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Abstract: In this paper, a loop shaping controller design methodology for single input and a single
output (SISO) system is proposed. The theoretical background for this approach is based on complex
elliptic functions which allow a flexible design of a SISO controller considering that elliptic functions
have a double periodicity. The gain and phase margins of the closed-loop system can be selected
appropriately with this new loop shaping design procedure. The loop shaping design methodology
consists of implementing suitable filters to obtain a desired frequency response of the closed-loop
system by selecting appropriate poles and zeros by the Abel theorem that are fundamental in the
theory of the elliptic functions. The elliptic function properties are implemented to facilitate the
loop shaping controller design along with their fundamental background and contributions from
the complex analysis that are very useful in the automatic control field. Finally, apart from the filter
design, a PID controller loop shaping synthesis is proposed implementing a similar design procedure
as the first part of this study.

Keywords: H∞ loop shaping control; modular functions; SISO systems; PID controller

1. Introduction

The loop shaping design procedure and synthesis for several kinds of single-input
and single-output (SISO) systems have been implemented during recent years due to
the selection of the frequency domain characteristics of the open and the closed-loop
systems, this means, designing the control strategy based on the gain and phase margin
specifications of the open-loop plant and the specifications of the closed-loop system [1–6].
The H∞ loop shaping robust controller design was studied in recent years to synthesize
controllers for SISO plants with unmodeled dynamics and/or uncertainties due to the
importance of the controller synthesis in the process control field. Robust H-infinity control
consists of establishing a performance index based on the transfer function’s norm [7].
In the case of single input single output SISO systems, it is done similarly for linear multi
input multi output MIMO systems. In the SISO system, the H-infinity controller is found
by synthesizing the performance index to find the desired controller meeting the robust
stability and robust performance conditions. Meanwhile, the suitable controller and gain
matrices are obtained for the MIMO case, similar to in the SISO case, synthesizing the
selected performance index [8].

Loop shaping design methodologies have been studied in recent decades for SISO
cases and multiple input multiple output (MIMO) cases. In [9], the H-infinity loop shaping
design procedure for multivariate systems with constrained inputs is shown, and the con-
troller synthesis is derived from linear matrix inequalities, a subject that has been studied
in recent years. A multivariable H-infinity loop shaping design procedure is proposed
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in [10] to stabilize a chaotic system. In this case, the original system is linearized, which
could add losses to the original system. In [11], the stabilization of multivariable systems
with delays with a H-infinity procedure is done along with an observer predictive law. The
H-infinity loop shaping design procedure in the multivariable cases is the most found in
the literature. For example, in [12], an approach has been implemented in the controller
synthesis for a switched reluctance motor used in an electrical vehicle, considering the
uncertainties and disturbances of the system model. In [13], the H-infinity loop shaping
design controller synthesis for a 2DOF platform is shown, and it is a very interesting
application for mechanical systems.

In [14], an interesting application of an enhanced H-infinity loop shaping design
controller for an industrial motion system is evinced taking into account the performance
and robustness requirements. Finally, in [15], a fixed structure 2DOF H-infinity loop shap-
ing controller for an active current mode converter is shown, considering that a genetic
algorithm is used for the loop shaping controller design. This loop shaping 2DOF controller
consists of adding an extra degree of freedom to the controller to track the system’s refer-
ence or setpoint along with the tracking of a disturbance input. It is important to notice that
in recent years the use of evolutionary algorithms in the design of controllers for SISO and
MIMO systems has been increased. In [16], the stabilization of a tele-micromanipulation
system is done by a H-infinity loop shaping design procedure, and the implementation of
this approach has been extensively used in other applications different than process control
such as mechanical and electrical systems. Actually, there are novel loop shaping design
strategies, and in some cases, along with H-infinity control. In papers such as [17], a signifi-
cant study related to this present work evinces the design of an H-infinity loop shaping
controller with weighting function optimization by linear matrix inequalities. Then in [18],
a data-driven H2-H infinity loop shaping controller is presented. In studies such as [19], an
H-infinity loop shaping controller is designed for linear parameter varying plant. Other
interesting results that are useful for this study are found in [20] in which a parameterized
loop shaping extremum seeking approach is done for controller synthesis. Finally, in [21],
an H-infinity loop shaping design procedure is proposed for linear quadratic and PID
regulators. In that paper, a novel H-infinity loop shaping controller synthesis is proposed
based on complex elliptic functions. Complex elliptic functions are those kinds of functions
that have two periods, where a meromorphic function in the plane with two independent
periods are called elliptic [22–24]. The H-infinity loop shaping design procedure consists of
implementing the elliptic functions in order to obtain the desired gain and phase margins
specifications of the open-loop plant, shaping the plant with two weighting functions using
Abel’s theorem [22].

In this paper, first, a robust controller synthesis is obtained by implementing two
weighting functions in order to meet the robust H-infinity performance, and then, a robust
PID controller synthesis is obtained by implementing an unique weighting function. In
both cases, the weighting functions are obtained by the Abel theorem. It is important to
remark that the main contribution and opposition to other research studies found in the
literature is that in the proposed control approach, the weighting functions for the loop
shaping control system consider the maximum advantages of complex modular function by
taking into consideration that these functions are double-periodic. So this is an advantage
because the gain and frequency crossover frequencies can be selected independently to
shape the frequency domain characteristics of the open-loop plant for optimal closed-loop
performance. The main advantage of this approach in comparison with other studies found
in the literature is due to the double periodicity of elliptic functions, the open-loop gain and
phase margins obtained by placing the required poles and zeros, allowing an appropriate
selection of the gain margin, phase margin, and cut-off frequency.

This paper is divided into the following sections. In Section 2, a brief review of elliptic
functions is shown in order to introduce the theoretical background. In Sections 3 and 4,
the derivation of the robust and PID loop shaping controller synthesis are presented
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respectively. In Section 5, a numerical example of the two controller synthesis are shown
and they are compared with PID controller strategies as shown in [3,25].

2. Brief Review of Complex Elliptic Functions

As explained before, complex elliptic functions are those kinds of double periodic
and meromorphic functions as described in the complex analysis field. The mathematical
definition of elliptic functions is given in [22]. There are some important research studies in
the literature related to this topic of pure mathematics. In papers such as [26], the bounds
over modular functions are explained in which it is shown that its Fourier coefficients
can obtain a harmonic cochain. Other interesting results are found in [27] in which the
periods of Hilbert modular forms are obtained. Another interesting result is found in [28].
Some inequalities for integral and modular functions are presented in which monotonicity
and convexity of elliptic integrals are analyzed to obtain some inequalities. In [29], the
potential modularity of elliptic curves defined on a real field is presented. Finally, in [30],
multiple elliptic gamma functions are developed and evinced. First, it is important to
define a lattice L, therefore consider the lattice with two vectors (periods) ω1 and ω2 in C
which are linearly independent in R. Then, the lattice for an elliptic function is given by:

L = Zω1 +Zω2 = [mω1 + nω2; m, n ∈ Z] (1)

An elliptic function is given by the following definition [22]:

Definition 1. An elliptic function for a lattice L is a meromorphic function

f : C→ C = C∪∞ (2)

with the property
f (z + ω) = f (z) (3)

for ω ∈ L and z ∈ C

Apart from this important definition in the complex analysis, considering that the
appropriate selection of poles and zeros of the weighting function of the H-infinity loop
shaping design procedure proposed in this paper, Abel’s theorem for the selection of
prescribed poles and zeros of an elliptic function is fundamental. Before explaining this
theorem, consider the following [22]:

f (z) =
P(z)
Q(z)

(4)

where Q(z) 6= 0 and f : C→ C, the Abel’s theorem as explained later is fundamental in
the results obtained in this study [22].

Theorem 1. An elliptic function with prescribed poles b1, ..., bn and zeros a1, ..., an can be ob-
tained iff

a1 + ... + an ≡ b1 + ... + bn( mod L) (5)

With this definition and theorem 1, the derivation of the H-infinity loop shaping
design procedure for SISO systems with a standard or PID controllers can be established.

3. Standard H∞ Loop Shaping Controller Synthesis by Elliptic Functions

In this section, a standard H-infinity loop shaping controller synthesis by elliptic
functions is shown. In the loop shaping design procedures found in the literature in recent
years [13–15], one of the main issues that must be solved is the selection of appropriate
weighting filters to shape the plant transfer function. It is important to notice that presently
this procedure is mostly done by implementing process control software and toolboxes
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but there are not more efficient methods to design the weighting filters for the shaping
procedure. Therefore, considering these disadvantages of previous H-infinity loop shaping
controller synthesis procedures, in this paper the loop shaping design approach is improved
by a novel feedforward system architecture that is a new approach that improves the
robustness of the closed-loop system.

In this paper, the design of weighting filters based on elliptic functions is proposed. As
explained in the previous section, elliptic functions provide a useful theoretical background
to select functions with prescribed zeros and poles. Considering the double-periodicity
of elliptic functions. The selection of the cross-over frequencies for the gain and phase
margins, respectively, along with an appropriate cut-off frequency is straightforward. For
this reason, the weighting filter design is done in a theoretical and accurate way, and it is not
necessary to implement other design methodologies that are not stronger from a theoretical
point of view. In this section, the design of a standard H-infinity loop shaping controller
synthesis is shown. In Figure 1 the block diagram of the compensated closed-loop system
is depicted, where K(s) is the controller obtained by loop shaping and G(s) is the plant.

K(s) G(s)

K(s) K(s)

Reference y+
-

+
+

Figure 1. Block diagram of the compensated closed-loop system.

3.1. H∞ Loop Shaping Design Procedure

The H-infinity loop shaping design procedure is done in the following steps [15]:

1. Find the robust controller K∞(s) in order that the following condition is met:

‖T(s)‖∞ = γmin =
1

εmax
(6)

where T(s) is the complementary sensitivity closed-loop transfer function and γmin
and εmax are given due to the following robust condition explained later:

G(s) = M̃−1Ñ (7)

where M̃ and Ñ are the coprime factors with

G̃(s) = (M̃ + ∆M)−1(Ñ + ∆N) (8)

where ∆M and ∆N are the coprime factor uncertainties. Finally,

ξi =
{

G̃ = (M̃ + ∆M)−1(Ñ + ∆s) : ‖(∆M, ∆N)‖
}

(9)

It is important to consider that the gain K(s) shown in the feedforward compensated
block diagram, depicted in Figure 1, is found using the equivalent block diagram
shown in this figure. This complementary sensitivity function is obtained to derive
the K∞ gain matrix and, later, the gain K(s) is obtained with the loop shaping design
procedure as shown in step 2 and 3. Remember that in the robust loop shaping
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design given in (7), (8), and (9), the εmax and γmin are found obtaining the coprime
factorization of the plant to be shaped G(s) as presented in Figures 2 and 3.
One of the novel contributions of this work is that the gain K∞ is obtained from
the complementary function T(s) from Figure 1 to improve the robustness of the
closed-loop system surpassing non compensated approaches as shown in [16]. As
a conclusion of this robust loop shaping design procedure, first the gain matrix
K∞ is obtained from the sensitivity function obtained from Figure 1 (feedforward
compensated system) but considering the values of εmax and γmin obtained from
(7)–(9) and the uncertainties of the diagrams shown in Figures 2 and 3. Then, the loop
shaping design procedure is concluded in steps 2 and 3.

2. The second step is to find the weighting functions W1(s) and W2(s) in order to obtain
a desired open-loop frequency response characteristic for G(s) in the following form
Gn(s) = W1(s)G(s)W2(s). This step is crucial in this study because the weighting
function selections are done by complex elliptic functions, for the standard and PID
controller design.

3. Finally, the controller is given by K(s) = W1(s)K∞(s)W2(s).

K(s) G(s)+

-

U

Figure 2. Block diagram for the loop shaping design.

K(s)
~N

~
M−1

ΔN ΔM
−1

r y

Figure 3. Coprime factor robust stabilization.

3.2. Weighting Function and Standard H∞ Controller Design with Complex Elliptic Functions

As explained before, one of the main issues that must be solved in the H-infinity
loop shaping controller design is the selection of the weighting function. In this paper, a
weighting function design implementing elliptic complex functions is proposed. Due to the
double periodicity of elliptic functions the selection of an elliptic function with prescribed
poles and zero is done, as explained in Section 2, to select the gain margin and phase
margin along with the cut-off frequencies (step 2). Another improvement in comparison
with other results is found in the literature that the K∞(s) controller is obtained to meet the
robustness specifications.

In the following theorem, both issues explained in the previous paragraph are estab-
lished [22].
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Theorem 2. The weighting functions W1(s) and W2(s) is obtained by using Abel’s theorem and
the function σ(s) explained later

W(s) =
σ(z0 − a1 + s)
σ(z0 − b1 + s)

(10)

in order to find the controller K(s) = W1(s)K∞(s)W2(s)

Proof. Define the following set:

D = {x ∈ C : x ∈ Rj} (11)

The variable s ∈ D and the following σ function which is defined in Abel’s theorem to
obtain an elliptic function with prescribed poles and zeros

σ(s) = s ∏
ω∈L

(
1− s

ω

)
exp
(

s
ω

+
s2

2ω2

)
(12)

where ω 6= 0. Consider the following plant transfer function:

G(s) =
∑n

i=0 aisi

∑m
k=0 bksk (13)

and the following complementary sensitivity function:

T(s) =
K(s)G(s) + K(s)2

1 + K(s)G(s)
(14)

Then, according to the step 1 of the H-infinity loop shaping design the following result
is obtained:∣∣∣∣∣∣∣∣K(s)G(s) + K(s)2

1 + K(s)G(s)

∣∣∣∣∣∣∣∣
∞
=

sup
K(s)

∣∣∣∣K(s)G(s) + K(s)2

1 + K(s)G(s)

∣∣∣∣ = γmin =
1

εmax
(15)

So by defining the transfer function:

G(s) =
X(s)
Y(s)

(16)

the supremum of the sensitivity function shown in (15) is found as

K∞(s) =
−Y(s)2 ±Y(s)

√
Y(s)2 − X(s)2

X(s)Y(s)
(17)

To simplify the controller design it is necessary to implement a Taylor series expansion
of the following function:

f (s) =
√

y(s)2 − x(s)2

x(s)
(18)

so

K∞(s) = −Y(s)
X(s)

± f (0)± ḟ (0)s (19)

To derive the weighting filters, consider (12) with the frequencies ω1 = 1
T and ω2 = 1

βT
where T is the period. The weighting function which is a low pass filter is given by:

W(s) =
σ(z0 − a1 + s)
σ(z0 − b1 + s)

(20)
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where

σ(s) = s
(

1− s
ω1

)(
1− s

ω2

)
exp

(
s

ω1
+

s2

2ω2
1

)
exp

(
s

ω1
+

s2

2ω2
2

)
(21)

now, consider

W(s) =
W1N(s)W2N(s)
W1M(s)W2M(s)

W1 =
W1N(s)
W1M(s)

W2 =
W2N(s)
W2M(s)

(22)

Therefore, for W1N(s) and W1M(s)

W1(s) = s
(

1− s
ω1

)(
1− s

ω2

)
(23)

and for W2N(s) and W2M(s)

W2(s) = exp

(
s

ω1
+

s
ω2

+
s2

2ω2
1
+

s2

2ω2
2

)
(24)

Therefore, to avoid the exponential term, W2(s) is approximated by a
Taylor series-defining

f (s) = exp

(
s

ω1
+

s
ω2

+
s2

2ω2
1
+

s2

2ω2
2

)
(25)

Then, implementing only the first terms of the Taylor series expansion of f (s)

W2(s) = f (0) + ḟ (0)s (26)

We obtain

W2(s) = 1 +
(

1
ω1

+
1

ω2

)
s (27)

and to define the numerator and denominator in (20), it is necessary to apply the following
change of variables: α = z0 − a1 and β = z0 − b1. The equivalent filter is given by:

W(jω) =
σ(jω + α)

σ(jω + β)
(28)

and this completes the proof.

To find the periods of the elliptic functions (ω1, ω2) along with the crossover fre-
quencies and cut-off frequencies (ωpi,ωgi,ωc), the following equations must be solved by a
nonlinear algebraic equation solver

1
|W(jωpi)G(jωpi)| = Ai

arg
(
W(jωpi)G(jωpi)

)
= −π∣∣W(jωgi)G(jωgi)

∣∣ = 1
arg
(
W(jωgi)G(jωgi)

)
+ π = φmi

|W(jωc)G(jωs)| = 1√
2

(29)

where Ai is the gain margin and φmi is the required phase margin.

4. H∞ PID Loop Shaping Controller Synthesis by Elliptic Functions

Proportional-integral-derivative (PID) controllers were implemented in the process
control and other applications [31–35]. For these reasons, as explained in the previous
section, the H-infinity PID loop shaping controller system, given in Figure 4, is obtained
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by elliptic functions. The following theorem establishes the theoretical background for
this objective.

PID 
Controller

G(s)
Reference y

+

-

Figure 4. Closed loop system block diagram.

Theorem 3. The proportional-integral-derivative H∞ loop shaping controller synthesis is obtained
by an unique weighting filter.

C(s) = W1(s) =
s + 1/(Kpτi + τdτi)

τis/(Kpτi + τdτi)
(30)

where Kp is the proportional gain, τd is the derivative time constant and τi is the integral
time constant.

Proof. The PID controller is given by

C(s) =
(

Kp +
1

τis
+ τds

)
(31)

Consider the α variable shown in the previous section. By using (12), the following
filter is obtained:

W2(s) =
(s + α)

(
1− α

ω2
− s

ω2

)
(

1− s
ω1

)(
1− s

ω2

)
(

1 + α
ω1

+ α
ω2

+ s
(

1
ω1

+ 1
ω2

))
1 + s

(
1

ω1
+ 1

ω2

) (32)

and (30) becomes in

W1(s) =
ω1 − α− s

ω1s
(33)

which represents the PID controller and this completes the proof.

Using the filter W2(s) the following equivalent transfer function is obtained:

Gn(s) = G(s)W2(s) (34)

To find the elliptic function periods ω1 and ω2 along with the cross over frequencies
ωpi, ωgi and the cutoff frequency ωc, the following nonlinear algebraic equations must be
solved numerically:

1
|W1(jωpi)Gn(jωpi)| = Ai

arg
(
W1(jωpi)Gn(ωpi)

)
= −π∣∣W1(jωgi)Gn(jωgi)

∣∣ = 1
arg
(
W1(jωgi)Gn(jωgi)

)
+ π = φmi

|W1(jωc)Gn(jωc)| = 1√
2

(35)

where Ai is the gain margin and φmi is the required phase margin.
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5. Numerical Experiments

In this section, three numerical experiments are shown to test the theoretical results
obtained in this study. The first and second experiments are developed considering a
step and impulse response respectively, while the third numerical experiment is done
by regulating the acid concentration in a water reservoir. The simulation is performed
with GNU Octave 4.2.2 in an Intel Core i3 laptop. The plant used in the first and second
experiment is:

G(s) =
1

s + 3
(36)

5.1. Experiment 1

In experiment 1, the H-infinity loop shaping controller synthesis is tested in the control
of system (36). The frequencies found for the weighting filters are ω1 = 0.60789 rad/s and
ω2 = 3.8580 rad/s for A = 4 and φmi = 0.9 rad. Then, the following system response is
found comparing the results with the strategies evinced in [36,37] as depicted in Figure 5.
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0.6
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1.4

Time (s)

O
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t

Proposed strategy

Da Silva et al 2020

Diaz et al 2018

22 24 26 28
0

0.2

0.4

0.6

0.8

1

1.2

Figure 5. System response.

The system is tested with a step reference and an impulse reference, as can be noticed
there, is less overshoot with the proposed approach in comparison with the approaches
shown in [36,37] moreover, the steady-state error is smaller with the proposed strategy in
comparison with the compared strategies. Then, in Figure 6 the error variable for both
strategies is shown. As can be noticed the error between the reference and the output of
the system is smaller with the proposed control strategy in comparison with the strategies
shown in [36,37] proving the effectiveness of the controller design. In Figure 7 the root locus
of the weighted and shaped plant is shown in which, as can be noticed, the addition of
poles and/or zeros by the weighting filters shape the plant so that the system performance
is improved by moving the locus region to the desired position. Then in Figure 8, the
impulse response of the system is shown corroborating that the response reaches the zero
value in a short time in opposition to the impulse response obtained with the approaches
shown in [36,37].
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Figure 6. Error Variable for Experiment 1.

Figure 7. Root locus of the weighted plant for the analyzed system.
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Figure 8. Impulse response.

The robustness index is given by the following:

R.I. = sup
ω

∣∣∣∣ C(ωj)G(ωj)
1 + C(ωj)G(ωj)

∣∣∣∣ < 1 (37)

Table 1 shows the robustness indexes of the three strategies. As can be noticed,
the robustness index of the proposed strategy is smaller than [37] and greater than [36],
this means that the proposed control strategy provides a moderate robustness index
taking into consideration that there is a trade-off between the system performance index
and robustness.

Table 1. Robustness indexes of the proposed strategy and comparative approaches.

Strategy Robustness Index

Proposed Strategy 0.624339
Da Silva et al. [37] 0.643336

Diaz et al. [36] 0.56655

As can be noticed in Table 2 that when the integral squared error ISE increase, the
robustness index decrease, or in other words they are inversely proportional, remarking
again that our proposed method provides a moderated robustness index and performance
in comparison with the other two comparative strategies. For this reason, the proposed
control strategy provides its optimal performance.

Table 2. ISE of the proposed strategy and comparative approaches.

Strategy ISE

Proposed Strategy 37.7522
Da Silva et al. [37] 36.1603

Diaz et al. [36] 38.4393
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5.2. Experiment 2

In this experiment, the loop shaping PID controller synthesis design is tested to
corroborate the theoretical results obtained. The frequencies of the weighting functions are
ω1 = 2.1324 rad/s and ω2 = −4.2475 rad/s with A = 0.001 and φmi = 0.7 rad.

In Figure 9, the system response of the proposed strategy in comparison with the stan-
dard PID controller and the approaches shown in [38,39] are depicted. The overshoot and
steady-state error are smallest than the standard PID controller so the H-infinity PID con-
troller synthesis yields better results. In Figure 10 the error variable between the reference
and the system output is presented and the steady-state error with the proposed controller
synthesis is significantly smaller in comparison with the results obtained by [38,39].
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Figure 9. System response.
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5.3. Experiment 3: Acid Concentration Regulation in a Water Reservoir

For this numerical experiment, consider the following mathematical model of a water
reservoir with an acid input flow as appears in Figure 11. The mathematic model of the
proposed system is [40]:

V
dC
dt

+ qC = U (38)

where V is the volume of the reservoir, C is the acid concentration in mol/m3, U is the acid
rate input and q is an appropriate constant. Then the transfer function is:

C(s)
U(s)

=
1

Vs + q
(39)

Figure 11. Schematic diagram of the water reservoir considered in this experiment.

This numerical experiment consists of regulating the acid concentration in the water
reservoir as 500 mol/m3 starting from a 0 mol/m3 concentration until the desired setpoint
is reached.

In Figures 12 and 13, it can be noticed how the acid concentration reach the desired
setpoint value when a step response is needed. It can be noticed how the acid concentration
reaches the desired value faster, and as noticed in Figure 12, there is a fast change from
the initial to the final desired setpoint value. It is important to observe that the results
obtained with the proposed control strategy provide faster and more accurate results
than the strategies proposed in [36,37]. These results are corroborated in Figure 13 in
which it is noticed how a faster and smaller output response is obtained with the proposed
control strategy in comparison with [36,37] something that proves that the proposed control
strategy improves other results found in the literature.
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Figure 12. Concentration level in the water reservoir.

Figure 13. Concentration error in the water reservoir.

6. Conclusions

In this article, a novel approach for the H-infinity loop shaping controller synthesis is
proposed. Two of the main contributions shown in this article are the robust H-infinity con-
troller derivation and the weighting function synthesis implementing the elliptic function
to select the appropriate poles and zeros to meet the gain margin, phase margin, and cutoff
frequency. It is proved, theoretically, that one of the main advantages of this approach is
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that there is a strong mathematical methodology to obtain the weighting filters and the
gain matrices. Finally, these results were proved by numerical examples.
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