
Mathematical

and Computational

Applications

Article

Chaotic Multi-Objective Simulated Annealing and Threshold
Accepting for Job Shop Scheduling Problem

Juan Frausto-Solis 1,* , Leonor Hernández-Ramírez 1, Guadalupe Castilla-Valdez 1, Juan J. González-Barbosa 1

and Juan P. Sánchez-Hernández 2

����������
�������

Citation: Frausto-Solis, J.;

Hernández-Ramírez, L.;

Castilla-Valdez, G.;

González-Barbosa, J.J.;

Sánchez-Hernández, J.P. Chaotic

Multi-Objective Simulated Annealing

and Threshold Accepting for Job Shop

Scheduling Problem. Math. Comput.

Appl. 2021, 26, 8. https://doi.org/

10.3390/mca26010008

Received: 26 September 2020

Accepted: 8 January 2021

Published: 12 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate Program Division, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero,
Cd. Madero 89440, Mexico; iscleo1@gmail.com (L.H.-R.); gpe_cas@yahoo.com.mx (G.C.-V.);
jjgonzalezbarbosa@hotmail.com (J.J.G.-B.)

2 Dirección de Informática, Electrónica y Telecomunicaciones, Universidad Politécnica del Estado de Morelos,
Boulevard Cuauhnáhuac 566, Jiutepec 62574, Mexico; juan.paulosh@upemor.edu.mx

* Correspondence: juan.frausto@gmail.com

Abstract: The Job Shop Scheduling Problem (JSSP) has enormous industrial applicability. This
problem refers to a set of jobs that should be processed in a specific order using a set of machines. For
the single-objective optimization JSSP problem, Simulated Annealing is among the best algorithms.
However, in Multi-Objective JSSP (MOJSSP), these algorithms have barely been analyzed, and the
Threshold Accepting Algorithm has not been published for this problem. It is worth mentioning that
the researchers in this area have not reported studies with more than three objectives, and the number
of metrics they used to measure their performance is less than two or three. In this paper, we present
two MOJSSP metaheuristics based on Simulated Annealing: Chaotic Multi-Objective Simulated
Annealing (CMOSA) and Chaotic Multi-Objective Threshold Accepting (CMOTA). We developed
these algorithms to minimize three objective functions and compared them using the HV metric with
the recently published algorithms, MOMARLA, MOPSO, CMOEA, and SPEA. The best algorithm
is CMOSA (HV of 0.76), followed by MOMARLA and CMOTA (with HV of 0.68), and MOPSO
(with HV of 0.54). In addition, we show a complexity comparison of these algorithms, showing that
CMOSA, CMOTA, and MOMARLA have a similar complexity class, followed by MOPSO.

Keywords: JSSP; CMOSA; CMOTA; chaotic perturbation

1. Introduction

The Job Shop Scheduling Problem (JSSP) has enormous industrial applicability. This
problem consists of a set of jobs, formed by operations, which must be processed in a
set of machines subject to constraints of precedence and resource capacity. Finding the
optimal solution for this problem is too complex, and so it is classified in the NP-hard
class [1,2]. On the other hand, the JSSP foundations provide a theoretical background for
developing efficient algorithms for other significant sequencing problems, which have
many production systems applications [3]. Furthermore, designing and evaluating new
algorithms for JSSP is relevant not only because it represents a big challenge but also for its
high industrial applicability [4].

There are several JSSP taxonomies; one of which is single-objective and multi-objective
optimization. The single-objective optimization version has been widely studied for many
years, and the Simulated Annealing (SA) [5] is among the best algorithms. The Threshold
Accepting (TA) algorithm from the same family is also very efficient in this area [6]. In con-
trast, in the case of Multi-Objective Optimization Problems (MOOPs), both algorithms for
JSSP and their comparison are scarce.

Published JSSP algorithms for MOOP include only a few objectives, and only a few
performance metrics are reported. However, it is common for the industrial scheduling
requirements to have several objectives, and then the Multi-Objective JSSP (MOJSSP)

Math. Comput. Appl. 2021, 26, 8. https://doi.org/10.3390/mca26010008 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0001-9307-0734
https://orcid.org/0000-0002-9448-1946
https://doi.org/10.3390/mca26010008
https://doi.org/10.3390/mca26010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26010008
https://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/26/1/8?type=check_update&version=2

Math. Comput. Appl. 2021, 26, 8 2 of 34

becomes an even more significant challenge. Thus, many industrial production areas
require the multi-objective approach [7,8].

In single-objective optimization, the goal is to find the optimal feasible solution of
an objective function. In other words, to find the best value of the variables which fulfill
all the constraints of the problem. On the other hand, for MOJSSP, the problem is to
find the optimum of a set of objective functions f1(x), f2(x) . . . fn(x) depending on a set
of variables x and subject to a set of constraints defined by these variables. To find the
optimal solution is usually impossible because fulfilling some objective functions may not
optimize the other objectives of the problem. In MOOP, a preference relation or Pareto
dominance relation produces a set of solutions commonly called the Pareto optimal set [9].
The Decision Makers (DMs) should select from the Pareto set the solution that satisfies
their preferences, which can be subjective, based on experience, or will most likely be
influenced by the industrial environment’s needs [10]. Therefore, the DM needs to have
a Pareto front that contains multiple representative compromise solutions, which exhibit
both good convergence and diversity [11].

In the study of single-objective JSSP, many algorithms have been applied. Some of
the most common are SA, Genetic Algorithms (GAs), Tabu Search (TS), and Ant Systems
(ASs) [12]. In addition, as we mention below, few works in the literature solve JSSP
instances with more than two objectives and applying more than two metrics to evaluate
their performance. Nevertheless, for MOJSSP, the number of objectives and performance
metrics remains too small [8,13–15]. The works of Zhao [14] and Mendez [8] are exceptions
because the authors have presented implementations with two or three significant objective
functions and two performance metrics. Moreover, SA and TA have shown to be very
efficient for solving NP-hard problems. Thus, this paper’s motivation is to develop new
efficient SA algorithms for MOJSSP with two or more objective functions and a larger
number of performance metrics.

The first adaptation of SA to MOOP was an algorithm proposed in 1992, also known
as MOSA [16]. An essential part of this algorithm is that it applies the Boltzmann criterion
for accepting bad solutions, commonly used in single-objective JSSP. MOSA combines
several objective functions. The single-objective JSSP optimization with SA algorithm and
MOSA algorithm for multi-objective optimization is different in several aspect related to
determining the energy functions, using and generating new solutions, and measuring
their quality as is well known, these energy functions are required in the acceptance
criterion. Multiple versions of MOSA have been proposed in the last few years. One
of them, published in 2008, is AMOSA, that surpassed other MOOP algorithms at this
time [17]. In this work, we adapt this algorithm for MOJSSP. TA [6] is an algorithm for
single-objective JSSP, which is very similar to Simulated Annealing. These two algorithms
have the same structure, and both use a temperature parameter, and they accept some bad
solutions for escaping from local optima. In addition, these algorithms are among the best
JSSP algorithms, and their performance is very similar. Nevertheless, for MOJSSP, a TA
algorithm has not been published, and so for obvious reason, it was not compared with the
SA multi-objective version.

MOJSSP has been commonly solved using IMOEA/D [14], NSGA-II [18], SPEA [19],
MOPSO [20], and CMOEA [21]; the latter was renamed CMEA in [8]. Nevertheless,
the number of objectives and performance metrics of these algorithms remains too small.
The Evolutionary Algorithm based on decomposition proposed in 2016 by Zhao in [14] was
considered the best algorithm [22]. The Multi-Objective Q-Learning algorithm (MOQL) for
JSSP was published in 2017 [23]; this approach uses several agents to solve JSSP. An exten-
sion of MOQL is MOMARLA, which was proposed in 2019 by Mendez [8]. This MOJSSP
algorithm uses two objective functions: makespan and total tardiness. MOMARLA over-
comes the classical multi-objective algorithms SPEA [19], CMOEA [21], and MOPSO [20].

The two new algorithms presented in this paper for JSSP are Chaotic Multi-Objective
Simulated Annealing (CMOSA) and Chaotic Multi-Objective Threshold Accepting (CMOTA).
The first algorithm is inspired by the classic MOSA algorithm [17]. However, CMOSA is

Math. Comput. Appl. 2021, 26, 8 3 of 34

different in three aspects: (1) for the first time it is designed specifically for MOJSSP, (2) it
uses an analytical tuning of the cooling scheme parameters, and (3) it uses chaotic pertur-
bations for finding new solutions and for escaping from local optima. This process allows
the search to continue from a different point in the solution space and it contributes to a
better diversity of the generated solutions. Furthermore, CMOTA is based on CMOSA and
Threshold Accepting, and it does not require the Boltzmann distribution. Instead, it uses
a threshold strategy for accepting bad solutions to escape from local optima. In addition,
a chaotic perturbation function is applied.

In this paper, we present two new alternatives for MOJSSP, and we consider three
objective functions: makespan, total tardiness, and total flow time. The first objective is very
relevant for production management applications [7], while the other two are critical for
enhancing client attention service [23]. In addition, we use six metrics for the evaluation of
these algorithms, and they are Mean Ideal Distance (MID), Spacing (S), Hypervolume (HV),
Spread (∆), Inverted Generational Distance (IGD), and Coverage (C). We also apply an
analytical tuning parameter method to these algorithms. Finally, we compare the achieved
results with those obtained with the JSSP algorithm cited below in [8,14].

The rest of the paper is organized as follows. In Section 2, we make a qualitative
comparison of related MOJSSP works. In Section 3, we present MOJSSP concepts and the
performance metrics that were applied. Section 4 presents the formulation of MOJSSP
with three objectives. The proposed algorithms, their tuning method, and the chaotic
perturbation are also shown in Section 5. Section 6 shows the application of the proposed
algorithms to a set of 70, 58, and 15 instances. Finally, the results are shown and compared
with previous works. In Section 7, we present our conclusions.

2. Related Works

As mentioned above, in single-objective optimization, the JSSP community has broadly
investigated the performance of the different solution methods. However, the situation is
entirely different for MOJSSP, and there is a small number of published works. In 1994,
an analysis of SA family algorithms for JSSP was presented [24]; two of them were SA
and TA, which we briefly explain in the next paragraph. These algorithms suppose that
the solutions define a set of macrostates of a set of particles, while the objective functions’
values represent their energy, and both algorithms have a Metropolis cycle where the
neighborhood of solutions is explored. In single-objective optimization, for the set of
instances used to evaluate JSSP algorithms, SA obtained better results than TA. Furthermore,
a better solution than the previous one is always accepted, while a worse solution may be
accepted depending on the Boltzmann distribution criterion. This distribution is related
to the current temperature value and the increment or decrement of energy (associated
with the objective functions) in the current temperature value. In the TA case, a worse
solution than the previous one may be accepted using a criterion that tries to emulate
the Boltzmann distribution. This criterion establishes a possible acceptance of a worse
solution when the decrement of energy is smaller than a threshold value depending on
the temperature and a parameter γ that is very close to one. Then at the beginning of
the process, the threshold values are enormous because they depend on the temperatures.
Subsequently, the temperature parameter is gradually decreased until a value close to zero
is achieved, and then this threshold is very small.

In 2001, a Multi-Objective Genetic Algorithm was proposed to minimize the makespan,
total tardiness, and the total idle time [25]. The proposed methodology for JSSP was
assessed with 28 benchmark problems. In this publication, the authors randomly weighted
the different fitness functions to determine their results.

In 2006, SA was used for two objectives: the makespan and the mean flow time [26].
This algorithm was called Pareto Archived Simulated Annealing (PASA), which used
the Simulated Annealing algorithm with an overheating strategy to escape from local
optima and to improve the quality of the results. The performance of this algorithm was

Math. Comput. Appl. 2021, 26, 8 4 of 34

evaluated with 82 instances taken from the literature. Unfortunately, this method has not
been updated for three or more objective functions.

In 2011, a two-stage genetic algorithm (2S-GA) was proposed for JSSP with three objec-
tives to minimize the makespan, total weighted earliness, and total weighted tardiness [13].
In the first stage, a parallel GA found the best solution for each objective function. Then,
in the second stage, the GA combined the populations, which evolved using the weighted
aggregating objective function.

Researchers from the Contemporary Design and Integrated Manufacturing Technology
(CDIMT) laboratory proposed an algorithm named Improved Multi-Objective Evolutionary
Algorithm based on Decomposition (IMOEA/D) to minimize the makespan, tardiness,
and total flow time [14]. The authors experiment with 58 benchmark instances, and they
use the performance metrics Coverage [27] and Mean Ideal Distance (MID) [28] to evaluate
their algorithm. We notice in Table 1, studies with two or three objectives, but they do not
report any metric. On the other hand, IMOEA/D stands out from the rest of the literature,
not only because the authors reported good results but also because they considered a
more significant number of objectives, and they applied two metrics.

In 2008, the AMOSA algorithm based on SA for several objectives was proposed [17].
In this paper, the authors reported that the AMOSA algorithm performed better than some
MOEA algorithms, one of them NSGA-II [29]. They presented the main Boltzmann rules
for accepting bad solutions. Unfortunately, a MOJSSP with AMOSA and with more than
two objectives has not been published.

In 2017, a hybrid algorithm between an NSGA-II and a linear programming approach
was proposed [15]; it was used to solve the FT10 instance of Taillard [30]. This algo-
rithm minimized the weighted tardiness and energy costs. To evaluate the performance,
the authors only used the HV metric.

In 2019, MOMARLA was proposed, a new algorithm based on Q-Learning to solve
MOJSSP [8]. This work provided flexibility to use decision-maker preferences; each agent
represented a specific objective and used two action selection strategies to find a diverse
and accurate Pareto front. In Table 1, we present the last related studies for MOJSSP and
the proposed algorithms.

This paper analyzes our algorithms CMOSA and CMOTA, as follows: (a) comparing
CMOSA and CMOTA versus IMOEA/D [14], (b) comparing our algorithms with the results
published for MOMARLA, MOPSO, CMOEA, and SPEA, and (c) comparing CMOSA
versus CMOTA.

Table 1. Related Works.

Algorithm Objectives Metrics

SA [16] Makespan *
SA and TA [24] Makespan *
Hybrid GA [25] Makespan, total tardiness, and total idle time *

PASA [26] Makespan, mean flow time *

2S-GA [13] Makespan, total weighted earliness, and total
weighted tardiness *

IMOEA/D [14] Makespan, total flow time, and tardiness time C, MID
Hybrid GA/LS/LP [15] Weighted tardiness, and energy costs HV

MOMARLA [8] Makespan, total tardiness HV
CMOSA and CMOTA (This paper) Makespan, total tardiness, and total flow time MID, S, HV, ∆, IGD and C

* Not reported.

3. Multi-Objective Optimization

In a single-objective problem, the algorithm finishes its execution when it finds the
solution that optimizes the objective function or a very close optimal solution. However,
for Multi-Objective Optimization, the situation is more complicated since several objectives
must be optimized simultaneously. Then, it is necessary to find a set of solutions optimizing

Math. Comput. Appl. 2021, 26, 8 5 of 34

each of the objectives individually. These solutions can be contrasting because we can obtain
the best solution for an objective function that is not the best for other objective functions.

3.1. Concepts

Definitions of some concepts of Multi-Objective Optimization are shown below.
Pareto Dominance: In general, for any optimization problem, solution A dominates

another solution B if the following conditions are met [31]: A is strictly better than B on at
least one objective, and A is not worse than B for any objective function.

Non-dominated set: In a set of P solutions, the non-dominated solutions P1 is inte-
grated by solutions that accomplish the following conditions [31]: any pair of P1 solutions
must be non-dominated (one regarding the other), and any solution that does not belong
to P1 is dominated by at least one member of P1.

Pareto optimal set: The set of non-dominated solutions of the total search space.
Pareto front: The graphic representation of the non-dominated solutions of the multi-

objective optimization problem.

3.2. Performance Metrics

In an experimental comparison of different optimization techniques or algorithms,
it is always necessary to have the notion of performance. In the case of Multi-Objective
Optimization, the definition of quality is much more complicated than for single-objective
optimization problems because the multi-objective optimization criteria itself consists of
multiple objectives, of which, the most important are:

1. To minimize the distance of the resulting non-dominated set to the true Pareto front.
2. To achieve an adequate distribution (for instance, uniform) of the solutions is desirable.
3. To maximize the extension of the non-dominated front for each of the objectives.

In other words, a wide range of values must be covered by non-dominated solutions.

In general, it is difficult to find a single performance metric that encompasses all of
the above criteria. In the literature, a large number of performance metrics can be found.
The most popular performance metrics were used in this research and are described below:

Mean Ideal Distance: Evaluates the closeness of the calculated Pareto front (PFcalc)
solutions with an ideal point, which is usually (0, 0) [28].

MID =
∑Q

i=1 ci

Q
(1)

where ci =
√

f 2
1,i + f 2

2,i + f 2
3,i and f1,i, f2,i, f3,i are the values of the i-th non-dominated

solution for their first, second, and third objective function, and Q is the number of
solutions in the PFcalc.

Spacing: Evaluates the distribution of non-dominated solutions in the PFcalc. When
several algorithms are evaluated with this metric, the best is that with the smallest S
value [32].

S =

√
∑Q

i=1(di − d̄)2

Q
(2)

where di measures the distance in the space of the objective functions between the i-th
solution and its nearest neighbor; that is the j-th solution in the PFcalc of the algorithm, Q
is the number of the solutions in the PFcalc, d̄ is the average of the di, that is d̄ = ∑Q

i=1
di
Q

and di = minj(| f i
1(x)− f j

1(x)|+ | f i
2(x)− f j

2(x)|+ · · ·+ | f i
M(x)− f j

M(x)|), where f i
1, f i

2 are
the values of the i-th non-dominated solution for their first and second objective function,
f j
1, f j

2 are the values of the j-th non-dominated solution for their first and second objective
function respectively, M is the number of objective functions and i, j = 1, . . . Q.

Hypervolume: Calculates the volume in the objective space that is covered by all
members of the non-dominated set [33]. The HV metric is measured based on a reference

Math. Comput. Appl. 2021, 26, 8 6 of 34

point (W), and this can be found simply by constructing a vector with the worst values of
the objective function.

HV = volume
(
∪|Q|i=1vi

)
(3)

where vi is a hypercube and is constructed with a reference point W and the solution i as
the diagonal corners of the hypercube [31]. An algorithm that obtains the largest HV value
is better. The data should be normalized by transforming the value in the range [0, 1] for
each objective separately to perform the calculation.

Spread: This metric was proposed to have a more precise coverage value and considers
the distance to the (extreme points) of the true Pareto front (PFtrue) [29].

∆ =
∑M

k=1 de
k + ∑Q

i=1 |di − d̄|
∑M

k=1 de
k + Q× d̄

(4)

where de
k measures the distance between the “extreme” point of the PFtrue for the k-th

objective function, and the nearest point of PFcalc, di corresponds to the distance between
the solution i-th of the PFcalc, while its nearest neighbor, d̄ corresponds to the average of
the di and M is the number of objectives.

Inverted Generational Distance: It is an inverted indicator version of the Generational
Distance (GD) metric, where all the distances are measured from the PFtrue to the PFcalc [1].

IGD(Q) =

(
∑
|T|
j=1 d̂p

j

)1/p

|T| (5)

where T = {t1, t2, . . . , t|T|} that is, the solutions in the PFtrue and |T| is the cardinality of T,
p is an integer parameter, in this paper p = 2 and d̂j is the Euclidean distance from tj to its
nearest objective vector q in Q, according to (6).

dj =
|Q|

min
q=1

√√√√ M

∑
m=1

(f m(tj)− f m(q))2 (6)

where f m(t) is the m-th objective function value of the t-th member of T and M is the
number of objectives.

Coverage: Represents the dominance between set A and set B [27]. It is the ratio of
the number of solutions in set B that were dominated by solutions in set A and the total
number of solutions in set B. The C metric is defined by (7).

C(A, B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B| (7)

When C(A, B) = 1, all B solution are dominated or equal to solutions in A. Otherwise,
C(A, B) = 0, represents situations in which none of the solutions in B is dominated by
any solution in A. The higher the value of C(A, B), the more solutions in B are dominated
by solutions in A. Both C(A, B) and C(B, A) should be considered, since C(B, A) is not
necessarily equal to 1− C(A, B).

4. Multi-Objective Job Shop Scheduling Problem

In JSSP, there are a set of n different jobs consisting of operations that must be processed
in m different machines. There are a set of precedence constraints for these operations,
and there are also resource capacity constraints for ensuring that each machine should
process only one operation at the same time. The processing time of each operation is
known in advance. The objective of JSSP is to determine the sequence of the operations in
each machine (the start and finish time of each operation) to minimize certain objective
functions subject to the constraints mentioned above. The most common objective is the

Math. Comput. Appl. 2021, 26, 8 7 of 34

makespan, which is the total time in which all the problem operations are processed.
Nevertheless, real scheduling problems are multi-objective, and several objectives should
be considered simultaneously.

The three objectives that are addressed in the present paper are:
Makespan: the maximum time of completion of all jobs.
Total tardiness: it is calculated as the total positive differences between the makespan

and the due date of each job.
Total flow time: it is the summation of the completion times of all jobs.
The formal MOJSSP model can be formulated as follows [34,35]:

Optimize F(x) = [f1(x), f2(x), . . . , fq(x)] Subject to : x ∈ S (8)

where q is the number of objectives, x is the vector of decision variables, and S represents
the feasible region. Defined by the next precedence and capacity constraints, respectively:

tj ≥ ti + pi For all i, j ∈ O when i precedes j
tj ≥ ti + pi or ti ≥ tj + pj For all i, j ∈ O when Mi = Mj

where:

ti, tj are the starting times for the jobs i, j ∈ J.
pi and pj are the processing times for the jobs i, j ∈ J.
J : {J1, J2, J3, . . . , Jn} it is the set of jobs.
M : {M1, M2, M3, . . . Mm} it is the set of machines.
O is the set of operations Oj,i (operation i of the job j).

The objective functions of makespan, total tardiness, and total flow time, are defined
by Equations (9)–(11), respectively.

f1 = min
(

n
max
j=1

Cj

)
(9)

where Cj is the makespan of job j.

f2 = min

(
n

∑
j=1

Tj

)
= min

(
n

∑
j=1

max(0, Cj − Dj)

)
(10)

where Tj = max(0, Cj − Dj) is the tardiness of job j, and Dj is the due date of job j and is
calculated with Dj = τ ∑m

i=1 pj,i [36], where pj,i is the time required to process the job j in
the machine i. In this case, the due date of the j job is the sum of the processing time of all
its operations on all machines, multiplied by a narrowing factor (τ), which is in the range
1.5 ≤ τ ≤ 2.0 [14,36].

f3 = min
n

∑
j=1

Cj (11)

5. Multi-Objective Proposed Algorithms

The two multi-objective algorithms presented in this section for solving JSSP are
Chaotic Multi-Objective Simulated Annealing and Chaotic Multi-Objective Threshold
Accepting. We describe these algorithms in this section after analyzing the single-objective
optimization algorithms for JSSP.

5.1. Simulated Annealing

The algorithm SA proposed by Kirkpatrick et al. comes from a close analogy with
the metal annealing process [5]. This process consists of heating and progressively cooling
metal. As the temperature decreases, the molecules’ movement slows down and tends
to adopt a lower energy configuration. Kirkpatrick et al. proposed this algorithm for

Math. Comput. Appl. 2021, 26, 8 8 of 34

combinatorial optimization problems and to escape from local minima. It starts with an
initial solution and generates a new solution in its neighborhood. If the new solution is
better than the old solution, then it is accepted. Otherwise, SA applies the Boltzmann
distribution, which determines if a bad solution can be taken as a strategy for escaping
from local optima. This process is repeated many times until an equilibrium condition
is accomplished.

The SA algorithm is shown in Algorithm 1. Line 1 receives the parameters: the initial
(Tinitial) and final (Tf inal) temperatures, the alpha value (α) for decreasing the temperature,
and beta (β) for increasing the length of the Metropolis cycle. The current temperature
(Tk) is set in line 2. An initial solution (scurrent) is generated randomly in line 3. The stop
criterion is evaluated (line 4); this main cycle is repeated while the current temperature (Tk)
is higher than the final temperature (Tf inal). The Metropolis cycle starts in line 5, where a
neighboring solution (snew) is generated (line 6). In line 7 the increment ∆E of the objective
function is determined for the current solution (scurrent) and the new one (snew). When this
increment is negative (line 8) the new solution is the best. In this case, the new solution
replaces the current solution (line 9). Otherwise, the Boltzmann criterion is applied (lines
11 and 12). This criterion allows the algorithm to escape from local optima depending
on the current temperature and delta values. Finally, line 16 increases the number of
iterations of the Metropolis cycle, and in line 17, the cooling function is applied to reduce
the current temperature.

Algorithm 1 Classic Simulated Annealing algorithm

1: procedure SA(Tinitial , Tf inal , α, β, Lk)

2: Tk ← Tinitial

3: scurrent ← RandomInitialSolution()

4: while Tk ≥ Tf inal do

5: for 1 to Lk do

6: snew ← perturbation(scurrent)

7: ∆E← E(snew)− E(scurrent)

8: if ∆E < 0 then

9: scurrent ← snew

10: else

11: if (e−∆E/Tk > random(0, 1) then

12: scurrent ← snew

13: end if

14: end if

15: end for

16: Lk ← β× Lk

17: Tk ← α× Tk

18: end while

19: return scurrent

20: end procedure

5.2. Analytical Tuning for Simulated Annealing

The parameters tuning process for the SA algorithm used in this paper is based
on a method proposed in [37]. This method establishes that both the initial and final
temperatures are functions of the maximum and minimum energy values Emax and Emin,
respectively. These energies appeared in the Boltzmann distribution criterion that states that
a bad solution is accepted in a temperature T when random(0, 1) ≤ e−∆E/T . For JSSP, ∆E
is obtained with the makespan. For this tuning method, these two functions are obtained
from the neighborhood of different solutions randomly generated. A set of previous SA

Math. Comput. Appl. 2021, 26, 8 9 of 34

executions must be carried out for obtaining ∆Emax and ∆Emin. These value are used
in the Boltzmann distribution for determining the initial and final temperatures. Then,
the other parameters of Metropolis cycle are determined. The process used is detailed in
the next paragraph.

Initial temperature (Tinitial): It is the temperature value from which the search process
begins. The probability of accepting a new solution is almost 1 at high temperatures so, its
cost of deterioration is maximum. The initial temperature is associated with the maximum
allowed deterioration and its defined acceptance probability. Let us define si as the current
solution, sj a new proposed solution, E(si)

and E(sj)
are its associated costs, the maximum

and minimum deterioration are ∆Emax and ∆Emin. Then P(∆Emax), is the probability of
accepting a solution with the maximum deterioration and it is calculated with (12). Thus
the value of the initial temperature (Tinitial) is calculated with (13).

P(∆Emax) = e(∆Emax/Tinitial) (12)

Tinitial =
−∆Emax

ln(P(∆Emax))
(13)

Final temperature (Tf inal): It is the temperature value at which the search stops. In the
same way, the final temperature is determined with (14) according to the probability
P(∆Emin), which is the probability of accepting a solution with minimum deterioration.

Tf inal =
−∆Emin

ln(P(∆Emin))
(14)

Alpha value (α): It is the temperature decrease factor. This parameter determines the
speed at which the decrease in temperature will occur, for fast decrements 0.7 it is usually
used and for slow decrements 0.99.

Cooling scheme: This function specifies how the temperature is decreased. In this
case, the value of the current temperature (Tk) follows the geometric scheme (15).

Tk+1 = αTk (15)

Length of the Markov chain or iterations in Metropolis cycle (Lk): This refers to the
number of iterations of the Metropolis cycle that is performed at each temperature k, this
number of iterations can be constant or variable. It is well known that at high temperatures,
only a few iterations are required since the stochastic equilibrium is rapidly reached [37].
However, at low temperatures, a much more exhaustive level of exploration is required.
Thus, a larger Lk value must be used. If Lmin is the value of Lk at the initial temperature,
and Lmax is the Lk at the final temperature, then the Formula (16) is used.

Lk+1 = βLk (16)

where β is the increment coefficient of Lk. Since the Functions (15) and (16) are applied
successively in SA from the initial to the final temperature, Tf inal and Lmax are calculated
with (17) and (18).

Tf inal = αnTinitial (17)

Lmax = βnLmin (18)

In (17) and (18) n is the number of steps from Tinitial to Tf inal , then (19) and (20)
are obtained.

n =
ln(Tf inal)− ln(Tinitial)

ln(α)
(19)

β = e(
ln(Lmax)−ln(Lmin)

n) (20)

Math. Comput. Appl. 2021, 26, 8 10 of 34

The probability of selecting the solution sj from N random samples in the neighbor-
hood Vsi is given by (21); and from this equation, the N value is obtained in (22), where the
exploration level C is defined in Equation (23).

P(Sj) = 1− e
−N
|Vsi | (21)

N = − | Vsi | ln(1− P(Sj)) = C | Vsi | (22)

C = ln(P(Sj)) (23)

The length of the Markov chain or iterations of the Metropolis cycle are defined
by (24).

Lmax = N = C | Vsi | (24)

To guarantee a good exploration level, the C value determined by (23) must be
established between 1 ≤ C ≤ 4.6 [38].

5.3. Chaotic Multi-Objective Simulated Annealing (CMOSA)

As we previously mentioned, the AMOSA algorithm was proposed in [17]. However,
this algorithm is designed for general purposes. In this work, we adapt the AMOSA for
JSSP to include the following features: (1) the mathematical constraints of MOJSSP, and (2)
the objective functions makespan, total tardiness, and total flow time.

CMOSA has the same features previously described and has the next three elements:
(1) a new structure, (2) chaotic perturbation, and (3) apply dominance to select solutions.
These elements are described in the next subsections.

5.3.1. CMOSA Structure

The CMOSA algorithm uses a chaotic phase to improve the quality of the solutions
considering the three objectives. Algorithm 2 receives its parameters in line 1: initial
temperature (Tinitial), final temperature (Tf inal), alpha (α), beta (β), Metropolis iterations
in every cycle (Lk), and the initial solution (scurrent) to be improved. In lines 2 and 3,
the variables of the algorithm are initialized. In line 4, the scurrent is processed to obtain
the values for each of the three objectives as output. In line 5, the initial temperature is
established as the current temperature (Tk). Then the main cycle begins in line 6. This
cycle is repeated as long as the current temperature is greater than, or equal to, the final
temperature. In line 7, the Metropolis cycle begins. Subsequently, the algorithm verifies if
it is stagnant in line 8. If that is the case, lines 9 to 20 are executed. The number of iterations
to perform a local search is established in line 10; this value is based on the number of
tasks of the instance multiplied by an experimentally tuned parameter (in this case, this
parameter is timesLS = 10).

In line 11, a local search begins. In the first iteration of this search, a chaotic perturba-
tion (explained in Algorithm 4) is applied to the scurrent (line 12) to restart the search process
from another point in the solution space. In further iterations, a regular perturbation is
applied (line 14) that consists only of exchanging the position of two operations in the solu-
tion, always verifying that the solution generated is feasible. In line 16, the snew is processed
to obtain the values for each of the three objectives. Subsequently, and only if the new
solution dominates the current solution of the three objectives, the new solution is used to
continue the search process (lines 17 and 18). When the algorithm is not stagnant, a regular
perturbation is applied, and the flow continues (line 22). If the current and the new solution
are different, we proceed with the dominance verification process to determine which
solution is used to continue the search (line 26); this process is explained in Algorithm 5.
Finally, from lines 29 to 36, a process is applied to set a limit to the number of times the
algorithm is stagnant (See Algorithm 3). The algorithm is determined to be stagnant if,
after some iterations, it fails to generate a new, non-dominated solution. In this algorithm,
the stagnation is limited to 10 iterations. At the end of the algorithm, in line 37, the number
of repetitions of the Metropolis cycle (Lk) is increased by multiplying its previous value by

Math. Comput. Appl. 2021, 26, 8 11 of 34

the β parameter value. Additionally, in line 38, the current temperature (Tk) is decreased by
multiplying it by the α value. At the end of line 40, the stored solution (scurrent) is generated
as the output of the algorithm.

Algorithm 2 Chaotic Multi-Objective Simulated Annealing (CMOSA)

1: procedure CMOSA(Tinitial , Tf inal , α, β, Lk, scurrent)

2: MAXSTAGNANT ← 10, counterTrapped← 0, isCaught← FALSE

3: iterationsLocalSearch← tasks× timesLS, veri f yCaught← TRUE, countCaught← 0

4: mkscurrent, tdscurrent, f ltcurrent ← calculateValues(scurrent) . mks : makespan, tds : tardiness, f lt : f lowtime

5: Tk ← Tinitial

6: while Tk ≥ Tf inal do

7: for i← 0 to Lk do

8: if isCaught = TRUE then

9: isCaught← FALSE

10: for k← 0 to iterationsLocalSearch do

11: if k = 0 then

12: snew ← chaoticPerturbation(scurrent) . See Algorithm 4

13: else

14: snew ← regularPerturbation(scurrent) . Exchange of two operations

15: end if

16: mksnew, tdsnew, f ltnew ← calculateValues(snew)

17: if (mksnew < mkscurrent) AND (tdsnew < tdscurrent) AND (f ltnew < f ltcurrent) then

18: scurrent ← snew

19: end if

20: end for

21: else

22: snew ← regularPerturbation(scurrent)

23: mksnew, tdsnew, f ltnew ← calculateValues(snew)

24: end if

25: if (mksnew 6= mkscurrent) AND (tdsnew 6= tdscurrent) AND (f ltnew 6= f ltcurrent) then

26: veri f yDominanceCMOSA(Tk, snew, scurrent) . See Algorithm 5

27: end if

28: end for

29: if veri f yCaught = TRUE then

30: if caught(scurrent, counterTrapped) = TRUE then . See Algorithm 3

31: countCaught = countCaught + 1

32: if countCaught = MAXSTAGNANT then

33: veri f yCaught← FALSE

34: end if

35: end if

36: end if

37: Lk ← β× Lk

38: Tk ← α× Tk

39: end while

40: return scurrent

41: end procedure

Math. Comput. Appl. 2021, 26, 8 12 of 34

Algorithm 3 shows the process that is carried out to verify the stagnation mentioned
in line 30 of Algorithm 2.

Algorithm 3 Caught

1: procedure CAUGHT(scurrent, counterTrapped)

2: isCaught← FALSE, timesDominated← 0, maxTrapped← 10

3: timesDominated← countTimesDominated(scurrent)

4: if timesDominated = 0 then

5: F ← scurrent

6: end if

7: if timesDominated ≥ 1 then

8: counterTrapped← counterTrapped + 1

9: end if

10: if counterTrapped = maxTrapped then

11: isCaught← TRUE

12: counterTrapped← 0

13: end if

14: return isCaught

15: end procedure

In this Algorithm 3 the current solution (scurrent) and the counter of times it has trapped
(counterTrapped) are received as input. In line 2 the variables used are initialized. Then
the times that the current solution is dominated by at least one solution from the non-
dominated front are counted (line 3). If the current solution is non-dominated (line 4) it is
stored in the front of non-dominated solutions (line 5). If the current solution is dominated
by at least one solution (line 7) then the counterTrapped is incremented (line 8). When
counterTrapped equals the maximum number of trapped allowed (line 10), the value of
isCaught is set to TRUE (line 11) and the trap counter is reset to zero in line 12.

5.3.2. Chaotic Perturbation

The logistic equation or logistic map is a well-known mathematical application of the
biologist Robert May for a simple demographic model [39]. This application tells us the
population in the n-th generation based on the size of the previous generation. This value
may be found by a popular logistic model mathematically expressed as:

xn+1 = rxn(1− xn) (25)

In Equation (25), the variable xn takes values ranged between zero and one. This
variable represents the fraction of individuals in a specific situation (for instance, into a
territory or with a particular feature) in a given instant n. The parameter r is a positive
number representing the combined ratio between reproduction and mortality. Even though
we are not interested in this paper in demographic or similar problems, we notice the very
fast last variable changes. Then it can be taken as a chaotic variable. Thus, we use this
variable for performing a chaotic perturbation function, which may help to escape from
local optima for our CMOTA and CMOSA algorithms.

The chaotic function used is very sensitive to changes in the initial conditions, and this
characteristic is used to generate a perturbation to the solution for escaping from local
optima. Then chaos or chaotic perturbation is a process carried out to restart the search
from another point in the space of solutions.

Algorithm 4 can be explained in three steps. Firstly, the feasible operations (operations

Math. Comput. Appl. 2021, 26, 8 13 of 34

that can be performed without violating any restrictions) are searched (line 4). Secondly,
whether there is only one feasible operation (line 5) means that it is the last operation and
selected (line 6). When there is more than one feasible operation, a chaotic function is
applied to select the operations. In this case, the logistic function is used (lines 8–19), which
applies a threshold in the range [0.5 to 1]. Finally, the selected operation is added to the
new solution (line 21). This process is applied until all the operations are selected.

Algorithm 4 Chaotic perturbation

1: procedure CHAOTICPERTURBATION(scurrent)
2: f easibleTasksNumber ← 0, r ← 4, repeat← TRUE, Xn ← 0, Xn1 ← 0
3: while counter < tasks do
4: f easibleTasksNumber ← searchFeasibleTasks()
5: if f easibleTasksNumber = 1 then
6: index ← 0
7: else
8: while repeat = TRUE do
9: Xn ← random(0, 1)

10: for i← 0 to f easibleTasksNumber do
11: Xn1 ← (r× Xn)× (1.0− Xn)

12: if Xn1 > 0.5 then
13: index ← i
14: repeat← FALSE
15: break
16: end if
17: Xn ← Xn1
18: end for
19: end while
20: end if
21: snew ← addTask(index)
22: counter ← counter + 1
23: end while
24: return snew
25: end procedure

5.3.3. Applying Dominance to Select Solutions

In Algorithm 5, the current solution (scurrent) is compared with the new solution (snew)
to determine which solution is used to continue the search. In this comparison, there are
three cases:

1. If snew dominates scurrent, then snew is used to continue the search (lines 3 to 6).
2. If snew is dominated by scurrent then the differences of each objective are calculated

separately from the two solutions compared to obtain the decreased parameter (∆) and
use it to determine if the snew continues with the search according to the condition in
line 12. In this case, scurrent is added to the non-dominated front (F) and snew replaces
scurrent (lines 13 and 14).

3. If the two solutions are non-dominated by each other, then the current solution scurrent
is added to the non-dominated front (F), and the search continues with snew (lines 18
to 21).

Math. Comput. Appl. 2021, 26, 8 14 of 34

Algorithm 5 Verify dominance CMOSA

1: procedure VERIFYDOMINANCECMOSA(Tk, snew, scurrent, mksnew, tdsnew, f ltnew, mkscurrent, tdscurrent, f ltcurrent)
2: newDominateCurrent← FALSE, currentDominateNew← FALSE
3: if snew ≺ scurrent then
4: scurrent ← snew
5: newDominateCurrent← TRUE
6: end if
7: if scurrent ≺ snew then
8: ∆MKS ← mksnew −mkscurrent
9: ∆TDS ← tdsnew − tdscurrent

10: ∆FLT ← f ltnew − f ltcurrent
11: ∆← ∆MKS + ∆TDS + ∆FLT
12: if random(0, 1) < e−∆/Tk then
13: F ← scurrent
14: scurrent ← snew
15: end if
16: currentDominateNew← TRUE
17: end if
18: if (newDominateCurrent = FALSE) AND (currentDominateNew = FALSE) then
19: F ← scurrent
20: scurrent ← snew
21: end if
22: return scurrent
23: end procedure

5.4. Chaotic Multi-Objective Threshold Accepting (CMOTA)

In 1990, Dueck et al. proposed the TA algorithm as a general-purpose algorithm
for the solution of combinatorial optimization problems [6]. This TA algorithm has a
simpler structure than SA, and is very efficient for solving many problems but has never
been applied for MOJSSP. The difference between SA and TA is basically in the criteria for
accepting bad solutions. TA accepts every new configuration, which is not much worse than
the old one. In contrast, SA would accept worse solutions only with small probabilities.
An apparent advantage of TA is that it is higher simply because it is not necessary to
compute probabilities or to make decisions based on a Boltzmann probability distribution.

Algorithm 6 shows CMOTA algorithm, where we observe that it has the same structure
as CMOSA algorithm. These two algorithms have a temperature cycle and, within it,
a Metropolis cycle. In these algorithms, a perturbation is applied to the current solution.
Then, the dominance of the two solutions is verified to determine which of them is used to
continue the searching process (Algorithm 7). Finally, the increment of the variable that
controls the iterations of the Metropolis cycle, the reduction of the temperature, and the
increment of the counter (line 39) for the number of temperatures are performed.

In Algorithm 7, the dominance of the two solutions is verified to determine which
continues with the search. It has the same three cases used in CMOSA (Algorithm 5).
The main differences are the following:

• In the beginning, while the temperature counter (counter) is less than the value of
bound (line 4) T has a value equal to Tk (line 5), which is too large, which implies that
at high temperature, the new solution (snew) will often be accepted to continue the
search. That is, during the processing of 95% temperatures (parameter limit = 0.95,
whose value is obtained with Equation (19) in the tuning process), the parameter γ is
used to obtain the value T (threshold), and since γ is equal to 1, then it means that T
has the value of Tk. For the five percent of the remaining temperatures, γ takes the
value of γreduced (0.978). This parameter is tuned experimentally (line 12), and it is
established to control the acceptance criterion and make it more restrictive as part of
the process.

• CMOTA includes a verification process for accepting bad solution lighting different
from CMOSA. To determine if the searching process continues using a dominated
solution, CMOTA does not use the Boltzmann criterion to accept it as the current
solution. Instead, CMOTA uses a threshold defined as the T parameter value (line 19),
which is updated in line 29. In other words, it is no longer necessary to calculate the
decrement of the objective functions. This modification makes CMOTA much more

Math. Comput. Appl. 2021, 26, 8 15 of 34

straightforward than CMOSA or any other AMOSA algorithm. Moreover, because the
parameter γ is usually very close to one, it is unnecessary to calculate probabilities for
the Boltzmann distribution or make a random decision process for bad solutions.

Algorithm 6 Chaotic Multi-Objective Threshold Accepting (CMOTA)

1: procedure CMOTA(Tinitial , Tf inal , α, β, Lk, scurrent)
2: counter ← 1, MAXSTAGNANT ← 10, counterTrapped← 0, isCaught← FALSE
3: iterationsLocalSearch← tasks× timesLS, veri f yCaught← TRUE, countCaught← 0
4: mkscurrent, tdscurrent, f ltcurrent ← calculateValues(scurrent) . mks : makespan, tds : tardiness, f lt : f lowtime
5: Tk ← Tinitial
6: while Tk ≥ Tf inal do
7: for i← 0 to Lk do
8: if isCaught = TRUE then
9: isCaught = FALSE

10: for k← 0 to iterationsLocalSearch do
11: if k = 0 then
12: snew ← chaoticPerturbation(scurrent) . See Algorithm 4
13: else
14: snew ← regularPerturbation(scurrent) . Exchange of two operations
15: end if
16: mksnew, tdsnew, f ltnew ← calculateValues(snew)

17: if (mksnew < mkscurrent) AND (tdsnew < tdscurrent) AND (f ltnew < f ltcurrent) then
18: scurrent ← snew
19: end if
20: end for
21: else
22: snew ← regularPerturbation(scurrent)

23: mksnew, tdsnew, f ltnew ← calculateValues(snew)

24: end if
25: if (mksnew 6= mkscurrent) AND (tdsnew 6= tdscurrent) AND (f ltnew 6= f ltcurrent) then
26: veri f yDominanceCMOTA(counter, Tk, snew, scurrent) . See Algorithm 7
27: end if
28: end for
29: if veri f yCaught = TRUE then
30: if caught(scurrent, counterTrapped) = TRUE then . See Algorithm 3
31: countCaught = countCaught + 1
32: if countCaught = MAXSTAGNANT then
33: veri f yCaught← FALSE
34: end if
35: end if
36: end if
37: Lk ← β× Lk
38: Tk ← α× Tk
39: counter ← counter + 1
40: end while
41: return scurrent
42: end procedure

Math. Comput. Appl. 2021, 26, 8 16 of 34

Algorithm 7 Verify dominance CMOTA

1: procedure VERIFYDOMINANCECMOTA(counter, Tk, snew, scurrent)
2: γ← 1, γreduced ← 0.978, setT ← 1, bound← NumberO f Temperatures× limit
3: newDominateCurrent← FALSE, currentDominateNew← FALSE
4: if counter < bound then
5: T ← Tk

6: end if
7: if (counter = bound) AND (setT = 1) then
8: setT ← 0
9: T ← Tk

10: end if
11: if setT = 0 then
12: γ← γreduced

13: end if
14: if snew ≺ scurrent then
15: scurrent ← snew

16: newDominateCurrent← TRUE
17: end if
18: if scurrent ≺ snew then
19: if random(0, 1) < T then
20: F ← scurrent

21: scurrent ← snew

22: end if
23: currentDominateNew← TRUE
24: end if
25: if (newDominateCurrent = FALSE) AND (currentDominateNew = FALSE) then
26: F ← scurrent

27: scurrent ← snew

28: end if
29: T ← T × γ

30: end procedure

6. Main Methodology for CMOSA and CMOTA

Figure 1 shows the main module for each of the two proposed algorithms CMOSA
and CMOTA, which may be considered the main processes in any high-level language.

In this main module, the instance to be solved is read, then the tuning process is
performed. The due date is calculated, which is an essential element for calculating the
tardiness. The set of initial solutions (S) is generated randomly, as follows. First, a collection
of feasible operations are determined, then one of them is randomly selected and added to
the solution until all the job operations are added.

Once the set of initial solutions has been generated, an algorithm (CMOSA or CMOTA)
is applied to improve each initial solution, and the generated solution is stored in a set of
final solutions (F). To obtain the set of non-dominated solutions, also called the zero front
(f0) from the set of final solutions, we applied the fast non-dominated Sorting algorithm [29].
To know the quality of the non-dominated set obtained, the MID, Spacing, HV, Spread,
IGD, and Coverage metrics are calculated. To perform the calculation of the spread and
IGD, the true Pareto front (PFtrue) is needed. However, for the instances used in this paper,
the PFtrue has not been published for all the instances. For this reason, the calculation was
made using an approximate Pareto front (PFapprox), which we obtained from the union
of the fronts calculated with previous executions of the two algorithms presented here
(CMOSA and CMOTA).

Math. Comput. Appl. 2021, 26, 8 17 of 34

Figure 1. Main module for CMOSA and CMOTA.

6.1. Computational Experimentation

A set of 70 instances of different authors was used to evaluate the performance of the
algorithms, including: (1) FT06, FT10, and FT20 proposed by [40]; (2) ORB01 to ORB10
proposed by [41]; (3) LA01 to LA40 proposed by [42]; (4) ABZ5, ABZ6, ABZ7, ABZ8,
and ABZ9 proposed by [43]; (5) YN1, YN2, YN3, and YN4 proposed by [44], and (6) TA01,
TA11, TA21, TA31, TA41, TA51, TA61, and TA71 proposed by [30].

As already explained, to perform the analytical tuning, some previous executions
of the algorithm are necessary. The parameters used for those previous executions are
shown in Table 2, and the parameters used in the final experimentation for each instance
are shown in Table 3.

Table 2. Tuning parameters for CMOSA/CMOTA.

Number of Executions Initial Temperature Final Temperature Alpha Lk

50 100 0.1 0.98 100

Table 3. General parameters for CMOSA/CMOTA.

Number of Executions Initial Solutions Alpha Stagnant Number

30 30 0.98 10

The execution of the algorithm was carried out on one of the terminals of the Eh-
ecatl cluster at the TecNM/IT Ciudad Madero, which has the following characteristics:

Math. Comput. Appl. 2021, 26, 8 18 of 34

Intel R©Xeon R©processor at 2.30 GHz, Memory: 64 GB (4 × 16 GB) ddr4-2133, Linux
operating system CentOS, and C language was used for the implementation. We devel-
oped CMOSA (https://github.com/DrJuanFraustoSolis/CMOSA-JSSP.git) and CMOTA
(https://github.com/DrJuanFraustoSolis/CMOTA-JSSP.git) and we tested the software
and using three data sets reported in the paper and taken from the literature.

In the first experiment, the algorithms CMOSA and CMOTA were compared with
AMOSA algorithm using the 70 described instances and six performance metrics. In a
second experiment, we compared CMOSA and CMOTA with the IMOEA/D algorithm,
with the 58 instances used by Zhao [14]. In the second experiment, we used the same MID
metric of this publication. The third experiment was based on the 15 instances reported
in [8], where the results of the next MOJSSP algorithms are published: SPEA, CMOEA,
MOPSO, and MOMARLA. In this publication the authors used two objective functions and
two metrics (HV and Coverage); they determined that the best algorithm is MOMARLA
followed by MOPSO. We executed CMOSA and CMOTA for the instances of this dataset
and we compared our results using the HV metric with those published in [8]. However,
a comparison using the coverage metric was impossible because the Pareto fronts of these
methods have not been reported [8]. In our case, we show in Appendix A the fronts of
non-dominated solutions obtained with 70 instances.

6.2. Results

The average values of 30 runs, for the six metrics obtained by CMOSA and CMOTA
for the complete data set of 70 instances are shown in Tables 4 and 5. We observed that
CMOSA obtained the best values for MID and IGD metrics. For Spacing and Spread,
CMOTA obtained the best results. For the HV metric, both algorithms achieved the same
result (0.42). We observed in Table 5 that CMOSA obtained the best coverage result.

A two-tailed Wilcoxon test was performed with a significance level of 5% (last column
in Table 4) and this shows that there are no significant differences between the CMOSA
and CMOTA except in MID and IGD metrics.

Table 4. Results obtained by the metrics for 70 instances.

Significant
Metric CMOSA CMOTA Difference

CMOSA-CMOTA

MID 30,680.19 * 31,233.15 Yes
SPACING 28,445.62 28,183.17 * No
SPREAD 24,969.31 23,401.88 * No

HV 0.42 * 0.42 * No
IGD 1666.25 * 1870.94 Yes

* Best result.

Table 5. Results obtained by the coverage metric.

Coverage (CMOSA, CMOTA) Coverage (CMOTA, CMOSA)

0.854 * 0.063
* Best result.

Table 6 shows the comparison of CMOSA and AMOSA. We observed that CMOSA
obtains the best performance in all the metrics evaluated. In addition, the Wilcoxon test
indicates that there are significant differences in most of them; thus, CMOSA overtakes
AMOSA. We compared CMOTA and AMOSA in Table 7. In this case, CMOTA also obtains
the best average results in all the metrics; however, according to the Wilcoxon test, there
are significant differences in only two metrics.

https://github.com/DrJuanFraustoSolis/CMOSA-JSSP.git
https://github.com/DrJuanFraustoSolis/CMOTA-JSSP.git

Math. Comput. Appl. 2021, 26, 8 19 of 34

Table 6. Comparison among CMOSA with AMOSA.

Significant
Metric CMOSA AMOSA [17] Difference

CMOSA-AMOSA

MID 30,680.19 * 32,138.19 Yes
SPACING 28,445.62 * 30,129.36 Yes
SPREAD 24,969.31 * 26,625.04 No

HV 0.42 * 0.37 No
IGD 1666.25 * 2209.96 Yes

* Best result.

Table 7. Comparison among CMOTA with AMOSA.

Significant
Metric CMOTA AMOSA [17] Difference

CMOTA-AMOSA

MID 31,233.15 * 32,138.19 No
SPACING 28,183.17 * 30,129.36 Yes
SPREAD 23,401.88 * 26,625.04 No

HV 0.42 * 0.37 No
IGD 1870.94 * 2209.96 Yes

* Best result.

We compare in Table 8 the CMOSA and CMOTA with the IMOEA/D algorithm using
the 58 common instances published in [14] where the MID metric was measured. This
table shows the MID average value of this metric for the non-dominated set of solutions
of CMOSA and CMOTA. The results showed that CMOSA and CMOTA obtain better
performances than IMOEA/D. We notice that both algorithms, CMOSA and CMOTA,
achieved smaller MID values than IMOEA/D, which indicates that the Pareto fronts of
our algorithms are closer to the reference point (0,0,0). The Wilcoxon test confirms that
CMOSA and CMOTA surpassed the IMOEA/D.

Table 8. CMOSA, CMOTA, and IMOEA/D results obtained using MID metric.

Significant Significant
CMOSA CMOTA IMOEA/D [14] Difference Difference

CMOSA-IMOEA/D CMOTA-IMOEA/D

15,729.65 * 16,567.07 18,727.04 Yes Yes
* Best result.

The results of CMOSA and CMOTA were compared with the SPEA, CMOEA, MOPSO,
and MOMARLA algorithms [8]. In the last reference, only two objective functions were
reported, the makespan and total tardiness. The experimentation was carried out with
15 instances and the average HV values were calculated to perform the analysis of the
results, which are shown in Table 9. We notice that MOMARLA surpassed SPEA, CMOEA,
and MOPSO. We can observe that CMOSA obtained a better performance than MOMARLA
and the other algorithms. Comparing CMOTA and MOMARLA, we notice that both
algorithms obtained the same HV average results.

Math. Comput. Appl. 2021, 26, 8 20 of 34

Table 9. Comparison among SPEA, CMOEA, MOPSO, CMOSA, CMOTA, and MOMARLA using HV.

Instance SPEA [8] CMOEA [8] MOPSO [8] MOMARLA [8] CMOSA CMOTA

1 FT06 0.07 0.07 0.50 0.65 0.64 0.75 *
2 FT10 0.17 0.26 0.87 0.96 0.71 0.69
3 FT20 0.20 0.20 0.21 0.25 0.57 * 0.77 *
4 ABZ5 0.34 0.33 0.36 0.40 0.85 * 0.56 *
5 ABZ6 0.22 0.36 0.31 0.42 0.60 * 0.81 *
6 ABZ7 0.51 0.45 1.00 1.00 0.79 0.51
7 ABZ8 0.88 0.36 0.99 0.99 0.69 0.66
8 LA26 0.33 0.39 0.47 0.47 0.91 * 0.70 *
9 LA27 0.58 0.56 0.41 0.60 0.71 * 0.93 *
10 LA28 0.48 0.42 0.48 0.54 0.92 * 0.44
11 ORB01 0.62 0.74 0.59 0.80 0.87 * 0.63
12 ORB02 0.20 0.04 0.30 0.53 0.88 * 0.77 *
13 ORB03 0.69 0.31 0.85 0.86 0.76 0.80
14 ORB04 0.63 0.28 0.52 0.79 0.76 0.81 *
15 ORB05 0.00 0.023 0.22 0.90 0.74 0.32

Mean HV 0.39 0.32 0.54 0.68 0.76 * 0.68

* Best result.

6.3. CMOSA-CMOTA Complexity and Run Time Results

In this section, we present the complexity of the algorithms analyzed in this paper.
The algorithms’ complexity is presented in Table 10, and it was obtained directly when it
was explicitly published or determined from the algorithms’ pseudocodes. In this table,
M is the number of objectives, Γ is the population size, T is the neighborhood size, n is
the number of iterations (temperatures for AMOSA, CMOSA, and CMOTA), and p is the
problem size. The latter is equal to jm where j and m are the number of jobs and machines,
respectively. Because the algorithms with the best quality metrics are CMOSA, CMOTA
MOMARLA, and MOPSO, their complexity is compared in this section.

It is well known that the complexity of classical SA is O(p2 log p) [45]. However, we
notice from Table 10 that CMOSA, and CMOTA have a different complexity even though
they are based on SA. This is because these new algorithms applied a different chaotic
perturbation and another local search (see Algorithms 2 and 6 in lines 10–20).

The temporal function of MOMARLA, CMOSA, and CMOTA belong to O(Mnp).
For MOMARLA, n is the number of iterations, a variable used at the beginning of this algo-
rithm. On the other hand, for CMOSA and CMOTA, n is the number of temperatures used
in the algorithm, also at its beginning; in any case, the difference will be only a constant.

We note that AMOSA and MOPSO have a similar complexity class expression, that
is O(nΓ2) and O(MΓ2) respectively. However, MOPSO overtakes AMOSA because M
is in general lower than n. We observe that CMOSA, CMOTA and MOMARLA belong
to O(Mnp) class complexity, while MOPSO belongs to O(MΓ2) [46]. Thus, the relation
between them is np/Γ2 which in general is lower than one. Thus CMOSA, CMOTA
and MOMARLA have a lower complexity than MOPSO. Moreover, CMOSA, CMOTA,
and MOMARLA have better HV metric quality as is shown in Table 9.

In the next paragraph, we present a comparative analysis of the execution time of the
algorithms implemented in this paper.

Table 10. Complexity of the algorithms.

AMOSA IMOEA/D SPEA MOPSO MOMARLA CMOSA CMOTA

O(nΓ2) O(MΓT) O(MΓ) O(MΓ2) O(Mnp) O(Mnp) O(Mnp)

In Table 11 we show the execution time, expressed in seconds, for the three algorithms
(CMOSA, CMOTA, and AMOSA) implemented in this paper for three data sets (70, 58,

Math. Comput. Appl. 2021, 26, 8 21 of 34

and 15 instances). In all these cases, we emphasize that the AMOSA algorithm was the
base to design the other two algorithms. In fact, all of them have the same structure
except that CMOSA and CMOTA apply chaotic perturbations when they detect a possible
stagnation. Thus, all of them have similar complexity measures for the worst-case. Table 11
shows the percentage of time saved by these two algorithms concerning AMOSA. For these
datasets, we measured that AMOSA saved 2.1, 19.87, and 42.48 percent of the AMOSA run
time; on the other hand, these figures of CMOTA versus AMOSA are 55, 68.89, and 46.73
percent. Thus, both of our proposed algorithms CMOSA and CMOTA are significantly
more efficient than AMOSA. Unfortunately, we do not have the tools to compare these
algorithms versus the other algorithms’ execution time in Table 1. Nevertheless, we made
the quality comparisons by using the metrics previously published.

Table 11. Runtimes for CMOSA, CMOTA and AMOSA.

Algorithm CMOSA CMOTA AMOSA [17]

Data set of 70 instances

Average execution time 495.22 229.42 * 505.84
% time saved vs AMOSA 2.1 55 * 0

Data set of 58 instances

Average execution time 111.68 41.97 * 139.39
% time saved vs AMOSA 19.87 69.89 * 0

Data set of 15 instances

Average execution time 81.24 75.24 * 141.25
% time saved vs AMOSA 42.48 46.73 * 0

* Best result.

7. Conclusions

This paper presents two multi-objective algorithms for JSSP, named CMOSA and
CMOTA, with three objectives and six metrics. The objective functions for these algorithms
are makespan, total tardiness, and total flow time. Regarding the results from the compari-
son of CMOSA and CMOTA with AMOSA, we observe that both algorithms obtained a
well-distributed Pareto front, closest to the origin, and closest to the approximate Pareto
front as was indicated by Spacing, MID, and IGD metrics, respectively. Thus, using these
five metrics, we found that CMOSA and CMOTA surpassed the AMOSA algorithm. Re-
garding the volume covered by the front calculated by the HV metric, it was observed that
both algorithms, CMOSA and CMOTA, have the same performance; however, CMOSA
has a higher convergence than CMOTA. In addition, the proposed algorithms surpass
IMOEA/D when MID metric was used. Moreover, we use the HV to compare the pro-
posed algorithms with SPEA, CMOEA, MOPSO, and MOMARLA. We found that CMOSA
outperforms these algorithms, followed by CMOTA, MOMARLA, and MOPSO.

We observe that CMOSA and CMOTA have similar complexity as the best algorithms
in the literature. In addition, we show that CMOSA and CMOTA surpass AMOSA when we
compare them using execution time for three data sets. We found CMOTA is, on average, 50
percent faster than AMOSA and CMOSA. Finally, we conclude that CMOSA and CMOTA
have similar temporal complexity than the best literature algorithms, and the quality
metrics show that the proposed algorithms outperform them.

Author Contributions: Conceptualization: J.F.-S., L.H.-R., G.C.-V.; Methodology: J.F.-S., L.H.-R.,
G.C.-V., J.J.G.-B.; Investigation: J.F.-S., L.H.-R., G.C.-V., J.J.G.-B.; Software: J.F.-S., L.H.-R., G.C.-V.,
J.J.G.-B.; Formal Analysis: J.F.-S., G.C.-V.; Writing original draft: J.F.-S., L.H.-R., G.C.-V.; Writing
review and editing: J.F.-S., J.J.G.-B., J.P.S.-H. All authors have read and agreed to the published version
of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Math. Comput. Appl. 2021, 26, 8 22 of 34

Acknowledgments: The authors would like to express their gratitude to CONACYT and TecNM/IT
Ciudad Madero. In addition, the authors acknowledge the support from Laboratorio Nacional de
Tecnologías de la Información (LaNTI) for the access to the cluster.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Non-Dominated Front Obtained

The non-dominated solutions obtained by CMOSA algorithm for the 70 instances
used are shown in Tables A1–A6, and the non-dominated solutions obtained by CMOTA
algorithm for the same instances are shown in Tables A7–A12. In these tables, MKS is
the makespan, TDS is the total tardiness and FLT is the total flow time. For each instance,
the best value for each objective function is highlighted with an asterisk (*) and in bold type.

Table A1. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [40].

FT06 FT10 FT20

MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 55 * 30.0 305 993 * 1768.5 9234 1224 * 8960.0 16614
2 55 38.0 301 994 1609.0 9121 1227 8809.0 16375
3 56 37.0 304 1004 1495.0 9062 1229 8793.0 16359
4 56 29.0 308 1006 1083.0 8584 1235 8774.0 16340
5 57 23.5 305 1036 1053.0 8406 * 1243 8455.5 * 16119 *
6 57 27.0 297 1037 1009.0 * 8437
7 57 26.0 298
8 58 9.5 280
9 60 11.0 279 *

10 62 8.5 285
11 69 8.0 * 291

Table A2. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [41].

ORB1 ORB2 ORB3 ORB4 ORB5

MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1142 * 1539.0 9245 925 * 767.5 8339 1104 * 1874.0 9448 1063 * 1186.0 9175 966 * 1192.5 8279
2 1143 1517.0 9223 927 781.5 8285 1111 1548.0 9392 1073 1108.5 9270 971 1180.5 8296
3 1144 1522.0 9135 931 722.5 8160 1112 1816.0 9318 1078 1059.5 9128 975 859.5 7648
4 1150 1381.5 9219 951 542.5 8056 1123 1462.0 9306 1107 917.5 9234 978 752.5 8016
5 1161 1355.5 * 9469 958 331.0 * 7742 1127 1806.0 9288 1111 978.0 9199 980 758.5 8011
6 1172 1508.0 9214 958 339.0 7730 * 1162 1579.0 9200 1134 944.5 9221 984 708.5 7961
7 1174 1521.0 9134 * 1164 1562.0 9183 1140 795.5 9111 984 706.5 7970
8 1180 1492.5 8984 1156 843.5 9083 998 822.0 7784
9 1187 1475.5 * 8967 * 1200 733.5 * 9049 1001 746.5 7869

10 1230 919.0 8969 1001 834.0 7620 *
11 1232 983.5 8813 1013 689.0 * 7765
12 1277 995.5 8735 * 1017 795.0 7713
13 1032 798.0 7659
14 1049 771.0 7678

Math. Comput. Appl. 2021, 26, 8 23 of 34

Table A2. Cont.

ORB6 ORB7 ORB8 ORB9 ORB10

MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1097 * 1318.0 9573 423 * 207.5 3663 963 * 1804.0 8439 987 * 1193.5 8912 991 * 835.0 8482
2 1100 1199.5 9505 424 167.0 3731 968 1412.5 8204 988 1362.5 8860 993 843.0 8465
3 1100 1267.5 9434 431 161.0 * 3643 970 1387.0 8215 993 1220.0 8898 1020 798.5 8785
4 1105 1225.0 9434 439 295.0 3620 988 1514.5 8099 996 1072.5 8844 1029 742.5 8691
5 1105 1227.0 9412 449 207.5 3625 997 1587.0 8078 1006 1002.0 8538 1043 608.5 8659
6 1110 1255.0 9409 453 230.5 3616 1001 1239.0 7912 1019 1017.5 8523 1044 493.5 * 8522
7 1113 1220.5 9452 455 204.5 3636 1044 1120.0 * 7617 * 1035 1100.5 8493 1072 774.5 8455 *
8 1114 1078.5 9287 459 213.0 3577 1039 1043.5 8430
9 1141 1153.0 9109 * 461 216.0 3509 1048 887.0 * 8348 *

10 1171 1097.0 9194 461 203.0 3545
11 1191 1018.5 9145 461 186.5 3572
12 1233 988.0 * 9225 466 202.5 3547
13 466 171.0 3561
14 470 184.5 3504 *

Table A3. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [42].

LA01 LA02 LA03 LA04 LA05
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 666 * 1194.0 5436 655 * 1207.0 5123 615 * 1492.5 5000 590 * 1252.0 4900 593 * 1159.5 4451
2 666 1237.5 5362 656 1161.0 5077 622 1400.5 4896 595 1235.0 4948 593 1088.0 4455
3 667 1382.5 5357 665 1222.0 4994 626 1484.5 4881 598 1250.0 4857 594 1053.0 4399
4 668 1068.5 5328 665 1203.0 5050 627 1467.0 4889 598 1226.5 4910 610 1099.5 4386
5 668 1074.0 5309 671 1042.0 4904 628 1343.5 4866 599 1167.0 4915 615 1129.5 4351 *
6 670 1269.5 5300 673 1094.5 4879 630 1357.5 4803 603 1154.5 4895 631 999.5 * 4371
7 672 1152.5 5260 681 938.5 4799 630 1339.5 4850 605 1089.0 4737 648 1036.0 4359
8 688 1145.5 5247 695 927.5 4864 633 1226.5 4750 614 1034.0 4782 659 1032.0 4355
9 700 1120.5 5297 695 930.5 4796 638 1183.0 4649 615 1047.5 4756

10 706 1081.5 5241 696 910.5 4837 641 1178.5 4713 618 1042.5 4705
11 706 1179.0 5225 714 997.5 4776 646 1173.0 4718 622 1038.5 4705
12 713 1065.5 5203 715 936.5 4720 655 1088.5 4482 629 1006.0 4710
13 718 1025.5 5235 736 925.0 4812 662 1062.0 4595 629 1020.5 4695
14 727 1056.5 5138 741 993.0 4716 * 662 1081.5 4591 631 982.5 4697
15 734 1046.0 5184 771 909.5 * 4786 668 1015.0 4522 637 981.0 4576
16 743 1089.0 5101 669 981.5 4523 638 961.5 4667
17 751 951.0 * 5115 683 979.5 4516 640 962.0 4566
18 825 1098.0 5099 * 688 1087.5 4481 643 930.0 4525 *
19 698 1055.0 4504 648 927.0 4531
20 741 955.5 4382 650 895.5 4558
21 744 891.0 4375 655 908.0 4537
22 744 914.0 4372 663 888.5 * 4551
23 750 896.5 4323 * 663 906.0 4543
24 757 867.0 * 4325

Math. Comput. Appl. 2021, 26, 8 24 of 34

Table A3. Cont.

LA06 LA07 LA08 LA09 LA10
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 926 * 4185.5 10,142 890 * 4006.5 9554 863 * 3717.5 9455 951 * 3925.0 10,297 958 * 4439.5 10,441
2 927 4183.0 10,171 890 4044.0 9496 863 3792.5 9424 951 3916.5 10,311 969 4476.5 10,437
3 929 4062.0 10,050 894 3974.5 9522 865 3723.5 9387 954 3908.0 * 10,280 971 4313.0 10,343
4 931 4122.0 10,041 896 3646.5 9264 870 3685.5 9349 974 3944.5 10,195 * 976 4298.0 10,328
5 938 3911.0 9870 904 3684.0 9248 871 3649.5 9284 982 4121.0 10,151
6 940 3827.0 * 9786 * 906 3615.0 9219 876 3602.5 9340 1052 4083.0 * 10,113 *
7 910 3652.0 9216 885 3598.5 9309
8 967 3595.0 * 9199 * 895 3596.0 9266
9 896 3410.5 * 9045 *

LA11 LA12 LA13 LA14 LA15
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1222 * 9157.5 17,184 1039 * 7218.0 14,229 1150 * 8436.5 16,208 1292 * 10,017.0 18,036 1207 * 9447.5 17,581
2 1225 8947.5 16,853 1041 7203.0 14167 1153 8333.5 16,105 1299 9986.0 18,005 1208 9249.5 17,383
3 1241 8879.5 16,785 1043 7198.0 14196 1154 8310.5 16,079 1328 9992.5 17,990 1213 9175.0 17,314
4 1242 8862.5 16,768 1049 7164.0 14162 1155 8247.5 15,953 1352 9810.5 * 17,808 1220 9149.0 17,284
5 1243 8860.5 16,766 1050 7126.0 14124 1161 8175.0 15,954 1352 9867.0 17,797 * 1229 9014.0 17,149
6 1256 8811.5 16,798 1134 7114.0 * 14,112 * 1162 8210.5 15,916 1232 9013.0 17,148
7 1257 8725.5 16,712 1182 8057.0 15,836 1234 8991.0 17,126
8 1258 8765.5 16,671 1183 8013.0 15,792 1251 8915.5 17,062
9 1265 8650.5 * 16,637 * 1184 7994.0 15,773 1271 8947.5 17,040

10 1185 7989.0 15,768 1273 8703.5 16871
11 1189 7978.0 * 15,757 * 1281 8651.5 16,819
12 1283 8638.5 16,802
13 1289 8603.5 16,767
14 1297 8601.5 * 16,765 *

LA16 LA17 LA18 LA19 LA20
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 968 * 983.5 8777 796 * 799.0 7502 865 * 488.0 7765 884 * 538.0 7950 934 * 665.5 8354
2 982 904.0 8754 796 784.0 7509 866 468.5 7743 889 288.0 7945 939 599.5 8409
3 988 898.5 8608 810 855.0 7492 868 439.5 7853 891 495.0 7821 948 631.5 8393
4 992 882.0 8752 811 783.0 7555 873 419.5 7687 900 406.0 7916 957 542.0 8423
5 994 816.5 8669 813 702.0 7458 878 396.5 7755 905 279.0 7846 957 556.0 8302
6 1000 873.0 8570 813 745.0 7450 882 404.5 7732 935 327.0 7730 964 658.0 8232
7 1003 900.0 8565 816 693.0 7458 883 429.5 7648 953 335.5 7726 966 403.0 8032
8 1003 908.0 8545 820 630.0 7395 893 411.0 7671 953 259.5 * 7806 967 408.0 8028
9 1003 942.0 8474 823 670.5 7334 923 394.5 7802 979 304.5 7673 * 971 408.0 8001

10 1008 493.0 8205 824 633.5 7240 927 368.5 7885 972 419.0 7975
11 1016 553.5 8063 831 623.5 7321 928 351.5 7882 1009 390.5 8094
12 1040 459.5 8232 833 625.5 7320 939 353.0 7691 1067 422.0 7927
13 1050 352.0 7997 835 717.5 7203 939 300.5 7860 1084 424.0 7908 *
14 1066 345.5 8285 836 596.5 7291 940 345.0 7827 1100 383.5 8292
15 1071 341.5 8068 836 611.5 7284 945 332.5 7845 1115 382.5 8065
16 1073 401.0 7980 840 597.0 7267 946 305.0 7629 1142 335.5 7915
17 1095 326.5 * 7908 * 840 612.0 7260 952 267.0 * 7778 1142 334.0 7998
18 842 612.0 7194 978 476.0 7614 1148 262.5 * 8205
19 849 522.0 7208 982 455.0 7519 * 1168 302.5 8204
20 849 521.5 7232 984 439.0 7626

Math. Comput. Appl. 2021, 26, 8 25 of 34

Table A3. Cont.

21 864 531.0 7135 998 361.5 7603
22 864 530.5 7159
23 864 521.5 7169
24 899 535.0 7114
25 914 509.0 7034
26 927 470.0 * 7098
27 931 475.0 7000 *

LA21 LA22 LA23 LA24 LA25
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1124 * 3229.5 15,030 1013 * 2968.5 13,774 1077 * 2292.0 14,222 1000 * 2145.5 13230 * 1071 * 3161.0 14,387
2 1124 3233.5 15,002 1018 2916.5 13,722 1078 2253.5 14,198 1008 2137.5 13,474 1072 3060.0 14,275
3 1127 3180.5 14,883 1020 2906.5 13,712 1078 2249.5 14,238 1008 2120.5 13,606 1089 3002.0 14,096
4 1128 3137.5 14,868 1034 2738.5 13,552 1080 2173.5 14,152 1077 2010.5 13,458 1100 2756.5 13,951
5 1129 3015.5 14,718 1037 2660.0 13,638 1091 2231.5 14,149 1079 1981.5 13,390 1104 2764.5 13,940
6 1137 2998.5 14,400 1038 2774.5 13,548 1095 2243.5 14,147 1088 19,76.5 * 13,385 1118 2721.0 13,962
7 1141 2892.5 14,636 1039 2648.0 13,611 1097 2071.0 14,011 1118 2768.0 13,938
8 1144 2821.5 14,565 1045 2811.0 13,528 1102 1939.0 * 13,867 * 1121 2802.5 13,829
9 1146 2939.0 14,346 1047 2696.5 13,510 1123 2618.5 13,658
10 1150 2543.0 14,344 1050 2614.5 13,445 1131 2584.5 13,845
11 1150 2639.5 14,316 1068 2565.5 13,396 1134 2536.5 13,577
12 1157 2557.5 14,247 1076 2544.5 13,375 1134 2529.0 13,770
13 1158 2545.5 14,222 1082 2462.5 13,253 1154 2517.5 13,535
14 1164 2511.5 14,188 1087 2392.5 13,169 1159 2457.0 13,654
15 1179 2393.5 14,204 1099 2332.5 * 13,109 * 1160 2451.5 13,666
16 1182 2331.5 14,165 1173 2530.0 13,470
17 1182 2355.5 14,153 1175 2445.0 13,385
18 1183 2454.5 14,131 1187 2435.0 13,481
19 1227 2328.0 14,238 1189 2315.0 * 13,255 *
20 1247 2225.0 * 14,161
21 1258 2561.5 13,967
22 1272 2527.5 13,963
23 1285 2465.5 13,871 *
24 1290 2305.0 14,103

LA26 LA27 LA28 LA29 LA30
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1281 * 6921.0 22,576 1332 * 6555.0 22,803 1318 * 7579.0 23,547 1293 * 7971.5 22,802 1434 * 9177.0 25,172
2 1282 6811.0 22,466 1334 6495.0 22,743 1321 7403.0 23,426 1294 7963.5 22,786 1437 8132.0 24,056
3 1304 6708.5 22,434 1340 6399.0 22,647 1329 6603.0 22,626 1317 7799.5 22,693 1445 8064.0 23,991
4 1323 6643.5 22,416 1346 6280.0 22,528 1362 6683.5 22,578 1319 7796.5 22,690 1448 7996.0 23,923 *
5 1325 6629.5 22,402 1358 6228.0 * 22,476 * 1367 6552.0 22,575 1327 7770.5 22,664 1540 7980.0 * 24,000
6 1328 6741.5 22,254 1378 6469.0 22,454 1333 7738.5 22,632
7 1329 6560.5 22,333 1385 6465.0 22,389 1334 7711.5 22,605
8 1338 6616.5 22,129 1393 6480.5 22,360 1339 7507.5 22,314
9 1340 6510.5 22,276 1413 6443.0 22,320 1340 7446.5 22,253
10 1377 6307.0 * 21,940 * 1416 6439.0 22,316 1368 7411.5 22,218
11 1454 6429.0 22,298 1375 7398.5 22,289
12 1476 6239.0 22,013 1376 7464.5 22182
13 1477 6141.0 * 21,915 * 1376 7374.5 22,268
14 1379 7018.5 21,912
15 1389 7011.5 * 21,905 *

Math. Comput. Appl. 2021, 26, 8 26 of 34

Table A3. Cont.

LA31 LA32 LA33 LA34 LA35
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1784 * 20,830.5 43,617 1850 * 20,861.5 45715 1719 * 20,933.5 43,387 1743 * 22,605.5 45,617 1898 * 24,225.5 47,233
2 1794 20,718.5 43,505 1867 20,860.5 45,714 1721 18,798.5 41,252 1747 21,475.5 44,487 1899 23,434.5 46,652
3 1796 20,390.5 43,177 1871 20,686.5 45,540 1723 18,528.5 40,982 1755 21,271.5 44,283 1900 22,784.5 46,012
4 1797 20,066.5 42,842 1881 20,563.5 45,417 1725 18,137.5 40,591 1756 21,211.5 44,223 1901 22,724.5 45,952
5 1798 20,009.5 42785 1889 20,059.5 44,913 1738 18,109.5 *40,563 * 1759 21041.5 44,037 1903 22,684.5 45,912
6 1800 19,919.5 *42,695 * 1900 20,049.5 *44,903 * 1771 20,916.0 43,916 1920 22,481.5 45,709
7 1774 20,787.0 43,787 1947 22,677.0 45,695
8 1781 20,736.0 43,736 1950 22,442.5 45,670
9 1791 20,693.5 43,705 1953 22,454.0 45,665

10 1801 20,505.5 43,517 1958 22,327.5 45,555
11 1837 20,476.5 43,488 2018 22,311.5 *45,539 *
12 1839 20,356.5 43,368
13 1840 20,305.5 43,317
14 1843 20,298.5 43,310
15 1850 20,072.5 43,084
16 1906 19,880.5 *42,892 *

LA36 LA37 LA38 LA39 LA40
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1453 * 3131.0 20,575 1569 * 3065.0 21,444 1400 * 1586.0 18,171 1444 * 2371.0 19,447 1436 * 2617.5 19,260
2 1471 3030.5 20,309 1571 3077.0 21,436 1419 1578.5 * 18,200 1452 2056.0 19,215 1443 2017.0 18,689
3 1474 2834.5 20,125 1574 3043.0 21,402 1421 2057.5 18,119 1498 1770.5 18,662 1450 1806.0 18,391
4 1475 2936.5 20,085 1574 3025.0 21,404 1439 2092.5 18,067 1499 1731.5 18,607 1458 1719.0 18,303
5 1476 2847.5 20,094 1580 3009.0 21,301 1468 1753.5 18,103 1504 1473.5 18,404 1471 1433.5 * 18,431
6 1476 2949.5 20,054 1584 3002.0 21,294 1473 1736.5 18,086 1621 1422.5 18,579 1495 1549.5 18,287 *
7 1487 2633.5 19,889 1590 2331.5 20,755 1496 1744.5 18,044 * 1817 1902.0 * 18,191 *
8 1498 2474.5 19,694 1593 2289.5 20,748
9 1505 2492.5 19,675 1608 2247.5 20,585

10 1521 2604.0 19,671 1614 2384.0 20,153
11 1521 2379.0 19,840 1614 2414.0 20,101
12 1529 2459.5 19,679 1618 2374.0 20,143
13 1530 2420.0 19,668 1621 2418.0 20,077 *
14 1534 2335.5 19,812 1649 2234.5 20,600
15 1534 2472.5 19,650 1650 2237.5 20,587
16 1548 2278.5 19,755 1650 2241.5 20,557
17 1563 2015.5 * 19,237 1700 2222.5 20,453
18 1573 2532.5 19,231 * 1700 2205.0 20,517
19 1707 2187.5 20,418
20 1781 2012.0 20,554
21 1781 1964.5 20,634
22 1790 1835.5 * 20,309

Math. Comput. Appl. 2021, 26, 8 27 of 34

Table A4. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [43].

ABZ5 ABZ6 ABZ7 ABZ8 ABZ9
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1250 * 145.0 11,006 967 * 324.0 8453 746 * 2420.0 13,274 763 * 23,17.0 13,696 805 * 3296.5 14,426
2 1250 134.0 * 11,025 974 256.5 8524 753 2403.0 13,257 763 2332.0 13,688 807 3127.0 14,287
3 1252 139.0 10,998 974 251.5 8550 793 2305.0 * 13,137 * 773 2336.0 13,675 808 2941.0 14,094
4 1289 141.0 10,984 979 204.0 8464 773 2326.0 13,688 822 2846.0 13,820
5 1289 142.0 10,946 * 997 258.5 8357 775 2294.0 13,633 833 2770.0 13,840
6 999 202.0 8553 779 2236.5 * 13,591 * 842 2733.5 13,888
7 1001 172.0 8484 843 2740.5 13,845
8 1009 164.0 8589 845 2727.5 13,832
9 1016 164.5 8532 846 2706.5 13,811

10 1018 134.0 8692 847 2696.5 13,801
11 1019 126.0 8275 * 885 2806.0 13,800
12 1074 35.5 8583 886 2737.0 13,762
13 1077 36.5 8525 889 2726.0 13,720
14 1077 49.5 8459 896 2708.5 13,703
15 1080 25.5 8550 897 2684.5 * 13,679 *
16 1082 29.5 8488
17 1082 40.5 8472
18 1085 1.5 * 8423

Table A5. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [44].

YN01 YN02 YN03 YN04
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1103 * 2485.0 19,819 1133 * 2178.0 19,429 1083 * 2025.5 19,346 1210 * 2864.5 20,633
2 1105 2442.0 19,776 1137 2205.0 19,424 1084 2015.5 19,336 1221 2814.0 * 20,552
3 1105 2465.5 19,753 1140 2050.0 19,299 1084 2012.5 19,337 1297 2915.5 20,525
4 1106 2418.5 19,706 1140 2067.0 19,286 1089 2003.5 19,328 1300 2910.5 20,520 *
5 1106 2395.0 19,729 1148 2059.0 19,278 1090 1987.5 * 19,308
6 1108 1901.0 19,129 1150 2023.0 * 19,276 * 1138 2179.5 19,219
7 1111 1859.0 19,068 1203 2157.5 18,751 *
8 1117 1867.5 19,013 *
9 1126 1756.5 * 19,265

10 1131 1772.5 19,247

Table A6. Non-dominated front obtained by CMOSA for the JSSP instances proposed by [30].

TA01 TA11 TA21 TA31
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1412 * 1821.5 18,716 1603 * 6409.5 27,903 2048 * 7261.5 37,039 2083 * 20,557.0 54,457
2 1412 16,41.5 18,749 1607 6365.5 27,859 2050 6184.5 36,322 2091 20,504.0 54,404
3 1414 1809.5 18,704 1619 6051.5 27,722 2051 6184.5 36,290 2096 20,448.0 54,348
4 1433 1753.5 18,648 * 1750 6387.0 27,635 2074 6023.5 36,129 2097 20,112.0 54,012
5 1443 1733.5 18,739 1753 6307.0 27,555 * 2078 6017.5 36,123 2099 20,099.0 53,999
6 1448 1625.0 * 18,765 1766 6293.0 27,572 2091 6031.0 36,050 2106 19,879.0 53,779
7 1859 6088.0 * 27,679 2274 5393.0 * 35,462 * 2109 19,860.0 53,760
8 2119 19,857.0 53,757
9 2121 19,802.0 53,702

10 2125 19,782.0 53,682
11 2132 18,670.5 52,157
12 2139 18,657.5 * 52,144 *

Math. Comput. Appl. 2021, 26, 8 28 of 34

Table A6. Cont.

TA41 TA51 TA61 TA71
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 2530 * 18,610.5 65,529 3121 * 77,760.0 134,637 3437 * 71,924.0 148,370 6050 * 368,519.5 519,856
2 2553 18,589.5 65,508 3124 74,125.0 131,002 3445 71,162.0 147,608 6063 368,491.5 519,828
3 2731 18,298.0 65,157 3125 74,113.0 130,990 3561 70,685.0 147,131 6097 367,933.5 519,270
4 2733 18,257.0 65,116 3127 74,028.0 130,905 3567 70,550.0 * 146,996 * 6098 367,927.5 51,9264
5 2736 18,228.0 65,087 3134 72,636.0 129,513 6129 366,149.5 51,7486
6 2743 18,197.0 65,056 3186 72,624.0 129,501 6165 365,118.5 516,455
7 2832 181,28.5 65,047 3188 71,884.0 128,761 6166 365,116.5 516,453
8 2949 17,853.5 * 64,772 * 3189 71,849.0 128,726 6168 365,090.5 516,427
9 3202 70,643.0 127,520 6215 361,891.5 * 513,228 *
10 3204 70,623.0 * 127,500 *

Table A7. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [40].

FT06 FT10 FT20
MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 55 * 30.0 305 1021 * 1759.5 9407 1234 * 9571.0 17,132
2 55 38.0 301 1029 1721.0 9122 1240 8914.5 16,578
3 56 29.0 308 1063 1711.0 9358 1243 8934.0 16,526
4 57 23.5 305 1065 1697.0 9280 1249 8898.5 16,562
5 57 26.0 298 1067 1562.5 9226 1258 8959.5 16,480
6 57 27.0 297 1088 1650.5 8859 * 1259 8930.5 16451
7 58 9.5 280 1089 1614.5 9031 1270 8831.5 16,352
8 60 8.5 * 276 * 1091 1619.5 9018 1277 8782.5 16,303
9 1109 1468.0 9046 1327 8768.0 16,365
10 1125 1459.0 8890 1351 8768.5 16,289 *
11 1146 1361.0 * 9003 1359 8738.0 * 16,335

Table A8. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [41].

ORB1 ORB2 ORB3 ORB4 ORB5
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1180 * 1853.0 9764 964 * 985.5 8421 1124 * 2307.5 10,157 1094 * 1727.5 9897 945 * 1006.0 8032
2 1190 1714.5 9619 983 971.5 8672 1134 1901.0 9579 1104 1720.5 10,062 980 975.0 7992
3 1192 1721.5 9585 985 913.5 8601 1208 1842.5 9770 1109 1695.5 10,117 994 747.0 * 7966
4 1237 1787.5 9440 986 975.5 8593 1212 1795.5 9721 1111 1600.5 9865 999 751.0 7950
5 1238 1714.5 9616 987 1009.0 8347 1217 1829.5 9698 1118 1507.0 9818 1053 979.5 7944 *
6 1249 1799.5 9423 988 980.0 8303 1218 1791.5 9717 1130 1626.0 9704
7 1253 1771.5 9428 991 857.5 8545 1219 1875.0 9531 1132 1588.5 9768
8 1255 1582.0 9459 996 918.0 8427 1240 1516.5 * 9349 * 1133 1595.5 9760
9 1261 1581.0 9387 1011 842.0 8630 1138 1548.5 9713

10 1336 1415.5 9303 1015 854.5 8526 1143 1487.0 9798
11 1339 1372.5 * 9260 * 1020 625.5 8251 1153 1626.0 9674
12 1047 625.0 * 8288 1155 1472.5 9645
13 1081 753.0 8059 * 1165 1452.5 9625
14 1209 721.5 8224 1165 1440.0 9645
15 1166 1428.0 9633
16 1173 1424.0 9621
17 1182 1454.0 9404 *
18 1183 1310.0 9506

Math. Comput. Appl. 2021, 26, 8 29 of 34

Table A8. Cont.

19 1189 1279.0 9481
20 1202 1303.0 9252
21 1266 1249.5 9639
22 1284 1198.5 * 9588

ORB6 ORB7 ORB8 ORB9 ORB10
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1090 * 1382.5 9489 433 * 226.0 3813 1016 * 1919.5 8465 1009 * 1646.5 9402 1055 * 1366.5 9211
2 1091 1284.5 9341 437 225.0 3770 1025 1635.5 8181 * 1013 1595.0 9331 1065 790.5 8899
3 1134 1078.0 9177 439 271.5 3707 1047 1617.0 8457 1016 1534.0 9251 1108 843.0 8834
4 1153 1059.0 9182 453 220.0 3742 1148 1575.0 8319 1027 1644.0 9187 1114 686.5 * 8810
5 1168 969.0 9030 * 465 236.0 3697 1150 1564.0 8312 1036 1669.0 9130 1115 687.5 8795
6 1204 945.0 9072 471 173.5 * 3620 * 1176 1565.0 8294 1043 1479.0 9206 1246 1080.0 8747 *
7 1221 907.0 * 9034 1184 1502.0 * 8301 1063 1360.0 8975
8 1064 1355.0 * 8966
9 1066 1378.0 8942
10 1073 1358.5 8956
11 1083 1426.0 8885 *
12 1092 1417.0 8914

Table A9. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [42].

LA01 LA02 LA03 LA04 LA05
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 666 * 1416.0 5550 663 * 1327.5 5145 617 * 1807.5 5353 598 * 1396.0 5096 593 * 1241.5 4601
2 666 1367.0 5561 677 1284.0 5053 624 1516.0 4890 598 1414.0 5094 593 1240.5 4604
3 666 1444.0 5500 685 925.0 * 4805 * 630 1444.0 4982 602 1181.0 4842 593 1290.0 4516
4 666 1325.5 5577 630 1511.5 4977 610 1049.0 4730 596 1277.0 4583
5 667 1465.5 5488 633 1383.5 4816 644 1083.5 4726 * 597 1242.0 4537
6 668 1269.0 5403 637 1345.5 4820 660 1014.0 * 4743 600 1233.5 4546
7 672 1245.5 5468 650 1147.5 * 4673 660 1027.5 4737 600 1273.0 4499
8 674 1246.0 5396 673 1164.0 4632 * 600 1190.5 4553
9 676 1313.0 5348 603 1162.0 4571

10 702 1229.5 5438 607 1154.5 4518
11 706 1099.5 5177 607 1185.0 4497
12 726 1072.5 5210 608 1176.5 4502
13 764 1001.0 * 5176 * 610 1133.5 4502
14 613 1093.0 * 4502
15 614 1130.5 4494
16 622 1164.0 4459
17 648 1209.0 4424
18 650 1198.0 4413 *

LA06 LA07 LA08 LA09 LA10
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 926 * 4193.5 10151 890 * 4398.0 10014 863 * 3719.5 9421 951 * 4212.5 10607 958 * 4562.0 10536
2 927 4150.5 10108 893 4494.0 9908 870 3644.5 9346 954 4387.0 10601 958 4558.5 10587
3 943 4104.0 10028 894 4092.5 9651 896 3401.5 * 9139 * 960 4284.5 10586 960 4507.0 10481
4 964 4061.5 9978 904 3890.5 * 9452 * 966 4077.0 * 10411 * 965 4277.0 10251
5 992 4034.5 * 9951 * 988 4271.0 * 10,245 *

Math. Comput. Appl. 2021, 26, 8 30 of 34

Table A9. Cont.

LA11 LA12 LA13 LA14 LA15
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1222 * 9579.5 17,606 1039 * 7550.0 14,564 1150 * 8618.0 16,397 1292 * 9927.5 17,940 1207 * 9792.5 17,960
2 1234 9317.5 17,344 1045 7514.0 14,528 1150 8641.5 16,377 1292 9966.0 17,847 1209 9679.5 17,847
3 1238 9222.5 * 17,249 * 1050 7498.0 14,512 1152 8608.0 16,387 1298 9919.5 17,857 1217 9644.5 17,812
4 1081 7318.0 * 14,332 * 1153 8459.5 16,160 1321 9697.0 * 17,716 * 1217 9692.5 17,769
5 1182 7884.0 15,577 1218 9628.5 17,705
6 1189 7811.0 * 15,504 * 1219 9312.5 * 17,336 *

LA16 LA17 LA18 LA19 LA20
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 982 * 909.5 8738 825 * 1045.0 7819 872 * 609.5 7920 901 * 569.0 8258 938 * 749.0 8616
2 1008 771.0 8567 830 1016.0 7782 874 560.5 7836 904 398.0 8071 967 697.0 8549
3 1065 613.5 8503 848 1001.0 7698 905 555.0 8017 916 375.0 8146 967 695.0 8561
4 1082 603.0 8227 850 969.0 7569 908 555.5 7880 916 422.0 7972 969 674.0 8498
5 1091 490.5 * 8311 854 983.0 7557 922 549.0 8056 921 342.0 7903 972 645.5 8578
6 1107 524.0 8130 * 856 883.5 7656 930 549.0 7866 929 276.0 * 7766 972 647.5 8470
7 865 845.5 7612 933 472.0 7797 * 931 325.0 7765 978 558.0 8318
8 873 758.0 7517 933 468.5 * 7824 953 488.0 7759 * 1010 531.0 * 8291
9 883 764.5 7500 1025 662.5 8277

10 894 752.0 7539 1041 612.0 8069 *
11 911 758.0 7448
12 918 723.0 7415
13 927 775.0 7336 *
14 981 760.0 7384
15 995 770.0 7373
16 1009 730.0 7368
17 1176 720.0 * 7605

LA21 LA22 LA23 LA24 LA25
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1154 * 3406.5 15,329 1041 * 3315.0 14,265 1115 * 2616.5 14,458 1047 * 2511.0 14,081 1073 * 3252.0 14,388
2 1172 3329.5 15,084 1050 3118.0 14,068 1118 2599.5 14,441 1052 2477.0 14,047 1087 3217.0 14,315
3 1174 3035.5 14,835 1053 3035.0 14,000 1158 2459.0 14,476 1054 2870.5 14,001 1088 3143.0 14,241
4 1177 3059.5 14,607 1070 2994.0 13,975 1160 2457.0 14,436 1060 2613.5 13,860 1110 2638.0 13,761
5 1202 3044.5 14,763 1079 2754.0 13,625 1160 2722.5 14,389 1070 2593.5 13,918 1147 2633.0 13,793
6 1204 3024.5 14,743 1081 2699.0 * 13,562 * 1163 2437.0 14,416 1073 2598.5 13,874 1148 2682.5 13,742 *
7 1220 3032.5 14,609 1172 2761.5 14,370 1079 2547.5 13,859 1148 2623.5 * 13,764
8 1238 2881.5 14,783 1178 2408.0 * 14,384 1080 2473.0 14,063
9 1239 2877.5 14,666 1210 2595.5 14,373 1080 2546.5 13,858 *

10 1253 2832.5 14,696 1216 2562.5 14,340 * 1087 2368.0 * 13,911
11 1347 2973.5 14,634
12 1349 2883.0 14,507
13 1356 2943.0 14,494
14 1393 2936.0 14,419
15 1393 2929.5 14,489
16 1403 2766.5 * 14,412 *

LA26 LA27 LA28 LA29 LA30
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1300 * 7356.5 23,129 1374 * 8083.0 24,331 1325 * 7440.0 23,463 1328 * 8518.0 23,291 1455 * 9085.0 25,105
2 1336 7171.5 22,944 1377 7946.0 24,194 1326 7315.0 23,338 1337 8513.0 23,286 1457 9071.0 25,091

Math. Comput. Appl. 2021, 26, 8 31 of 34

Table A9. Cont.

3 1337 7077.5 22,850 1378 7660.0 23,875 1340 7233.0 23,256 1345 8501.0 23,274 1465 9211.5 25,064
4 1343 7047.5 22,820 1380 7641.0 23,856 1354 7185.0 23,176 1353 8534.0 23,273 1477 9196.5 25,049
5 1344 6971.5 22,744 1394 7645.5 23,854 1357 7096.0 23,087 1358 8464.0 23,203 1479 8374.5 24,204
6 1353 6947.5 * 22,720 1398 7494.0 23742 1360 7056.0 23,047 1360 8091.5 22,985 1481 8348.5 24,178
7 1396 7083.0 22,666 1401 7438.0 23,686 1375 6997.0 22,885 1363 8064.5 22,958 1519 8280.5 242,20
8 1454 7072.5 22,660 * 1402 7374.0 23,622 1384 6906.0 22,794 1368 8062.5 22,956 1543 8227.5 24167
9 1405 7408.5 23,586 1396 6674.5 22,672 1389 8208.0 22,939 1584 8391.5 24,097

10 1412 7327.0 23,575 1412 6568.5 22,566 1403 7990.5 22,836 1598 8090.5 23,796
11 1446 7265.0 23,513 1417 6518.5 22,509 1432 7971.5 22,865 1657 7980.5 * 23,686 *
12 1454 7367.0 23,500 1436 6491.5 * 22,482 * 1448 7972.0 22,776
13 1469 7264.5 23,511 1453 7805.0 22,609
14 1476 7228.0 23,476 1475 7733.5 22,627
15 1483 7185.0 23,433 1525 7664.5 * 22,558 *
16 1502 7226.5 23,352
17 1602 7109.5 * 23,312 *

LA31 LA32 LA33 LA34 LA35
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1784 * 219,44.5 44,731 1850 * 22,413.0 47,111 1719 * 22,284.5 44,738 1768 * 23,263.5 46,275 1899 * 24,702.5 47,930
2 1800 21,424.5 44,211 1850 22,411.5 47,265 1720 21,944.5 44,398 1774 22,903.5 45,915 1908 24,515.5 47,743
3 1807 21,363.5 44,150 1857 22,085.5 46,939 1722 21,802.5 44,256 1775 22,881.5 45,893 1909 23,489.5 46,717
4 1842 20,988.5 43,775 1859 22,074.5 46,928 1723 21,777.5 44,190 1776 22,657.5 45,669 1917 23,481.5 46,709
5 1843 20,814.5 *43,601 * 1881 21,988.5 46,842 1734 21,723.5 44,177 1792 22,656.5 45,668 1919 23,379.5 46,607
6 1884 21,985.5 46,839 1743 21,447.5 43,901 1796 22,150.5 45,162 1923 23,368.5 * 46,596
7 1896 21,958.5 46,812 1746 21,446.5 43,900 1803 22,109.5 45,121 2029 23,393.5 46,568 *
8 1897 21,509.5 46,363 1750 21,134.5 43,508 1813 21,889.5 44,901
9 1916 21,481.5 46,335 1755 21,040.5 43,414 1817 21,797.5 44,809

10 2051 21,401.5 46,255 1771 21,024.5 43,478 1820 21,749.5 44,761
11 2068 21,362.5 46,216 1776 20,995.5 43,449 1823 21,740.5 *44,752 *
12 2084 21,294.5 * 46,148 1777 20,945.5 43,399
13 2148 21,372.5 46,059 * 1783 20,842.5 43,296
14 1785 20,778.5 43,232
15 1787 20,722.5 43,176
16 1789 20,358.0 42,706
17 1796 20,310.0 42,658
18 1800 20,044.0 42,360
19 1801 19,567.0 41,883
20 1805 19,558.0 *41,874 *

LA36 LA37 LA38 LA39 LA40
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1467 * 3203.0 20,649 1652 * 2988.5 21,540 1446 * 2646.0 19,043 1474 * 2876.0 20,077 1438 * 2444.0 19,398
2 1503 3180.0 20,626 1653 2988.5 21,536 1472 2601.0 19,159 1494 2872.0 20,073 1531 2369.0 19,333
3 1515 3076.0 20,420 1656 2912.5 21,460 1473 2060.5 18,322 1513 2385.5 19,216 1561 2336.0 * 19,300 *
4 1519 3024.0 20,254 1691 3256.0 21,323 1491 2000.5 * 18,262 * 1597 2396.0 19,175
5 1596 2988.5 20,597 1692 2894.0 21,493 1603 2362.0 19,101
6 1616 2948.5 20,557 1696 3233.0 21,300 1605 2254.0 * 18,993 *
7 1622 2868.5 20,477 1705 2757.0 21,254
8 1632 2884.5 20,163 1751 2798.5 21,208
9 1678 2903.5 20,106 1756 2888.5 21,064

10 1704 2958.0 20,037 1757 2850.0 21,005 *
11 1709 2869.0 19,948 1839 2670.5 21,086
12 1735 2654.0 19,510 1883 2578.5 * 21,291
13 1738 2650.0 * 19,506 *

Math. Comput. Appl. 2021, 26, 8 32 of 34

Table A10. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [43].

ABZ5 ABZ6 ABZ7 ABZ8 ABZ9
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1296 * 565.0 11,621 991 * 587.5 8826 796 * 3124.0 14,127 821 * 3504.0 14,883 837 * 3263.0 14,378
2 1306 692.5 11,581 999 460.5 8658 797 2923.5 13,906 823 3447.0 14,826 845 2996.5 14,126
3 1321 683.5 11,572 1013 300.0 8753 803 2805.5 13,826 824 3428.0 14,807 848 2967.5 14,097
4 1322 523.0 11,801 1021 469.5 8543 * 876 2684.5 13,608 825 3423.0 14,802 853 2936.5 14,066
5 1333 507.0 12,016 1037 407.5 8719 890 2636.5 * 13,556 * 835 2786.0 * 14,111 856 2900.5 * 14,030 *
6 1334 407.5 11,786 1037 439.0 8674 847 2817.0 14,086 *
7 1334 403.0 11,861 1045 235.5 8614
8 1337 574.0 11,604 1089 197.5 * 8812
9 1338 566.0 11,534 1115 203.5 8768
10 1351 533.5 11,768
11 1356 557.5 11,750
12 1383 745.0 11,520
13 1385 759.5 11,401
14 1386 679.5 11,336
15 1387 475.0 11,545
16 1397 468.0 11,538
17 1409 407.0 * 11,374 *

Table A11. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [44].

YN01 YN02 YN03 YN04
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1160 * 3154.5 20,470 1155 * 3592.0 21,112 1138 * 2732.5 19,941 1225 * 4078.0 22,098
2 1166 2654.0 19,808 1159 3545.0 21,105 1154 2543.0 19,839 1228 3780.0 21,449
3 1188 2618.0 19,929 1165 3569.0 21,089 1158 2457.0 19,753 1231 3475.0 21,490
4 1193 2617.0 19,771 1166 3537.0 21,057 1204 2394.5 19,438 1232 3460.0 21,465
5 1197 2399.5 19,912 1169 3491.0 21,011 1223 2370.5 19,414 * 1233 3745.0 21,414
6 1200 2220.5 19,745 1188 3171.5 20,606 1277 2194.0 * 19,462 1245 3530.0 21,431
7 1201 2114.0 * 19,570 * 1211 3068.0 20,216 1247 3254.5 21,188
8 1212 3055.0 20,203 * 1273 3236.5 21,170
9 1280 3024.0 * 20,592 1286 3233.5 21,167
10 1325 3169.0 * 20,977 *

Table A12. Non-dominated front obtained by CMOTA for the JSSP instances proposed by [30].

TA01 TA11 TA21 TA31
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 1469 * 2284.0 19,027 1649 * 7293.0 28,872 2098 * 8414.5 38,534 2126 * 21,558.0 55,423
2 1502 2201.0 19,461 1655 7264.0 28,843 2103 7979.0 38,146 2127 21,553.0 55,453
3 1515 1792.5 18,791 1672 7049.0 28,696 2113 7971.0 38,138 2135 21,552.0 55,417
4 1519 1783.5 18,801 1673 7045.0 28,692 2125 7247.5 37,366 2156 21,540.0 55405
5 1530 1713.0 * 18,750 1677 6903.5 28,431 2128 7153.0 37,398 2161 21,416.0 55,316
6 1532 1725.0 18,714 * 1696 6383.5 28,054 2137 6999.0 37,244 2173 21,109.0 55,009
7 1809 6347.5 * 28,018 * 2139 6974.0 37,209 2177 21052.0 54,952
8 2148 6820.5 37,028 2187 19,966.0 53,866
9 2150 6802.5 37,021 2205 19,963.0 * 53,863 *

10 2214 6550.0 36,679
11 2238 6539.0 36,668
12 2372 6316.0 36,317
13 2373 6190.0 * 36,191 *

Math. Comput. Appl. 2021, 26, 8 33 of 34

Table A12. Cont.

TA41 TA51 TA61 TA71
MKS TDS FLT MKS TDS FLT MKS TDS FLT MKS TDS FLT

1 2632 * 21,027.5 67,904 3128 * 73,001.0 129,878 3420 * 74,932.0 151,378 6094 * 366,221.5 517,558
2 2650 20,910.5 67,829 3132 72,689.0 129,566 3421 73956.0 150,402 6095 365,726.5 517,063
3 2666 20,826.5 67,745 3137 72,651.0 129,528 3423 73884.0 150,330 6098 365,546.5 516,883
4 2672 20,766.5 67,685 3192 70,022.5 126,809 3461 69,778.0 146,224 6174 365,320.5 * 516,657 *
5 2771 20,304.5 67,222 3249 69,935.5 * 126,722 * 3462 69,767.0 146,213
6 2776 20,265.5 * 67,183 * 3478 69,754.0 * 146,200 *

References
1. Coello, C.; Cruz, N. Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genet. Program. Evolvable

Mach. 2005, 6, 163–190. [CrossRef]
2. Garey, M.R.; Johnson, D.S.; Sethi, R. PageRank: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1976,

1, 117–129. [CrossRef]
3. Ojstersek, R.; Brezocnik, M.; Buchmeister, B. Multi-objective optimization of production scheduling with evolutionary computa-

tion: A review. Int. J. Ind. Eng. Comput. 2020, 11, 359–376. [CrossRef]
4. Pinedo, M. Scheduling: Theory, Algorithms, and Systems; Springer: New York, NY, USA, 2008.
5. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Am. Assoc. Adv. Sci. 1983, 220, 671–680.

[CrossRef] [PubMed]
6. Dueck, G.; Scheuer, T. Threshold Accepting: A General Purpose Algorithm Appearing Superior to Simulated Annealing. J.

Comput. Phys. 1990, 90, 161–175. [CrossRef]
7. Scaria, A.; George, K.; Sebastian, J. An artificial bee colony approach for multi-objective job shop scheduling. Procedia Technol.

2016, 25, 1030–1037. [CrossRef]
8. Méndez-Hernández, B.; Rodriguez Bazan, E.D.; Martinez, Y.; Libin, P.; Nowe, A. A Multi-Objective Reinforcement Learning

Algorithm for JSSP. In Proceedings of the 28th International Conference on Artificial Neural Networks, Munich, Germany, 17–19
September 2019; pp. 567–584. [CrossRef]

9. López, A.; Coello, C. Study of Preference Relations in Many-Objective Optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’ 2009), Montreal, QC, Canada, 8–12 July 2009; pp. 611–618. [CrossRef]

10. Blasco, X.; Herrero, J.; Sanchis, J.; Martínez, M. Decision Making Graphical Tool for Multiobjective Optimization Problems; Springer:
Berlin/Heidelberg, Germany, 2007; Volume 4527, pp. 568–577. [CrossRef]

11. García-León, A.; Dauzère-Pérès, S.; Mati, Y. An Efficient Pareto Approach for Solving the Multi-Objective Flexible Job-Shop
Scheduling Problem with Regular Criteria. Comput. Oper. Res. 2019, 108. [CrossRef]

12. Qiu, X.; Lau, H.Y.K. An AIS-based hybrid algorithm for static job shop scheduling problem. J. Intell. Manuf. 2014, 25, 489–503.
[CrossRef]

13. Kachitvichyanukul, V.; Sitthitham, S. A two-stage genetic algorithm for multi-objective job shop scheduling problems. J. Intell.
Manuf. 2011, 22, 355–365. [CrossRef]

14. Zhao, F.; Chen, Z.; Wang, J.; Zhang, C. An improved MOEA/D for multi-objective job shop scheduling problem. Int. J. Comput.
Integr. Manuf. 2016, 30, 616–640. [CrossRef]

15. González, M.; Oddi, A.; Rasconi, R. Multi-objective optimization in a job shop with energy costs through hybrid evolutionary
techniques. In Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling, Pittsburgh,
PA, USA, 18–23 June 2017; pp. 140–148.

16. Serafini, P. Simulated Annealing for Multi Objective Optimization Problems. In Proceedings of the Tenth International
Conference on Multiple Criteria Decision Making, Taipei, Taiwan, 19–24 July 1992.

17. Bandyopadhyay, S.; Saha, S.; Maulik, U.; Deb, K. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA.
Evol. Comput. IEEE Trans. 2008, 12, 269–283. [CrossRef]

18. Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S.; Gindy, N. An Investigation into Minimising Total Energy Consumption and Total
Weighted Tardiness in Job Shops. J. Clean. Prod. 2013, 65, 87–96. [CrossRef]

19. Zitzler, E.; Thiele, L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach.
IEEE Trans. Evol. Comput. 2000, 3, 257–271. [CrossRef]

20. Wisittipanich, W.; Kachitvichyanukul, V. An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop
Scheduling Problems. Ind. Eng. Manag. Syst. 2013, 12, 151–160. [CrossRef]

21. Lei, D.; Wu, Z. Crowding-measure-based multiobjective evolutionary algorithm for job shop scheduling. Int. J. Adv. Manuf.
Technol. 2006, 30, 112–117. [CrossRef]

22. Kurdi, M. An Improved Island Model Memetic Algorithm with a New Cooperation Phase for Multi-Objective Job Shop
Scheduling Problem. Comput. Ind. Eng. 2017, 111, 183–201. [CrossRef]

http://doi.org/10.1007/s10710-005-6164-x
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.5267/j.ijiec.2020.1.003
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/0021-9991(90)90201-B
http://dx.doi.org/10.1016/j.protcy.2016.08.203
http://dx.doi.org/10.1007/978-3-030-30487-4_44
http://dx.doi.org/10.1145/1569901.1569986
http://dx.doi.org/10.1007/978-3-540-73053-8_57
http://dx.doi.org/10.1016/j.cor.2019.04.012
http://dx.doi.org/10.1007/s10845-012-0701-2
http://dx.doi.org/10.1007/s10845-009-0294-6
http://dx.doi.org/10.1080/0951192X.2016.1187301
http://dx.doi.org/10.1109/TEVC.2007.900837
http://dx.doi.org/10.1016/j.jclepro.2013.07.060
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.7232/iems.2013.12.2.151
http://dx.doi.org/10.1007/s00170-005-0029-6
http://dx.doi.org/10.1016/j.cie.2017.07.021

Math. Comput. Appl. 2021, 26, 8 34 of 34

23. Méndez-Hernández, B.; Ortega-Sánchez, L.; Rodriguez Bazan, E.D.; Martinez, Y.; Fonseca-Reyna, Y. Bi-objective Approach Based
in Reinforcement Learning to Job Shop Scheduling. Revista Cubana de Ciencias Informáticas 2017, 11, 175–188.

24. Aarts, E.H.L.; van Laarhoven, P.J.M.; Lenstra, J.K.; Ulder, N.L.J. A Computational Study of Local Search Algorithms for Job Shop
Scheduling. INFORMS J. Comput. 1994, 6, 118–125. [CrossRef]

25. Ponnambalam, S.G.; Ramkumar, V.; Jawahar, N. A multiobjective genetic algorithm for job shop scheduling. Prod. Plan. Control
2001, 12, 764–774. [CrossRef]

26. Suresh, R.K.; Mohanasundaram, M. Pareto archived simulated annealing for job shop scheduling with multiple objectives. Int. J.
Adv. Manuf. Technol. 2006, 29, 184–196. [CrossRef]

27. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000,
8, 173–195. [CrossRef] [PubMed]

28. Karimi, N.; Zandieh, M.; Karamooz, H. Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach.
Expert Syst. Appl. 2010, 37, 4024–4032. [CrossRef]

29. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. In International Conference on Parallel Problem Solving from Nature; Spring: Berlin/Heidelberg, Germany,
2000; Volume 1917.

30. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
31. Deb, K. Multiobjective Optimization Using Evolutionary Algorithms; Wiley: New York, NY, USA, 2001.
32. Schott., J.R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s Thesis, Department

of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.
33. Veldhuizen, D.A.V. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph.D. Thesis, Air

Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, USA, 1999.
34. Sawaragi, Y.; Nakagama, H.; Tanino, T. Theory of Multi-Objective Optimization; Springer: Boston, MA, USA, 1985.
35. Bakuli, D.L. A Survey of Multi-Objective Scheduling Techniques Applied to the Job Shop Problem (JSP). In Applications of

Management Science: In Productivity, Finance, and Operations; Emerald Group Publishing Limited: Bingley, UK, 2015; pp. 51–62.
36. Baker, K.R. Sequencing rules and due-date assignments in job shop. Manag. Sci. 1984, 30, 1093–1104. [CrossRef]
37. Sanvicente, S.H.; Frausto, J. A method to establish the cooling scheme in simulated annealing like algorithms. In Proceedings of

the International Conference on Computational Science and Its Applications, Assisi, Italy, 14–17 May 2004; pp. 755–763.
38. Solís, J.F.; Sánchez, H.S.; Valenzuela, F.I. ANDYMARK: An analytical method to establish dynamically the length of the Markov

chain in simulated annealing for the satisfiability problem. Lect. Notes Comput. Sci. 2006, 4247, 269–276.
39. May, R. Simple Mathematical Models With Very Complicated Dynamics. Nature 1976, 26, 457. [CrossRef] [PubMed]
40. Fisher, H.; Thompson, G.L. Probabilistic learning combinations of local job-shop scheduling rules. Ind. Sched. 1963, 1, 225–251.
41. Applegate, D.; Cook, W. A computational study of the job-shop scheduling problem. ORSA J. Comput. 1991, 3, 149–156.

[CrossRef]
42. Lawrence, S. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement);

Graduate School of Industrial Administration, Carnegie-Mellon University: Pittsburgh, PA, USA, 1984.
43. Adams, J.; Balas, E.; Zawack, D. The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 1988, 34, 391–401.

[CrossRef]
44. Yamada, T.; Nakano, R. A genetic algorithm applicable to large-scale job-shop problems. In Proceedings of the Second

International Conference on Parallel Problem Solving from Nature, Brussels, Belgium, 28–30 September1992; pp. 281–290.
45. Hansen, P.B. Simulated Annealing. In Electrical Engineering and Computer Science-Technical Reports; School of Computer and

Information Science, Syracuse University: Syracuse, NY, USA, 1992.
46. Tripathi, P.K.; Bandyopadhyay, S.; Pal, S.K. Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration

coefficients. Inf. Sci. 2007, 177, 5033–5049. [CrossRef]

http://dx.doi.org/10.1287/ijoc.6.2.118
http://dx.doi.org/10.1080/09537280110040424
http://dx.doi.org/10.1007/s00170-004-2492-x
http://dx.doi.org/10.1162/106365600568202
http://www.ncbi.nlm.nih.gov/pubmed/10843520
http://dx.doi.org/10.1016/j.eswa.2009.09.005
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1287/mnsc.30.9.1093
http://dx.doi.org/10.1038/261459a0
http://www.ncbi.nlm.nih.gov/pubmed/934280
http://dx.doi.org/10.1287/ijoc.3.2.149
http://dx.doi.org/10.1287/mnsc.34.3.391
http://dx.doi.org/10.1016/j.ins.2007.06.018

	Introduction
	Related Works
	Multi-Objective Optimization
	Concepts
	Performance Metrics

	Multi-Objective Job Shop Scheduling Problem
	Multi-Objective Proposed Algorithms
	Simulated Annealing
	Analytical Tuning for Simulated Annealing
	Chaotic Multi-Objective Simulated Annealing (CMOSA)
	CMOSA Structure
	Chaotic Perturbation
	Applying Dominance to Select Solutions

	Chaotic Multi-Objective Threshold Accepting (CMOTA)

	Main Methodology for CMOSA and CMOTA
	Computational Experimentation
	Results
	CMOSA-CMOTA Complexity and Run Time Results

	Conclusions
	Non-Dominated Front Obtained
	References

