP (28).

Table 5. Parameters used by NSGA-II for MOP (28).

Population Size 300
Number of generations 150
Probability of crossover 0.9
Probability of mutations 0.5
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Table 6. Computational efforts and approximation qualities for problem (28).

PT NBI ε-Constr. NSGA-II

Solutions 305 112 N/A 300
Function Evaluations 2498 3758 N/A 450,000
Jacobian Evaluations 1101 3758 N/A -
Hessian Evaluations - 3293 N/A -
Total of Evaluations 6902 91,236 N/A 450,000

∆2 0.0380 0.6353 N/A 0.0390

4.4. BCS

We next considered a second three-objective problem that contains next to one inequality also a
linear equality constraint:

min


f1(x) = (x1 + 3)2 + (x2 + 3)2 + (x3 + 3)2,

f2(x) = (x1 − 9)2 + (x2 + 5)2 + (x3 + 5)2,

f3(x) = (x1 − 5)2 + (x2 − 8)2 + x2
3,

s.t. x1 − 2x2 − 3x3 = 0,

sin(2x1)− x2 ≤ 0.

(29)

Table 7 presents the design parameters used by NSGA-II, Table 8 shows the computational
effort and the approximation quality for each algorithm, and Figures 7 and 8 present the Pareto front
approximation of PT (using τ = 2), which took 16.79 s. For this example, none of the other methods
were able to yield feasible solutions, where we counted a solution x to be feasible if |x1 − 2x2 − 3x3| <
1e− 4 and sin(2x1)− x2 ≤ 1e− 4.

Figure 7. Numerical result of PT in the decision space for MOP (29).

Table 7. Parameters used by NSGA-II for MOP (29).

Population Size 100
Number of generations 500
Probability of crossover 0.9
Probability of mutations 0.5
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Table 8. Computation efforts for the proposed test problem (29).

PT NBI ε-Constr. NSGA-II

Solutions 378 0 N/A 4
Function Evaluations 1923 2290 N/A 50,000
Jacobian Evaluations 756 1641 N/A -
Hessian Evaluations - 1431 N/A -
Total of Evaluations 4947 40,336 N/A 50,000

∆2 2.0658 - N/A 61.7685

Figure 8. Numerical result of PT in the objective space for MOP (29).

4.5. Osykzka and Kundu

As last example, we considered the bi-objective problem of Osykzka and Kundu [60], which has
six decision variables and contains six inequality constraints in addition to the box constraints:

min


f1(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2

f2(x) =
6

∑
i=1

x2
i

s.t. x1 + x2 − 2 ≥ 0

6− x1 − x2 ≥ 0

2− x2 + x1 ≥ 0

2− x1 + 3x2 ≥ 0

4− (x3 − 3)2 − x4 ≥ 0

(x5 − 3)2 + x6 − 4 ≥ 0

0 ≤ x1, x2, x6 ≤ 10

1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6

(30)
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While the Pareto front of this problem is connected, its Pareto set consists of three different
connected components. Hence, PT is not able to compute an approximation of the entire Pareto front
with only one starting point. Figure 9a shows the result of PE for τ = 2 using the three starting points

x0,1 = (0.60, 1.50, 1.0, 0.00, 1.00, 0.04)T ,

x0,2 = (0.00, 2.00, 2.20, 0.00, 1.00, 0.00)T ,

x0,3 = (5.00, 1.00, 5.00, 0.00, 1.00, 0.01)T .

(31)

The computational time to obtain this result was 12.98 s. Figure 9b shows a numerical result
of NSGA-II using the design parameters shown in Table 9. The obtained solutions “under” the
Pareto front can be explained by the tolerance of 1× 10−4 that was used to measure feasibility (while
1× 10−8 was used for PT). Table 10 shows the computational effort for both methods. Needless to say,
this represents by no means a comparison of the two methods. Instead, this should be rather seen
as a motivation to hybridize PT with a global search strategy in order to obtain a fast and reliable
multi-objective solver, which we leave for future studies.

Table 9. Parameters used by NSGA-II for MOP (30).

Population Size 435
Number of generations 50
Probability of crossover 0.9
Probability of mutations 0.5

Table 10. Computational efforts and approximation qualities for problem (30).

PT NSGA-II

Solutions 435 428
Function Evaluations 2051 20,000
Jacobian Evaluations 850 -
Hessian Evaluations - -
Total of Evaluations 5451 20,000

∆2 1.801 2.4819

(a) PT (b) NSGA-II

Figure 9. Results in objective space for MOP (30).

5. Conclusions and Future Work

In this paper, we extend the multi-objective continuation method Pareto Tracer (PT) for the
treatment of general inequality constraints. To this end, the predictor–corrector step is modified
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as follows: in the predictor, all nearly active inequalities are treated as equalities. In the following
corrector step, the main challenge is to identify the inequalities for which the predictor solution is
either nearly active or slightly violates the constraint that has to be considered, namely the equality
constraint in the Newton method, and this is done in a bootstrap manner. We formulate the resulting
algorithm and show some numerical results on several benchmark problems, indicating that it can
reliably handle inequality (and equality) constrained MOPs. We further present comparisons to some
other numerical methods. The results show that the extended PT can indeed reliably handle general
MOPs (and in particular general inequalities). However, the method is—by construction—of local
nature and restricted to the connected component of the solution set for which one initial solution is
available. One interesting task is certainly to hybridize PT with a global solver such as a multi-objective
evolutionary algorithm and to compare the resulting hybrid against other methods with respect to
their ability to compute the entire global Pareto set/front of a given MOP. This is beyond the scope of
this work and has been left for future work.
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