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Abstract: Climate change in Thailand is related to the El Niño and Southern Oscillation (ENSO)
phenomenon, in particular drought and heavy precipitation. The data assimilation method is used
to improve the accuracy of the Ensemble Intermediate Coupled Model (EICM) that simulates the
sea surface temperature (SST). The four-dimensional variational (4D-Var) and three-dimensional
variational (3D-Var) schemes have been used for data assimilation purposes. The simulation was
performed by the model with and without data assimilation from satellite data in 2011. The result
shows that the model with data assimilation is better than the model without data assimilation. The
4D-Var scheme is the best method, with a Root Mean Square Error (RMSE) of 0.492 and a Correlation
Coefficient of 0.684. The relationship between precipitation in Thailand and the ENSO area in Niño
3.4 was consistent for seven months, with a correlation coefficient of −0.882.

Keywords: 3D-Var; 4D-Var; Coriolis Satellite; coupled ocean-atmosphere model; data assimilation

1. Introduction

In 2011, Thailand experienced the worst flooding in its history, suffering heavy floods
for a long time. The affected areas were spread around the country, but they were especially
concentrated in the northern and central regions. Moreover, Bangkok and its suburbs
are areas that have endured heavy floods for the last 70 years. The floods have caused
great damage to agricultural, industrial, economic, and social life, and they have had a
high impact on other sectors. Thailand was flooded and 64 provinces were declared to be
emergency disaster zones from the end of July to November 2011. There were 657 deaths,
three missing people, 4,039,459 destroyed households, and 13,425,869 displaced people.
In the case of 2329 houses, the entire property was damaged, and a further 96,833 houses
were partially damaged. The damage extended to an estimated 1.792 million hectares of
agricultural area, 13,961 roads, 777 drains, 982 dams, 724 bridges/semis, 2324,919 fish
ponds/shrimp ponds, and 13.41 million ranches [1]. This massive flood, including many
other events, was the result of the ENSO phenomenon.

The El Niño and Southern Oscillation (ENSO) phenomenon affects climate around
the world, especially countries that are near the equator around the Pacific Ocean. It is a
term used to describe changes in SST in the Pacific region, and variations in the southern
hemisphere climate systems [2]. Strong trade winds blew to the east, so that the sea level in
the Western Pacific Ocean was higher than usual. The El Niño is a phenomenon where the
atmospheric pressure at sea level in the eastern Pacific Ocean is lower than usual, while the
other side of the ocean pressure (Indonesia and northern Australia) is higher than usual. It
connects and occurs along with the weak south-east wind until it becomes a western wind.
It will blow the sea from the west Pacific Ocean to the central and eastern Pacific Ocean.
The scientists often used the terms of ENSO warming (ENSO warm event or warm phase
of ENSO) as same as the meaning of El Niño for describing the phenomena that the SST in
the central and eastern Pacific are warmer than the normal. La Niña is an abnormally cold
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ocean temperature phenomenon (ENSO cold event or cold phase of ENSO). It is used to
describe the phenomena where the SST in the central and eastern Pacific are cooler than the
normal. The La Niña phenomenon first appeared in early 2011 [3]. The ENSO phenomenon
is linked to climate anomalies in far-flung areas, such as Australia, which is subjected to
year-round drought, causing wildfires and the Indian peninsula to suffer from year-round
rainfall. As a result, the current weather conditions have changed [4]. Therefore, it is
necessary to forecast the occurrence of ENSO phenomena in order to determine exposure to
climate change. There are currently models for predicting the occurrence of various types
of ENSO phenomena, such as [5–9]. Although the ENSO phenomena are continuously
and intensely studied, there is still significant uncertainty in real-time predictions of ENSO
phenomena. The accuracy of the forecast is reduced when it is forecasted during the
northern spring. The phenomenon of spring predictability barrier (SPB) is known as one
of the main factors limiting the ENSO’s predictive skills [10–12]. There are many studies
that try to reduce the predictive error of the ENSO phenomenon. An effective method is
using a Nonlinear Forcing Singular Vector [13,14]. For the ENSO forecast system, most of
the model systems are freely integrated for a specific time interval (i.e., the prediction time
period) after assigning an initial value by assimilation when they predict ENSO. However,
Tao and Duan [15] and Tao et al. [16] proposed a novel method to predict ENSO. They
adopted an approach of nonlinear forcing singular vector-assimilation to predict ENSO, in
which it considers a model error effect and it is different from three-dimensional (3D)- and
four-dimensional variational (4D-Var) assimilation for the initial error effect.

Data assimilation is a statistical technique that combines the result of the mathematical
model with observational data to improve the accuracy of the simulation. The objective
of this work is to compare three-dimensional (3D-Var) and four-dimensional (4D-Var)
data assimilation methods for heavy rain in Thailand. The benefit and drawback of the
two methods were compared to evaluate their practical application. The 3D-Var method
is considered to be an economically and statistically reliable method, and it is widely
accepted. The 4D-Var method is an advanced technique of data assimilation that best fits
the observations distributed within a given time interval. Therefore, this work aims to
improve the forecasting of the ENSO phenomenon in the Pacific Ocean while using the
3D-Var and 4D-Var method, and to establish the relationship between ENSO phenomenon
and precipitation in Thailand.

2. Materials and Methods
2.1. Ensemble Intermediate Coupled Model

The atmosphere and oceans are two major components in the Earth’s system. The
atmospheric models measure the number of spatial changes of atmospheric phenomena in
space and time. Numerical and physical measurements of weather parameters were used
to study and predict the occurrence of phenomena [17]. The ocean dynamics model causes
the variation of seawater, such as temperature or motion of water. The atmosphere and the
ocean are connected in a complex way. Both of the systems have a major impact on Earth’s
systems, such as weather and climate. The oceans regulate weather systems by delivering
humidity and heat to the atmosphere system. Furthermore, the atmosphere is related to
the ocean through momentum, humidity, heat, and wind flow. ENSO originated from the
relationship of the ocean with the atmosphere in tropical Pacific Ocean. A coupled model
between the atmosphere and ocean model is necessary for performing an ENSO. Therefore,
ENSO phenomena forecasting is required to use atmospheric data, as the atmosphere
influences ocean dynamics. The couple model considers various factors that affect the
performance of the ENSO phenomenon. Currently, the atmosphere–ocean coupling model
can predict the ENSO phenomenon over a one-year period. Most of the observational
data have irregular distances. The quality control of the initial data is processed by the
assimilation data.

Keenlyside and Kleeman (2002) [18] and Zhang et al. (2003) [19] developed the inter-
mediate couple model. The ocean element of the Intermediate Coupled Model (ICM) is
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dependent on an intermediate complexity model that was an enlargement of the Coupled
Model and Baroclinic model. The Dynamic Ocean Model contemplates some non-linear
effects in simple ocean modeling contexts and differentiation of the spatial stratification
to help advance simulation progress. Dynamic Ocean modeling takes into account ocean
pressure fields, horizontal currents above mixed layers, vertical velocity surfaces at the
base of the mixed layer, and 10 vertical modes are included in the field calculation. The
thermodynamic process of the composite layer of the surface was created from a combina-
tion of the anomalous SST model and the intermediate ocean model. The model domain
spans tropical Pacific from −31◦ S to 31◦ N and from 124◦ E to 282◦ W. The Extended
Reconstructed Sea Surface Temperature (ERSST) grids are 2◦ × 2◦, but the data of the EICM
are different grids point, in which a distance of Longitude is 2◦, and Latitude is different,
depending on the distance of equator. The area that is far equator line has distance 3◦ and
the area that is near the equator line has distance 0.5◦. The grid of the EICM should be
adjusted by linear interpolation, so that the two grids are the same size.

The governing equation of the fault model of SST is powered by ocean horizontal
advection and vertical circulation connected with the specified and anomalous mean
currents, explaining the evolution of temperature anomalies in the mixed layer, as shown in
Figure 1. Another important characteristic that is added to the ocean model is the empirical
determination of the temperature of the subsoil confined to the mixed layer (Te), which
is appropriately calculated in the term of the Sea Surface Height (SSH) anomaly. Vertical
mixing and buoyancy are essential conditions for clearly controlling the combined heat
budget over the equatorial Pacific Ocean. It affects the SST, which is sensitively dependent
on Te [20]. The velocity specified in the east (us) west (vs) and vertical (ws) direction is
optimally calculated for the effective improving of the SSTA simulation in the ocean model,
and the empirical scheme was expanded as a parameter Te. An inverse simulation of the
given SSTA equation with balancing the various heat budget requirements of mixed layers
is used to estimate the optimized Te field. Other ocean dynamic variables (e.g., sea level)
were used in the standard statistical analysis from 1963 to 1996 for the SSTA [20] simulation.
The parameterization Te made it possible to capture the non-local relationship between Te
and sea level (SL) anomalies over the tropical Pacific Ocean, and this led to an explanation
of improvement of the underground effect on the SST variance of the mean increase of the
anomalous underground temperature anomaly. The ICM is widely used to simulate and
predict El Niño phenomenon in the tropical Pacific Ocean, so the SSTA simulation has been
significantly improved over the Pacific.

In addition, the ICM for the tropical Pacific Ocean was obtained from the ocean model,
which was coupled with the simple statistical model of interannual wind stress anomaly
(τintel). ICM was able to demonstrate the interannual variation, which was extensively
analyzed while using observational data with appropriate model parameters. Especially,
the ICM can realistically explain the evolution of time and spatial structure in predicting
interannual SST. Since 2003, this model has often been used to predict SST conditions in
the tropical Pacific with a lead time of 12 months [9,21].
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Figure 1. A schematic illustrating an Intermediate Coupled Model (ICM) [20].

The Ensemble Intermediate Coupled Model (EICM) was developed from ICM to
improve the ENSO phenomenal forecasting results [22] using a different method to gen-
erate initial ensemble members with the Markov stochastic random model. The Evensen
study [23,24] was also used to provide a set of initial conditions for an ICM with 100 mem-
bers. The covariance of the initial model background error between the state variables after
the serial assimilation cycle was consistent with the covariance of the observation error.
The observation error is shaped like the horizontal distribution of the model instability.
Therefore, each ensemble member after mixing may represent one type of true condition
and the band state variable. The EICM can portray interannual variability very well with
a dominant four-year oscillation period [19,20]. Furthermore, this Te based structure was
also taken as a guideline for Ocean General Circulation Model (OGCM) based Hybrid
Coupled Model (HCM) simulations and ENSO predictions [25,26].

The advantage of EICM over an OGCMs is that their simplicity allows them to be
used for mechanism analysis. This is well recognized, and other efforts have been made to
improve the simulation of zonal currents and SST in EICMs [27,28]. The improvements
in these models have only been achieved by the addition of high order baroclinic modes.
These models are less realistic than the model with data assimilation. The equation for
sea surface temperature anomaly (SSTA) that is implemented in the SST (sea surface
temperature) component is calculated by Equation (1),

∂T′
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= −u′
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(T′e − T′) (1)

where T′ and T′e are anomalous sea surface temperature and water temperature below
mixed layer, and Te represents the subsurface entrainment temperature. The specified
seasonally varying mean SST is represented by T and Te. M(x) is the Heaviside step
function; −αT′ is the surface heat flux term that is parameterized as being negatively
proportional to the local SST anomalies with the thermal damping coefficient. u and v
are the prescribed seasonally varying mean zonal and meridional currents in the mixed
layer, and w is the prescribed seasonally varying mean entrainment velocity at the base of
the mixed layer, which is all obtained from the dynamical ocean model. u′, v′, and w′ are
the corresponding anomaly fields. H is the depth of the mixed layer. H2 is the depth of
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the second layer [29], κh is the coefficient for horizontal diffusivity, κv is the coefficient for
vertical diffusivity, and ∇h =

(
∂

∂x , ∂
∂y

)
is the horizontal divergence operator.

2.2. Three Dimensional Variational Models

There are many methods of data assimilation to simulate the SST in the Pacific Ocean.
It is generally very difficult to find the correct background variance. However, the accurate
estimation of covariance for data assimilation is still a difficult statistic. Several statistical
methods are used to obtain the estimation of covariance, which consists of (1) reducing
variance of error analysis to a minimum (by weighing the right through the least squares
method) and (2) variation methods (finding an analysis that reduces the cost function,
which is the distance measurement of both background analysis and observation). Variance
methods have become the most commonly used data assimilation technique in modern
numerical weather predictions. This is because of the advantage of allowing one to
eliminate the initial startup procedures being used in the 3D-Var analysis and in accordance
with finding the best xa analysis field. It is a function cost reduction. For example, the cost
function is defined as the sum of the distance between background field x and xb by the
inverse weight of the common background variances and the distance from the observed
y, being weighted by the inverse of the covariance error observation. In mathematics, the
cost function is

J(x) =
1
2

[
(x− xb)

TB−1(x− xb) + (y0 − H(x))TR−1(y0 − H(x))
]

(2)

where J(x) is cost function, xb is background field, y0 is observation field, B is the back-
ground error covariance, R is the observational error covariance, and H is the linear
observation operator matrix. In 3D-Var, there is no selection for a limited number of ob-
servations within the boundary of the grid point. All of the observations are used at the
same time, which leads to smoother analysis. The forecast variability or background error
B is determined using fewer assumptions in 3D-Var, especially a method called National
Meteorological Center (NMC) [30].

2.3. Four-Dimensional Variational Models

Four-Dimensional Variational models are referred to as 4D-Var. The 4D-Var method
evaluates the parameter of the model between observations and model prediction by
optimization (see Equation (3)). The optimization procedure is the adjustment process that
enables the prediction result to be as close as possible to the observation value. The method
of 4D-Var is similar to 3D-Var, in which the cost function is still the same, but it includes
time considerations. The “4D” nature of 4D-Var indicates the fact that the observation set
only spans 3D-space, but it also includes the time domain. The characteristic 4D-Var is that
time enters as a supplementary component. 4D-Var searches for an optimal set of model
parameters (such as the model’s initial optimum state), thereby reducing discrepancies
between the model forecast and the time at which the observational data were distributed
through the assimilation window [31]. The technique of this modeling is to find the model’s
initial conditions, x0, in order to partially reduce the scalar quantity, J. The cost function
J(x) is the function that depends on state vector x. It is defined as a measure of the fit that
simultaneously occurs during predicting the present true atmospheric state. One of these
versions is self-observation and the other is based on model predictions. The observational
data are composed of vector y. The measurements of observation do not cover all of the
atmospheres, so the initial data do not use observations alone. Additionally, different
observations are not necessarily required to provide independent information, and priority
information is needed for simulation. This is the second version of the atmospheric state
used in the cost function, and it is derived from previous model predictions. This state
is called the background xb, which is valid at the time t = 0, serving as “fillers” for data
gaps. The formula of function J is defined as (i) the background, and the model state x (ii)
predicted observations and model state [32].
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J(x) =
1
2
(x0 − xb

0)
TB−1(x0 − xb

0) +
1
2

N

∑
i=0

(yi − H(xi))
TR−1

i (yi − H(xi)) (3)

where xb
0 is the background or first guess at t0, yi and Ri are the vector of observations made

at time ti and its corresponding observation error covariance, B is the background error
covariance, xi = Mi(x0) is the model state at the observation time that was obtained by
integrating the non-linear model Mi, and H is the (nonlinear) observation operator at time
ti that maps model variables to observation variables. The control variable is the model
state vector x0 at the beginning of the window t0. This is a strong constraint minimization,
in which the analysis valid at tN is given by the model forecast xN = MN(x0).

2.4. Strategy

The EICM uses input data, namely SST data from ERSST with a resolution of two
degrees. The data sources used to improve the accuracy of the model using assimilation are
the data collected from the Coriolis satellite. The calculations of the assimilation method
are based on satellite data until the end of the forecast, and then the model will get the new
prediction data of SSTA. Figure 2 shows the working process of the assimilation method.

Figure 2. Ensemble Intermediate Coupled Model (EICM) Data Assimilation with an operational
assimilation working scheme.

Visual comparisons are, of course, not sufficient for assessing the accuracy of the data
assimilation and the model, so further tests are performed with statistical parameters, such
as the Correlation Coefficient (R) and Root Mean Square Error (RMSE). The results from
model and satellite data in 2011 were used for statistical accuracy testing according to the
following equation:

Root Mean Square Error

RMSE =

√
∑N

i=1(Pi −Oi)2

N
(4)

Correlation Coefficient

R =
∑N

i=1((Pi − P)(Oi −O))√
∑N

i=1(Pi − P)2 ∑N
i=1(Oi −O)2

(5)

From the above equation, Pi is the SSTA data from EICM data, Oi is the SSTA data
obtained from the buoys in each grid. P is the mean SSTA data from EICM data. O is the
mean SSTA data that are obtained from the buoys in each grid.
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3. Results and Conclusions
3.1. Results

The model’s results were compared with the observed data in 2011. The prediction of
the SST values of the model with and without data assimilation are called EICMDA and
EICM, respectively. The results of the two simulations were compared with observable
data in order to determine whether the data assimilation algorithm was working properly.
A preview of the SSTA results from each simulation was compared with the observations
made in these months to assess the accuracy of the preliminary model. Figure 3–6 shows
SSTA forecasts for Niño [33–35] and the Pacific Ocean (31◦ S to 31◦ N, 124◦ W to 282◦ W)
from EICM and EICMDA in January, March, June, and September 2011 using data starting
from December 2010, February 2011, May 2011, and August 2011, respectively. During the
severe La Niña incident in January, all three simulations gave SSTAs that were less than
the 30-year average. The forecast results of EICMDA with 4D-Var (Figure 3d) gave SSTA
values of less than EICM (Figure 3b) and EICMDA with 3D-Var (Figure 3c), which are more
closely matched to the measurements from ERSST (Figure 3a) at the Niño region. In the
western Pacific region, EICMDA with 4D-Var gives higher SSTA than the 3D-Var method
and EICM, respectively.

(a) Extended Reconstructed Sea Surface Tem-
perature (ERSST) Jan 2011

(b) EICM Jan 2011

(c) EICM three-dimensional variational (3D-
Var) Jan 2011

(d) EICM four-dimensional variational (4D-Var)
Jan 2011

Figure 3. Pacific region sea surface temperature anomaly (SSTA) values (◦C) in January 2011 from
ERSST measurements (a), and the SSTA prediction results at one-month lead time of EICM (b), EICM
3D-Var (c), and EICM 4D-Var (d).

In March, when the weak La Niña phenomenon occurred, all three simulations showed
an increase in SSTA values over the 30-year average in the Niño region, which was different
from the measurement data (Figure 4a) that SSTA will increase, but still less than the
30-year average. In the west of the Pacific, the 4D-Var method (Figure 4d) also had an
increased SSTA than 3D-Var method (Figure 4c) and EICM (Figure 4b).
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(a) ERSST Mar 2011 (b) EICM Mar 2011

(c) EICM 3D-Var Mar 2011 (d) EICM 4D-Var Mar 2011

Figure 4. Pacific region SSTA values (◦C) in March 2011 from ERSST measurements (a), and the SSTA
prediction results at one-month lead time of EICM (b), EICM 3D-Var (c), and EICM 4D-Var (d).

During the period of neutral state (June), it was found that the three simulations gave
no significant difference in their forecasting values. However, it was found that the SSTA
of the 4D-Var method was closer to the measurement data than 3D-Var and EICM at Niño
region, respectively (Figure 5a–d).

(a) ERSST Jun 2011 (b) EICM Jun 2011

(c) EICM 3D-Var Jun 2011 (d) EICM 4D-Var Jun 2011

Figure 5. Pacific region SSTA values (◦C) in June 2011 from ERSST measurements (a), and the SSTA
prediction results at one-month lead time of EICM (b), EICM 3D-Var (c), and EICM 4D-Var (d).
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During the weak La Niña phenomenon (September), the result of 4D-Var method
(Figure 6d) showed less SSTA than 3D-Var method and EICM model (Figure 6b,c, respec-
tively). In the south of the Pacific and NINO area, the forecast results of the 4D-Var method
have SSTAs that are close to the ERSST measurement data. When forecasting for all 12
months during the La Niña phenomenon, it was found that the 4D-Var method still gave
less SSTA value than 3D-Var and EICM. The forecast is not very different, as shown in
Figure 6.

(a) ERSST Sep 2011 (b) EICM Sep 2011

(c) EICM 3D-Var Sep 2011 (d) EICM 4D-Var Sep 2011

Figure 6. Pacific region SSTA values (◦C) in September 2011 from ERSST measurements (a), and the
SSTA prediction results at 1-month lead time of EICM (b), EICM 3D-Var (c), and EICM 4D-Var (d).

Figure 7 shows a comparison of SSTA values at the equator in 2011. The blue area
shows the SST, which is 30 years below the average SST. The white area shows the SST
that is equal to the average SST over the last 30 years. The red area shows the SST that is
30 years higher than the average SST. In the forecast, it was found that the SSTA values
that were predicted by the three simulations are higher than the data from floating buoys.
According to the SSTA forecast during the La Niña occurrence from January to May, the
EICMDA provide an SSTA closer to the observed data than the EICM simulation. In a
normal period from June to September, the EICMDA has less SSTA than the EICM and it
provides data that are close to the observation. The EICMDA system yielded warmer SST
anomalies than the EICM in the eastern tropical Pacific.
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(a) in-situ (b) EICM (c) EICMDA (d) Difference

Figure 7. Observed and predicted SSTA (◦C) evolutions along the equator.

A comparison of the accuracy of the EICMDA and EICM simulations was obtained
from the NOAA/PMEL TAO buoy network [36,37], where Figure 8 shows the buoy location
in the central Pacific Ocean that predicts ENSO-related climate variations.

Figure 8. Location of measurement data from NOAA/PMEL TAO buoy network.

The understanding of the relationship between variables is a very important aspect of
statistical analysis. Scatter plots are used to observe correlations between the result of the
model. In this work, the SSTA was modeled in three simulations: the EICM and EICMDA
simulations with 3D-Var and 4D-Var methods. A scatter plot uses points to explain the
SSTA values from each simulation, as shown in Figure 9. The location of each point on the
vertical and horizontal axis indicates SSTA values for an individual data point. Figure 9
compared the performance of the three assimilation algorithms with the in-situ data, and
found that the values of each SSTA were not very different. The EICM 4D-Var has less
SSTA variance than the other methods, which can be seen in less SSTA distribution than
the other methods. EICM without Data Assimilation had greater SSTA variability and, for
the three simulations, the majority of SSTAs were less than the in-situ. The distribution of
points in the scatter diagram represents the greater relationship between the data.
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Figure 9. Correlation of the SSTA (◦C) from the EICM and EICMDA with in-situ measurements.

The performance of the model was achieved by comparing the SSTA data of the three
simulations with the SSTA data from the buoy, with each data point being compared,
as shown in Figure 8. The main statistical parameters were calculated separately for
each month. It was found that, during the La Niña phenomenon from January to June,
the EICMDA was more accurate than EICM without Data Assimilation. In the normal
period, it was found that EICMDA and EICM can simulate very different SSTA values,
whereby EICMDA with 4D-Var has a lower error than the EICMDA with 3D-Var and EICM
simulation. The average RMSE of EICMDA with 4D-Var is 0.492, which is the smallest
error when compared to other methods. When looking at the correlation between the
model and the source data, it was found that the average correlation coefficient was 0.684,
which means that the data from the model correlated with source data in the same way.
The correlation coefficient from the three simulations gave little difference, as shown in
Table 1.

Table 1. Statistics of the EICM and EICMDA in comparison with in-situ measurements for each month separately.

Month Measurements Root Mean Square Error (◦C) Correlation Coefficient (-)
EICM EICM 3D-Var EICM 4D-Var EICM EICM 3D-Var EICM 4D-Var

Jan 65 0.610 0.618 0.559 0.818 0.829 0.816
Feb 65 0.500 0.490 0.501 0.812 0.822 0.831
Mar 65 0.502 0.482 0.547 0.715 0.641 0.725
Apr 65 0.326 0.334 0.317 0.837 0.868 0.811
May 66 0.486 0.447 0.589 0.764 0.687 0.786
Jun 65 0.432 0.474 0.374 0.838 0.837 0.856
Jul 65 0.435 0.483 0.415 0.691 0.677 0.676

Aug 67 0.601 0.674 0.658 0.325 0.144 0.250
Sep 67 0.626 0.606 0.593 0.294 0.399 0.355
Oct 66 0.474 0.464 0.459 0.600 0.621 0.651
Nov 65 0.468 0.437 0.415 0.752 0.767 0.773
Dec 65 0.585 0.52 0.48 0.727 0.785 0.681

Mean 0.504 0.503 0.492 0.681 0.673 0.684

From Table 1, it was found that the RMSE values of all three simulations had little
difference, because comparison with statistical data takes the data one month in advance.
When comparing the three-month, six-month, and nine-month prediction results, it was
found that the RMSE value varied more. The three-month forecast had a difference of 0.02
for RMSE. The six-month and nine-month forecast had a difference of RMSE is 0.07, as
shown in Table 2.
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Table 2. Statistics of the EICM and EICMDA in comparison with in-situ measurements for Lead time
in months.

Month Root Mean Square Error (◦C)
EICM EICM 3D-Var EICM 4D-Var

1-month lead 0.504 0.503 0.492
3-month lead 0.745 0.739 0.723
6-month lead 0.780 0.750 0.710
9-month lead 0.969 0.912 0.905

An error describes the difference between a simulation value and observation value.
A comparison of the monthly error showed that, when the ENSO phenomenon occurred in
the period of January to April and October to December, as shown in Figure 12, all three
simulations were able to calculate the anomalies of temperature close to the source data,
with the tolerance approaching 0. In the range not exceeding the ENSO phenomenon, the
EICMDA gives a tolerance of 0.3, which is less than the EICM, which gives a tolerance of
0.4, as shown in Figure 10. During April to May, the tolerances of the EICM without data
assimilation were significantly larger than the EICMDA. It can be seen that the model with
data assimilation gives a lower tolerance.

Figure 10. Mean monthly systematic error of the SSTA (◦C) calculated from the EICMDA and EICM
simulations.

The relationships between the ENSO phenomenon and precipitation in Thailand by
using data from 124 stations of the Thai Meteorological Department, which is the monthly
average precipitation data in 2011 and 2012, are shown in Figure 11. This is used to study
the climate impacts on Thailand.
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Figure 11. Location of measurement stations in Thailand.

Table 3 shows the correlation coefficient between the precipitation from Meteorological
Department in Thailand and the SSTA data from the EICM, EICMDA simulation, and
measurements data (from Climate Diagnostics Bulletin). It was found that the best correla-
tion coefficient is in the Niño 3.4 area that has been postponed for the next seven months.
Moreover, the result shows that, if SSTA in Niño 3.4 increases, then the precipitation in
Thailand will increase in the next seven months. On the other hand, the reduction in SSTA
in Niño 3.4 will cause precipitation in Thailand to decrease in the next seven months.

Table 3. The correlation coefficient between the SSTA and the precipitation in Thailand.

Lag Time Climate Diagnostics Bulletin EICM EICM 3D-Var EICM 4D-Var

No Lag 0.69 0.81 0.83 0.80
Lag 1 0.76 0.87 0.85 0.83
Lag 2 0.57 0.61 0.58 0.61
Lag 3 0.51 0.43 0.36 0.45
Lag 4 −0.03 −0.04 −0.15 −0.02
Lag 5 −0.42 −0.42 −0.53 −0.43
Lag 6 −0.73 −0.79 −0.81 −0.80
Lag 7 −0.88 −0.85 −0.86 −0.88
Lag 8 −0.77 −0.70 −0.68 −0.71
Lag 9 −0.35 −0.30 −0.28 −0.32

Lag 10 0.15 0.02 0.18 0.04
Lag 11 0.42 0.42 0.49 0.43
Lag 12 0.62 0.74 0.75 0.72

In 2011, the ENSO phenomenon correlates with rainfall in Thailand. When the severe
La Niña phenomenon occurred in the Niño 3.4 area in January, the amount of rainfall in
Thailand increased from July to September 2011, increasing from the 30-year average from
1981 to 2010 at 200–350 mm [38]. When the Niño 3.4 region experienced normal conditions
from May to September, the rainfall in Thailand was close to the 30-year average. When
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the La Niña phenomenon occurred from November to January 2012, it was found that
the amount of rainfall increased in September 2012, as shown in Figure 12. When the
phenomenon occurs, ENSO in the Niño 3.4 area will affect the rainfall in Thailand seven
months later, which corresponds to Table 3.

Figure 12. Relationship between SSTA index (◦C) and Precipitation (mm/month).

3.2. Conclusions

The application of 3D-Var and 4D-Var assimilation methods with EICM improves the
accuracy and consistency of SSTA results in measured satellites. An analysis of the results
revealed that the assimilation of the data provided a better view of the time during the
investigation and spatial error distribution. The statistics show that model errors were
reduced by using satellite data for the EICMDA with 4D-Var method. This study found
that the RMSE value of 4D-Var analysis was lower than for the other method. Moreover, the
correlation coefficient value of 4D-Var analysis was higher than for the other method. This
indicates that the best method is 4D-Var analysis, followed by 3D-Var analysis, respectively.
The study of the relationship between precipitation in Thailand and ENSO appearances
were consistent for seven months following this study, which showed that, when the El
Niño phenomenon occurred, the amount of precipitation in Thailand was lower than
normal. Moreover, when the La Niña phenomenon occured, the amount of rain in Thailand
was higher than normal.

In general, the ENSO phenomena predictions are affected by both initial data errors
and model discrepancies. Some of the models neglect certain processes in order to simplify
modeling. This often affects the accuracy of the predictions of the ENSO phenomenon
and may result in the forecasting results not being as accurate. In this work, the focus is
on reducing model errors caused by input data and applying data assimilation methods
to improve model accuracy. An assimilation method was used to reduce model errors
and develop an ENSO prediction system. There are several assimilation methods that are
used to reduce model errors, and to improve the effects of the ENSO phenomenon. For
example, Tao et al. (2020) [16] studied significantly improved El Niño predictive skills
that are related to the diversity of ENSO using the Nonlinear Forcing Singular Vector
(NFSV)-based assimilation method. In Duan and Zhou (2013) [14], the authors studied
and determined the sum of the different types of model errors and they likely represented
the errors that produce the largest prediction error at the prediction time. The 4D-Var
assimilation methods have been studied for ICM in the tropical Pacific region, and the
results show that 4D-Var effectively reduces the errors of ENSO analysis [31]. The data
assimilation with 4D-Var method constitutes one way to reduce the error value from the
model, which is consistent with the study results of this article. Therefore, the 4D-Var
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method improved the prediction skills of the ENSO phenomenon when compared to the
model without data assimilation.
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