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Abstract: Marital relations depend on many factors which can increase the amount of satisfaction or
unhappiness in the relation. A large percentage of marriages end up in divorce. While there are many
studies about the causes of divorce and how to prevent it, there are very few mathematical models
dealing with marital relations. In this paper, we present a continuous model based on the ideas
presented by Gottman and coauthors. We show that the type of influence functions that describe the
interaction between husband and wife is critical in determining the outcome of a marriage. We also
introduce stochasticity into the model to account for the many factors that affect the marriage and
that are not easily quantified, such as economic climate, work stress, and family relations. We show
that these factors are able to change the equilibrium state of the couple.

Keywords: mathematical model; marital relation; stochastic model

1. Introduction

Marital relations are very complicated. The satisfaction or lack of satisfaction in a
couple depends on the personality of each partner and on the interaction between them,
but also on many other external and internal factors, such as the economic and health
situations. Mathematical models together with empirical studies can help better understand
the relations and determine which factors can improve the satisfaction the most. The first
mathematical models dealing with the relation of a couple were linear models, such as the
Romeo and Juliet model [1], given by two linear ordinary differential equations in which
the rate of change of the satisfaction of each Romeo and Juliet is a linear combination of the
satisfaction of both. This model was also studied in Reference [2] and references therein.
Gosh [3] improved on this model by adding a as a third variable, the effort put by the male
to change the relation. In Reference [4], an optimal control problem for the satisfaction
is studied. In Reference [5], the appearance of chaos is studied in a similar model, and,
in Reference [6], periodic solutions are analyzed.

In the work by Gottman et al. [7], they introduced a set of discrete equations in
discrete time t to model the scores of a measured interaction between a married couple.
A negativity/positivity score, called Gottman-Levenson score, is given to each turn at
speech. The researchers categorized the affects displayed during the interaction using
five positive codes (interest, validation, affection, humor, joy), ten negative affect codes
(disgust, contempt, belligerence, domineering, anger, fear/tension, defensiveness, whining,
sadness, stonewalling), and a neutral affect code. Positive affects had an associated positive
integer, negative affects an associated negative integer, and the neutral affect had value
zero. The sum of the affects, Wt for the wife and Ht for the husband, give a rough measure
of the satisfaction during the tth turn at speech. The more positive the value, the more
satisfied the person will be. It was assumed that each person’s score is determined solely
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by his/her own and his/her partner’s immediately previous score and thus the equations
have the form:

Wt+1 = f (Wt, Ht)

Ht+1 = g(Wt+1, Ht).

The functions f and g have to be determined and, in general, are different for each
couple. Some simplifying assumptions are made on these functions. They assume that the
past two scores contribute separately and that the effects can be added together. Hence,
a person’s score is regarded as the sum of two components: (1) interpersonal influence
from spouse to spouse, termed influenced behavior, and (2) the individual’s own dynamics,
termed uninfluenced behavior. Uninfluenced behavior depends on each individual’s
previous score only, and influenced behavior depends on the score for the partner’s last
turn of speech.

The uninfluenced part has the form:

Pt+1 = r̃PPt + aP,

where P = H for the husband, and P = W for the wife. P is Gottman-Levenson variable
score at term at speech t; rP, the emotional inertia, is the rate at which the individual returns
to the uninfluenced equilibrium point, and aP is a constant specific to the individual. If we
call P the uninfluenced equilibrium (fixed) point, then P and ap are related by

P = ap/(1− rp).

They introduce the effect of the husband on the wife, and vice-versa, by defining
influence functions, IWH for the influence of the wife on the husband and IHW for the
one of the husband on the wife. So, for example, their equation for the satisfaction of the
husband is

Ht+1 = r̃H Ht + aH + IWH(Wt). (1)

They consider several different types of personalities for both the husband and the
wife: volatile, validating, conflict-avoiding, hostile, and hostile-detached. In all cases,
they consider two types of influence functions, bilinear and ojive or piece-wise constant.
The bilinear influence functions have the form:

I(P) =
{

mmP, P < 0
mpP, 0 ≤ P

, (2)

where mm and mp are the corresponding slopes. The ojive piece-wise constant influence
functions have the form:

I(P) =


I−2, P < T−
I−1, T− ≤ P < 0
I+1, 0 ≤ P < T+

I+2, T+ ≤ P

, (3)

where I−2, I−1, I+1, and I+2 are constants.
We developed a modification of Gottman’s work which consists of a couple of differ-

ential equations with more general influence functions and a stochastic term which models
possible external influences. We first analyze equilibrium points and their stability for the
deterministic continuous case and then study a stochastic version which uses white noise.
We study only the case where both husband and wife are validating, which means that P
and I(P) have the same sign. We vary the influence functions and external contributions.
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1.1. Continuous Model
Deterministic Case

We consider a continuous time model based on the model proposed by Gottman et al. [7].

dH
dt

=aH + rH H + IWH(W)

dW
dt

=aW + rWW + IHW(H).
(4)

We fix the values of rH , rW , aH , and aW so that the uninfluenced equilibrium states
coincide with the ones in Table 10.1 of Reference [7]. The discrete model in Reference [7]
is Euler’s approximation of (4) with time step equal to 1, as in Reference [8]. For our
first equation,

dH
dt
' Ht+1 − Ht

1
= aH + rH Ht + IWH(Wt). (5)

Hence,
Ht+1 = aH + (rH + 1)Ht + IWH(Wt). (6)

Therefore, comparing with Equation (1), rH = r̃H − 1, and rW = r̃W − 1. The param-
eters aH and aW depend on each person, and they are the same for the discrete and the
continuous models. They are connected to the uninfluenced steady states in the following
way. If there is no influence,

dW
dt

= aW + rWW; (7)

hence, the uninfluenced equilibrium point for the wife is given by

W =
−aW
rW

. (8)

We study the effect of four types of influence functions. We will consider only the
case when both husband and wife are validating. According to Gottman: “Validators
have an influence function that creates an influence towards negativity in a spouse if the
partner’s behavior is negative and an influence towards positivity if the partner’s behavior
is positive.” In Figure 1, we show an example with the values we will be using in the
numerical simulations, which were taken from Reference [7].

We will use as example the values of the inertia terms for husband and wife given
in Gottman’s Table 10.1, which are r̃H = 0.37 and r̃W = 0.14. Hence, rH = −0.63 and
rW = −0.86, both negative. All the other cases that are considered in Reference [7] can be
dealt with in a similar way.

The first influence function considered is Gottman’s bilinear function (2):

IWH(W) =

{
M−W, W < 0
M+W, 0 ≤W

, (9)

IHW(H) =

{
m−H, H < 0
m+H, 0 ≤ H

. (10)

Since it has been observed [7] that, for validating couples, when one spouse is
unhappy, his or her effect on the other spouse is larger than when he or she is happy, and
the values of the slopes for the negative parts are larger than for the positive parts.
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Figure 1. Bilinear influence functions IHW(H) (top) and IWH(W) (bottom).

The second one consists of piece-wise constant functions, just like the ojive function of
Reference [7]:

IWH(W) =


IW
−2, W < W−2

IW
−1, W−2 ≤W < W−1

0, W−1 ≤W < W1
IW
1 , W1 ≤W < W2

IW
2 , W2 ≤W

, (11)

IHW(H) =


IH
−2, H < H−2

IH
−1, H−2 ≤ H < H−1

0, H−1 ≤ H < H1
IH
1 , H1 ≤ H < H2

IH
2 , H2 ≤ H

. (12)

IW
j are constants that define the influence function of the wife on the husband, and IH

j
are constants that define the influence function of the husband on the wife. In the analysis
done in Reference [7], these functions are non-decreasing, and H−1 = H1 = 0.

In this work, we consider other scenarios based on conversations with a family thera-
pist and on specific cases studied by Gottman, where I(P) is better fitted with more general
functions and not necessarily bilinear or piece-wise constant. For instance, we assume
H−1 < 0 < H1, which means that small values of the happiness of one spouse do not affect
the other spouse’s happiness. We also study the possibility that, for larger values of the
satisfaction (or dissatisfaction), there may be a saturation effect, and the influence function
decreases or even goes to zero. The corresponding nullclines can be seen in Figures 2–4.
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Figure 2. Piece-wise constant influence functions, scenario 1. Plot of H and W vs. time for the
deterministic case and a stochastic realization (top) and a plot of the nullclines and the equilibrium
points (bottom). Observe that these nullclines are discontinuous; therefore, for the H nullcline only,
the horizontal lines count, and, for the W nullcline, only the vertical parts count.
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Figure 3. Piece-wise constant influence functions, scenario 2. Plot of H and W vs. time for the
deterministic case and a stochastic realization (top) and a plot of the nullclines and the equilibrium
points (bottom).
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Figure 4. Piece-wise constant influence functions, scenario 2. Plot of H and W vs. time for the
deterministic case and a stochastic realization (top) and a plot of the nullclines and the equilibrium
points (bottom). In this example, the external white noise significantly changes the state of satisfaction
of the couple.
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We introduce a third type of influence function where we assume that, for small values
of the partner’s satisfaction, the person’s satisfaction increases with a linear rate up to a
point and then the rate decreases linearly until, for a certain value, the rate is zero, and
similarly for negative values of the satisfaction. In this way, we introduce a saturation of
the influence of one spouse on the other. The influence functions are:

IWH(W) =



0, W < W−2
−W−2 IW

−1
W−1−W−2

+
IW
−1

W−1−W−2
W, W−2 ≤W < W−1

IW
−1

W−1
W, W−1 ≤W < 0

IW
1

W1
W, 0 ≤W < W1

−W2 IW
+1

W1−W2
+

IW
1

W1−W2
W, W1 ≤W < W2

0, W2 ≤W

(13)

IHW(H) =



0, H < H−2
−H−2 IH

−1
H−1−H−2

+
IH
−1

H−1−H−2
H, H−2 ≤ H < H−1

IH
−1

H−1
H, H−1 ≤ H < 0

IH
1

H1
H, 0 ≤ H < H1

−H2 IH
1

H1−H2
+

IH
1

H1−H2
H, H1 ≤ H < H2

0, H2 ≤W

. (14)

The final type of influence functions that we consider are similar to those of the third
type only replacing the piece-wise linear functions by piece-wise cubic functions so that
the influence functions will not only be continuous but also smooth.

IWH(W) =



0, W < W−2
2

3(W−2−W−1)
W3 +

3IW
−1+2W2

−2−4W−1W−2+2W2
−1

3W2
−2−6W−1W−2+3W2

−1
W2, W−2 ≤W < W−1

− 2
3W−1

W3 +
3IW
−1+2W2

−1
3W2
−1

W2, W−1 ≤W < 0

− 2
3W1

W3 +
3IW

1 +2W2
1

3W2
1

W2, 0 ≤W < W1

2
3(W2−W1)

W3 +
3IW

1 +2W2
2−4W1W2+2W2

1
3W2

2−6W1W2+3W2
1

W2, W1 ≤W < W2

0, W+2 ≤W

, (15)

IHW(H) =



0, H < H−2
2

3(H−2−H−1)
H3 +

3IH
−1+2H2

−2−4H−1 H−2+2H2
−1

3H2
−2−6H−1 H−2+3H2

−1
H2, H−2 ≤ H < H−1

− 2
3H−1

H3 +
3IH
−1+2H2

−1
3H2
−1

H2, H−1 ≤ H < 0

− 2
3H1

H3 +
3IH

1 +2H2
1

3H2
1

H2, 0 ≤ H < H1

2
3(H2−H1)

H3 +
3IH

1 +2H2
2−4H1 H2+2H2

1
3H2

2−6H1 H2+3H2
1

H2, H1 ≤ H < H2

0, H2 ≤ H

. (16)

Graphs for these types of influence functions for fixed values of the parameters are
given in Section 3. The values of the parameters we chose for all the new influence functions
are only academic; they are not based on actual experiments with couples.

1.2. Stochastic Model

The satisfaction or happiness of an individual depends not only on the personality of
the person and his or her spouse but also on economic factors, weather, family, political
situation, and many other factors. These factors are very hard to quantify and have a large
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degree of variability and uncertainty. One way to include them in mathematical models is
by using Ito Stochastic Differential Equations [9,10].

A class of frequently used stochastic processes is the Brownian one.
We will add a white noise term to our deterministic models.

dH =(aH + rH H + IWH(W))dt + s1dWH(t)

dW =(aW + rWW + IHW(H))dt + s2dWW(t).
(17)

Here, WH(t) and WW(t) are Brownian motions also known in Mathematics as Wiener
Processes. Since we assume that the noise does not depend on either spouse’s satisfaction,
we are adding the white noise multiplied by a constant s1 or s2.

2. Analysis of the Deterministic Case

In this section, we study the steady or equilibrium solutions of Equation (4) and
their local stability for the four types of influence functions considered. The equilibrium
solutions are found by determining the intersection of the nullclines of (4). The local
stability of an equilibrium point is found by linearizing (4) around the equilibrium point
and finding the eigenvalues of the Jacobian matrix. If all the eigenvalues have negative
real part, then the equilibrium point is locally stable. Equilibrium points represent the state
of happiness (if the equilibrium point is positive) or unhappiness (if the equilibrium point
is negative) the married couple tends to approach.

Qualitative Analysis for the Bilinear Influence Function

We consider system (4) with influence function of bilinear type given as:

IWH(W) =

{
M−W, W < 0
M+W, 0 ≤W

, (18)

IHW(H) =

{
m−H, H < 0
m+H, 0 ≤ H

. (19)

These functions define different systems, depending on the quadrant.

dH
dt

=

{
aH + rH H + M−W, W < 0
aH + rH H + M+W, 0 ≤W

, (20)

dW
dt

=

{
aW + rWW + m−H, H < 0
aW + rWW + m+H, 0 ≤ H

. (21)

The equilibrium points for each case, (H∗, W∗), can be written as:

H∗ =
aW M− aHrW
rHrW −mM

, W∗ =
aHm− aWrH
rHrW −mM

, (22)

where the values of m and M are taken, according to the quadrant under consideration,
to be m− or m+ and M− or M+.

If the value of W(or H) is positive, it means the wife (or husband) is happy. If W(or H)
is negative, it means the wife (or husband) is unhappy. Therefore, if the equilibrium point
is in the first quadrant, then both wife and husband are happy. In the third quadrant, both
are unhappy. In the second quadrant, the husband is unhappy, and the wife is happy; and,
in the fourth quadrant, the wife is unhappy, and the husband is happy.

As usual, the stability of the equilibria is analyzed by linearizing the system around
the equilibrium points. The corresponding Jacobians of the linearized system are:(

rH M
m rW

)
.
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Therefore, trace = rH + rW = p, which is negative for the given r’s, determinant =
rWrH − mM = q; then, the discriminant is ∆ = p2 − 4q = (rH − rW)2 + 4mM , and the
eigenvalues are

λ± =
p±
√

∆
2

.

Therefore, the critical point of the linearized system will be:

(1) A saddle point if:

∆ > 0, q < 0⇔ (rH − rW)2 + 4mM > 0 and rHrW < mM.

(2) A node if:

∆ ≥ 0, q > 0⇔ (rH − rW)2 + 4mM ≥ 0 and rHrW > mM.

It will be stable if p < 0 or unstable if p > 0 .
(3) A spiral if:

∆ < 0, p 6= 0⇔ (rH − rW)2 + 4mM < 0 and rH + rW 6= 0;

it will be stable if p < 0 and unstable if p > 0.
(4) A center if:

∆ < 0, p = 0⇔ (rH − rW)2 + 4mM < 0 and rH + rW = 0.

(5) A proper or improper node if:

∆ = 0⇔ (rH − rW)2 + 4mM = 0.

It is known (Hartman-Grobman Theorem) that the fixed points of the non-linear
system and of its linearization will be of the same kind except when the eigenvalues have a
real part equal to zero.

For the problem under investigation, we have p < 0, and, for the validating model,
m > 0, M > 0 always; therefore, ∆ ≥ 0 and, using the above results, we have proved the
following:

Theorem 1. The equilibrium points, or steady states of system (4) for the bilinear influence function,
are given by

H∗ =
aW M− aHrW
rHrW −mM

W∗ =
aHm− aWrH
rHrW −mM

,

for the appropriate values of m and M on the corresponding quadrant. These points are:

(i) Saddle points (and therefore unstable) if and only if rHrW < mM , and (rH − rW)2 +
4mM ≥ 0 or

(ii) Stable nodes if and only if rHrW > mM and (rH − rW)2 + 4mM ≥ 0 .

It is interesting to note that, while the stability of the equilibrium points (or steady
state solutions) depends on the emotional inertia (rH and rW) and the influence function
(m and M), their existence depends also on the values of the individual constants aH and
aW , which are proportional to the uninfluenced equilibrium points. For the influence
function of the bilinear type, it was discovered that, changing only the slopes m and M,
the equilibrium points will move around the quadrants, and their stability will also change.
This means that, by changing only the influence functions, the satisfaction of the couple can
approach a constant value favorable to both if (H∗, W∗) is in quadrant (I), favorable only
to the wife if (H∗, W∗) is in quadrant (II), unfavorable to both if (H∗, W∗) is in quadrant
(III), and favorable only to the husband if (H∗, W∗) is in quadrant (IV). These steady state
solutions can be stable or unstable. If rHrW > mM, the satisfaction of the couple will not
change with time; otherwise, it will and can get very far from the values (H∗, W∗). If we
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are given fixed values for the r’s and the a’s, varying the values of the slopes m and M, we
can control the position and stability of the equilibrium states. The same is true if the r’s
and the slopes are given; then, varying the a’s, stability and position are determined.

In terms of therapeutic interventions, this describes the situation when, without
changing each person (the a’s and the r’s), the satisfaction of the couple can be changed
by working jointly with both members to modify the values of the interaction (bilinear
influence function), or, when working with husband and wife separately, their uninfluenced
equilibrium points (the a’s) are changed. On the other hand, the stability of the equilibria
can only be altered by changing the relationship between the inertia, rW and rH , and the
slopes m, M.

To illustrate the above, we take the values for the variables of the model given in
Table 10.1 from Gottman for the validating couple, which are: Inertia for the husband =
r̃H = 0.37, and inertia for the wife = r̃W = 0.14; therefore, rH = r̃H − 1 = −0.63, rW =
r̃W − 1 = 0.86. We chose influence functions with m− = 0.31, m+ = 0.21, M− = 0.28,
M+ = 0.15. Then, the Jacobians have the form:(

−0.63 M
m −0.86

)
,

where the values of the slopes m, M depend on the quadrant. For the first quadrant:
m = m+ = 0.21, M = M+ = 0.15. The equilibrium points are

H∗ =
0.15aW + 0.86aH

0.5103
, W∗ =

0.21aH + 0.63aW
0.5103

,

and

∆ = 0.0529 + 4(0.0315) = 0.1789 > 0, rHrW = 0.5418 > 0.0315 = m+M+;

then, from Theorem 1, the equilibrium points, if they exist, are stable nodes.
Conditions for the existence of equilibrium points in the first quadrant are H∗ > 0

and W∗ > 0, which mean:

0.15aW + 0.86aH > 0 and 0.21aH + 0.63aW > 0.

Similar analyses can be carried out for the other quadrants, which will end up in
inequalities between the a’s. In this particular example, for all quadrants, rHrW > mM and
∆ > 0; therefore, Theorem 1 implies that all the equilibrium points are stable nodes.

Note that, for general validating personality types, rH and rW are both negative, so
one of the eigenvalues is negative, but the second one may be positive for large enough
values of the radicand. This is consistent with Theorem 1.

For the case of influence functions given by piece-wise constants (11) and (12), the
number and values of the equilibrium points depend on the values of the constants, but all
equilibrium points have the same local stability.

Theorem 2. For validating personalities, all the equilibrium points for influence functions given
by piece-wise constants (11) and (12) are stable.

The proof is straightforward since the influence functions only add a constant to each
equation, and the partial derivatives with respect to H and W are zero, except at the jumps.

Therefore, the Jacobian matrix is (
rW 0
0 rH

)
,

with eigenvalues λ1 = rW , λ2 = rH , and both are negative for validating personalities.
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For the other types of influence functions studied, due to the complexity, we will only
give the equilibrium points and their stability for fixed values of the parameters. This will
be done in the next section.

3. Numerical Simulations

Numerical calculations were done to both validate the theoretical results of the previ-
ous section and to find the equilibria and stability for the cases when the analytical solutions
are very complicated to find. Particular solutions are also calculated. As mentioned be-
fore, we only consider validating personality types since our main objective is to show
that the influence functions used have a determining effect on the number of equilibrium
points and on their stability and that the same is true of the stochasticity. A similar study
can be done for other personality types. The equilibrium points and their stability were
found using Mathematica. The simulations of (4) are done using the numerical routine
lsode [11], as implemented in Octave. The stochastic system (17) is discretized using Milstein
method [9,12].

We are not doing a complete statistical study of the effects of the noise but only
including a few representative realizations which show that external influences sometimes
do not change very much the state of the system, but sometimes noise can switch the system
to a neighborhood of another equilibrium point, with different values for the satisfaction of
the couple.

3.1. Single Individual with Validating Personality

First, consider a single individual with validating personality with no external noise.
The values of the parameters are chosen to give the same single equilibrium point given
by Reference [7]. These are aH = 0.2394, rH = −0.63, which give the uninfluenced
equilibrium value of 0.38 for the husband, and aW = 0.4472, rW = −0.86 giving an
equilibrium of 0.52 for the wife. Since the eigenvalues are rH and rW , both uninfluenced
equilibrium points are stable. Figure 5 is a simulation of the deterministic and stochastic
models for the husband without influence from the wife. For the wife, we get a similar plot.
The stochastic simulations were done with s1 = s2 = 0.2.

0 20 40 60 80 100
-1

-0.5

0

0.5

1

t

H
(t

)

Husband alone, deterministic and stochastic

H deterministic
H stochastic

Figure 5. A numerical simulation of the deterministic case and a stochastic realization for a validating
husband with no influence from the wife.

3.2. Validating Wife and Husband with Bilinear Influence Function

Next, we consider the influence of the spouse. The simplest case is that of bilinear
influence functions (9) and (10). The assumption is that, the greater the happiness, the more
influence it has on the spouse. For positive values of the happiness, we used the values
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given by Reference [7]: aH = 0.2394, aW = 0.4472, rH = −0.63, rw = −0.86, m+ = 0.1922;
m− = 1.7, M+ = 0.1075, M− = 1.9. The values of the slopes for negative happiness were
just chosen to be larger than the ones corresponding to positive happiness, as stated by
Reference [7]. The equilibrium states are (H = 0.4873, W = 0.6289) and (H = −0.3927,
W = −0.2562). The corresponding eigenvalues are λ1 = −0.9291, λ2 = −0.5609, and
λ1 = −2.5459, λ2 = 1.00559, so the positive equilibrium is stable, and the negative
unstable. Figure 6 has a simulation for both the deterministic model and a realization
for the stochastic one (top) and a plot of the nullclines showing the points of intersection
(bottom). The nullclines are obtained from Equation (4). Setting the first equation equal to
zero, we obtain

aH + rH H + IWH(W) = 0;

therefore, one nullcline is given by

H = H(W) =
1

rH
(−IWH(W)− aH).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

t

H
(t
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 W

(t
)

Husband and Wife, deterministic and stochastic

H deterministic
H Milstein
W deterministic
W Milstein

Figure 6. Bilinear influence functions. Plot of H and W vs. time for the deterministic case and a
stochastic realization (top) and a plot of the nullclines and the equilibrium points (bottom). In this
example, the external noise only makes the satisfaction oscillate around the equilibrium state of the
deterministic case.
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Similarly, the other nullcline is given by

W = W(H) =
1

rW
(−IHW(H)− aW).

Observe that the nullclines are rescaled and displaced versions of the influence functions.

3.3. Piece-Wise Influence Function

We will use the same values of aH , aW , rH , and rW in all our examples. In addition, in
all the following examples, we will only consider that IHW(·) = IWH(·) and will call both
of them just I(P) for simplicity, with P = H or P = W.

For piece-wise constant influence functions (11) and (12), we studied three different
scenarios. Scenario 1 is the case studied by Reference [7], in which the functions are non-
decreasing and, as happiness increases, the influence function increases. The values used
are I−2 = −2, I−1 = −1, I1 = 0.8, I2 = 1, P−2 = −1.5, P−1 = P1 = 0, P2 = 1.5. For these
values, there are three equilibrium points: (H = −2.7946, W = −1.8056), (H = −1.2073,
W = −0.642791), and (H = 1.9673, W = 1.6828). The eigenvalues for the three are
λ1 = −0.86, λ2 = −0.63, so all the equilibrium points are stable. Figure 2 has a simulation
for both the deterministic model and a realization for the stochastic one (top) and a plot of
the nullclines showing the points of intersection (bottom).

Scenario 2 is similar to scenario 1, except that we consider that there is a region around
zero satisfaction for which there is no influence on the spouse. The values of the parameters
used are I−2 = −2, I−1 = −1, I1 = 0.8, I2 = 1, P−2 = −1.5, P−1 = 0.5, P1 = 0.6, P2 = 1.5.
There are now four equilibrium points, (H = −2.7946, W = −1.8056), (H = −1.2073,
W = −0.6428), (H = 0.38, W = 0.52), and (H = 1.9673, W = 1.6828). The eigenvalues
are the same as for scenario 1, and all equilibrium points are still stable. Figure 3 has a
simulation for both the deterministic model and a realization for the stochastic one (left)
and a plot of the nullclines showing the points of intersection (right).

In scenario 3, we take scenario 2, but, instead of using non-decreasing influence
functions, we assume that there is a saturation. For large absolute values of the satisfaction,
the person pays less attention to the spouse, and their own satisfaction changes slower
or even stops changing. Here, we assume that it stops changing. The values of the
parameters are I−2 = 0, I−1 = −1, I1 = 0.8, I2 = 0, P−2 = −1.5, P−1 = 0.5, P1 = 0.6,
P2 = 1.5. There are now only two equilibrium points, (H = −1.2073, W = −0.6428) and
(H = 0.38, W = 0.52). The eigenvalues are the same as for scenario 1, and all equilibrium
points are still stable. Figure 4 has a simulation for both the deterministic model and a
realization for the stochastic one (top) and a plot of the nullclines showing the points of
intersection (bottom).

3.4. Piece-Wise Linear Influence Function

The next influence function we consider is a continuous function formed by piece-wise
linear functions. For small positive values of the satisfaction, the influence grows linearly
up to a point where its starts to decrease linearly and then goes to zero, and similarly for
negative values of the satisfaction. The parameters used in the simulations are P1 = 0.5,
P2 = 1.5, P−1 = −0.5; P−2 = −1.5, I1 = 0.7, I2 = −1.5. There are five equilibrium
points, (H = −1.1405, W = −0.4760), (H = −0.5708, W = −1.1006), (H = −1.0319,
W = −0.2965), (H = −0.1829, W = −0.1182), and (H = 1.1746, W = 0.7848). For these
equilibrium points, the first, third, and fifth are stable, and the other two unstable. Figure 7
has a simulation for both the deterministic model and a realization for the stochastic one
with initial values H0 = 0, W0 = 0 (top) and a plot of the nullclines showing the points of
intersection (bottom).
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Figure 7. Piece-wise linear influence functions. Plot of H and W vs. time for the deterministic case
and a stochastic realization with initial values H0 = 0, W0 = 0 (top) and a plot of the nullclines and
the equilibrium points (bottom).

Figure 8 shows a simulation for both the deterministic model and a realization for the
stochastic one with initial values H0 = −0.47, W0 = −1.14. Note that the stochastic solution
moves around a different equilibrium point than the deterministic solution. This illustrates
that, in certain situations, it is possible for external factors to change the satisfaction of
the couple.

The last influence function used in the examples is a piece-wise cubic, continuous and
differentiable everywhere. For small positive values of the satisfaction, the influence grows
as a cubic, up to a point where its starts to also decrease as a cubic and then goes to zero, and
similarly for negative values of the satisfaction. The parameters used in the simulations are
P1 = 0.5, P2 = 1.5, P−1 = −0.5; P−2 = −1.5, I1 = 0.7, I2 = −1.5. There are seven equilib-
rium points, (H = −0.4470, W = −0.8574), (H = −0.6063, W = −0.8073), (H = −0.7506,
W = −0.3504), (H = −0.3452, W = −0.2828), (H = 1.4651, W = 0.5219), (H = 0.9063,
W = 0.9179), and (H = 0.4787, W = 1.2738). The first, third, fifth, and seventh are stable,
and the other three unstable. Figure 9 has a simulation for both the deterministic model
and a realization for the stochastic one with initial values H0 = 0, W0 = 0 (left) and a plot
of the nullclines showing the points of intersection (right).
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Figure 8. Piecewise linear influence functions. Plot of H and W vs. time for the deterministic case
and a stochastic realization with initial values H0 = −0.47, W0 = −1.14.
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Figure 9. Piece-wise cubic influence functions. Plot of H and W vs. time for the deterministic case and a stochastic
realization with initial values H0 = 0, W0 = 0 (left) and a plot of the nullclines and the equilibrium points (right).

Figure 10 shows a simulation for both the deterministic model and a realization for the
stochastic one with initial values H0 = −1, W0 = −1. Note that the deterministic solution
oscillates between two equilibrium points and that the stochastic solution moves around a
different equilibrium point. This illustrates that, in certain situations, it is possible to have
periodic deterministic solutions and also for external factors to change the satisfaction of
the couple.
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Figure 10. Piece-wise cubic influence functions. Plot of H and W vs. time for the deterministic case
and a stochastic realization with initial values H0 = −1, W0 = −1.

4. Conclusions

The type of influence functions used in modeling the satisfaction of a couple has
a critical influence on the type of solutions obtained. Even the two types of influence
functions considered in Reference [7] produce different number of equilibrium points. This
suggests that there is a need for determining those functions more accurately. In addition,
external factors, such as economic situation, weather, family, and also more drastic ones,
such as illness or a death, unemployment, or getting a better job, can change the satisfaction
of a couple. We mostly did concrete examples for a type of personalty, but similar results
should happen for different influence functions, parameter values, and personality types.

The analysis of the deterministic model led us to unravel the role of the parameters
of the models. While the stability of the equilibrium points (or steady state solutions)
depends on the emotional inertia (rH and rW) and the influence function (m and M),
their existence and position depends also on the values of the individual constants aH and
aW . In therapeutic terms, this means that the position of the steady states can be changed
by giving therapy separately to husband and wife, but the stability can only be changed by
modifying the interaction of the couple.

The study of the stochastic model showed that some perturbations have very little
effect on the satisfaction of the couple, but some can move the couple from one steady state
to another or to an oscillatory solution. In other words, the introduction of random external
effects can sometimes change the satisfaction of the couple, even when the personalities
and type of interaction remain unchanged. In our numerical experiments, roughly 20% of
cases led to a qualitative change. This is related to the relative sizes of the white noise and
the basins of attraction of the different equilibrium points.

For ease of reference, we include, in Table 1, a summary of the data for the numeri-
cal results.
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Table 1. Summary of parameter values used. The same values for aH , aW , rH , and rW are used in all our examples.

Figure Number Type of Influence Function Parameters

2 Zero influence function aH = 0.2394, rH = −0.63.

3 Bilinear aH = 0.2394, aW = 0.4472, rH = −0.63, rw = −0.86, m+ = 0.1922;
m− = 1.7, M+ = 0.1075, M− = 1.9.

4 Piece-wise constant I−2 = −2, I−1 = −1, I1 = 0.8, I2 = 1, P−2 = −1.5, P−1 = P1 = 0,
P2 = 1.5.

5 Piece-wise constant I−2 = −2, I−1 = −1, I1 = 0.8, I2 = 1, P−2 = −1.5, P−1 = 0.5,
P1 = 0.6, P2 = 1.5.

6 Piece-wise constant with saturation I−2 = 0, I−1 = −1, I1 = 0.8, I2 = 0, P−2 = −1.5, P−1 = 0.5,
P1 = 0.6, P2 = 1.5.

7 and 8 Piece-wise linear P1 = 0.5, P2 = 1.5, P−1 = −0.5; P−2 = −1.5, I1 = 0.7, I2 = −1.5.

9 and 10 Piece-wise cubic P1 = 0.5, P2 = 1.5, P−1 = −0.5; P−2 = −1.5, I1 = 0.7, I2 = −1.5.
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