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Abstract: Structural reliability and structural robustness, from different research fields, are usually
employed for the evaluative analysis of building and civil engineering structures. Structural reliability
has been widely used for structural analysis and optimization design, while structural robustness is
still in rapid development. Several dimensionless evaluation indexes have been defined for structural
robustness so far, such as the structural reliability-based redundancy index. However, these different
evaluation indexes are usually based on subjective definitions, and they are also difficult to put
into engineering practice. The mathematical relational model between structural reliability and
structural robustness has not been established yet. This paper is a quantitative study, focusing on the
mathematical relation between structural reliability and structural robustness so as to further develop
the theory of structural robustness. A strain energy evaluation index for structural robustness is
introduced firstly by considering the energy principle. The mathematical relation model of structural
reliability and structural robustness is then derived followed by a further comparative study on
sensitivity, structural damage, and random variation factor. A cantilever beam and a truss beam are
also presented as two case studies. In this study, a parabolic curve mathematical model between
structural reliability and structural robustness is established. A significant variation trend for their
sensitivities is also observed. The complex interaction mechanism of the joint effect of structural
damage and random variation factor is also reflected. With consideration of the variation trend of the
structural reliability index that is affected by different degrees of structural damage (mild impairment,
moderate impairment, and severe impairment), a three-stage framework for structural life-cycle
maintenance management is also proposed. This study can help us gain a better understanding of
structural robustness and structural reliability. Some practical references are also provided for the
better decision-making of maintenance and management departments.

Keywords: structural robustness; structural reliability; structural damage; sensitivity; random
variation factor; in-service structure

1. Introduction

Structural reliability is commonly used in structural evaluation analysis and optimiza-
tion design. Many engineering applications have been obtained, such as the reliability
evaluation or assessment of in-service structure [1,2]. On the other hand, a series of stud-
ies have also been carried out so as to minimize the loss caused by structural damage
effects and even safety accidents. One example is structural robustness (closely relevant
to the disproportionate collapse of in-service structure) [3–5]. It is increasingly being
used in structural robustness design [6], structural system robustness checking [7], and
robustness-based assessment [8].
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Different from structural reliability, structural robustness is in urgent need of further
development. Actually, robustness was originally widely used in the field of statistics and
system control in the 1970s, employed to reflect the non-sensitivity of a system or structure
subjected to external environment interference and internal uncertainties [5,9,10]. Up to
now, robustness still has a great influence in the field of structural vibration control [11,12].
While structural robustness, the ability of the system to suffer an amount of damage not
disproportionate with respect to the causes of structural damage itself (Eurocode 1 in ISO
22111), can be traced back to the pressure test on a gable wall in the 1980s [13]. A series of
studies on structural vulnerability (opposition to structural robustness) is firstly carried
out and further developed at Bristol University, aiming to locate structural weak members
or components rather than structural response theory under load effect [10,14,15]. In the
last few years, structural robustness has been greatly promoted by Joint Committee on
Structural Safety (aided by COST Actions TU601). One example is the general consensus
on the physical significance of structural robustness [16,17]. Structural robustness is
actually the adaptability of system strategy choice, and it is broader (higher-level cognitive
processes) than stability [18]. Structural robustness can be used to reflect the tolerance
capacity of a structure subjected to load effect. The structural robustness of a system can
also be regarded as the ratio of non-direct risk to total risk [19]. It is the severe consequences
of structural damage and the high efficiency of design execution that makes structural
robustness of vital importance [20].

Structural robustness, a part of structural resilience [21] (the other part is structural
recoverability), is not only closely related to structural redundancy and ductility but also
has a close relation with structural reliability and probability analysis [4,22–24]. The
sensitivity of structural robustness, structural reliability, and structural redundancy is
also further analyzed [10,25]. Meanwhile, several dimensionless evaluation indexes of
structural robustness have also been defined, such as the risk-based evaluation index and
the sensitivity-based evaluation index [9,20]. Structural redundancy is also selected as the
evaluation index of structural robustness, such as the residual redundancy coefficient and
the residual intensity ratio [5,9,10,14,20]. Some redundancy evaluation indexes are also
further defined based on structural reliability index. For example, supposing β(collapse)
and β(yield) represent the reliability index of collapsed and yielded structure. Structural
robustness can be reflected by the ratio of (β(yield) − β(collapse)) and β(yield) [24,26].
However, these evaluation indexes for structural robustness are mostly subjectively defined
based on the different levels of understanding of physical meanings. Further study on
structural robustness evaluation index still needs to be carried out. Moreover, although
both structural robustness and structural reliability can be used to analyze and evaluate
structural performance, the specific mathematical relational model between structural
robustness and structural reliability has not been established yet.

Currently, it is generally acknowledged that smaller structural robustness usually
means weaker structural resistance and a higher level of vulnerability. The weak members
or components can then be located for more targeted reinforcement, maintenance, and
management. For example, the in-service bridges structural health monitoring (SHM)
measure points based on structural robustness rather than traditional experiences can be
more targeted and systematic [27,28]. With consideration of different damage degrees,
different damage locations, and even different vehicle moving speeds, the hierarchical
arrangement of SHM measure points can be further realized [29]. Implementing design for
structural robustness is still a gray area and more so when it comes to defining means to
quantify structural robustness [16]. Many in-service structures, especially for the structure
after a long-term service, are usually accompanied by complex interaction mechanisms of
the joint effect of structural damage effects and random variation factors. Therefore, it is
still difficult to reflect the real status of this kind of structure only by structural robustness,
and it is necessary to consider a combined analysis of multiple methods for a higher-level
in-service structural maintenance and management.
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In this paper, the comparative analysis of structural reliability and structural robust-
ness is firstly introduced, followed by a widely accepted evaluation index for structural
robustness by considering the energy principle. The mathematical relation model of struc-
tural robustness evaluation index and structural reliability index is derived. A further
comparison between structural reliability and structural robustness is also carried out
with consideration of damage effects and random effects. The sensitivities of structural
robustness evaluation index and structural reliability index are also analyzed. This study
can make us a better understanding of structural robustness. With consideration of dif-
ferent degrees of structural damage (including mild impairment, moderate impairment,
and severe impairment), a more targeted three-stage decision-making framework rather
than traditional engineering experiences is proposed. Some recommendations are also pro-
vided for the structure after a long-term service, and then a new perspective for structural
life-cycle maintenance and management can be further expected.

2. Mathematical Expression of Structural Reliability Index and Structural Robustness
Evaluation Index

In this section, some differences (both physical significance and mathematical mean-
ing) of structural robustness and structural reliability are firstly summarized [10]. Specifi-
cally, structural robustness focuses on the safety reserve or residual tolerance capacity of a
structure subjected to load effect. The dimensionless evaluation indexes are usually based
on subjective definition, and a simpler computational process is usually involved, while
structural reliability is usually used to reflect the probability of structurally maintaining the
normal service under load effect. It is usually based on probability statistical method, and
the parameters are usually considered as random variables. The calculation process involv-
ing probability statistical analysis is more complex. Themathematical expression analysis
of structural reliability index and structural robustness evaluation indexis described in the
following subsections.

2.1. Mathematical Expression of Structural Reliability Index

Structural reliability is commonly based on statistical analysis, aiming to reveal the
probability that the structure retains its overall performance.The basic analysis process is
shown as follows [30]:

Supposing the number of a random variable is represented by the symbol n. Structural
(member or element) failure probability (Pf ) can also be further developed by the following
multi-dimensional integrals:

Pf =
∫

Z<0
· · ·

∫
fX(x1, x2, x3, · · · xn)dx1dx2dx3 · · · dxn (1)

In Equation (1), xi(i = 1, 2, 3, · · · n) represents structural load effect. Z > 0, Z = 0, and
Z < 0 represent structural dependable status, structural ultimate status, and structuralfail-
ure status. It is generally recognized that structural status function has a close connection
with load effect (S) and structural resistance (R). Supposing S and R are the random
variables of normal distribution (approximation analysis and simplification analysis are
usually needed for the description of different variables in engineering practice). The
general capacity minus demand function is shown as follow (R, S and σR, σS represent the
mean and standard deviation of S and R):

Z = g(R, S) = R− S (2)

The probability density function ( fZ(z)) is expressed as follows (Z = R − S,

σZ =
√

σ2
R + σ2

S):

fZ(z) =
1√

2πσZ
exp

[
−1

2

(
z− Z

σZ

)2
]
(−∞ < z < ∞) (3)
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The failure probability is expressed as follow:

Pf =
∫ 0

−∞
fZ(z) =

∫ 0

−∞

1√
2πσZ

exp

[
−1

2

(
z− Z

σZ

)2
]

dZ == φ

(
− Z

σZ

)
(4)

Supposing β is the structural reliability index (β =
R− S√
σ2

R + σ2
S

), and the reliable

probability (Pr) can be shown as follows:

Pr = 1− Pf = 1− φ(−β) = φ(β) (5)

According to Equation (5), the structural reliability index can be further calculated.

2.2. Mathematical Expression of Structural Robustness Evaluation Index

With consideration of an extensive comparative analysis on the mathematical ex-
pression of different evaluation indexes of structural robustness, a general mathematical
expression form of these different indexes is observed. The mathematical expression is
shown as follows [10]:

R =
R0 − Rp

R0
(6)

In Equation (6), R0 is structural ultimate or initial status. Rp is structural response
corresponding to load effect. Specifically, several structural parameters are also proposed
for R0 and Rp, such as the stiffness matrix, strain energy, and carrying capacity coefficient.
Different physical meanings of the general expression can also be further reflected by
different structural parameters.

According to the universal applicability of the energy principle, we consider the strain
energy parameter as the evaluation index of structural robustness. Supposing Us

p is the
strain energy of the structure subjected to load effect, Us

I is the structural initial strain
energy, and UM is the structural ultimate strain energy (UF is the ultimate strain energy
corresponding to the truss beam member). Different mathematical expressions can then be
defined as follows:

R1 =
UM −Us

p

UM
, R1 ∈ [0, 1] (7)

R2 =
UM −Us

p

Us
p

, R2 ∈ [0,+∞) (8)

R3 =
Us

p −Us
I

Us
I

, R3 ∈
[
−1,

UM −Us
I

Us
I

]
(9)

R4 =
Us

p −Us
I

Us
p

, R4 ∈
(
−∞, 1−

Us
I

UM

]
(10)

In Equations (7)–(10), R1 and R2 represent the strain energy variation of the structure
subjected to load effect. R3 and R4 represent the strain energy variation with consideration
of the initial and external load effect. Therefore, Equation (7) not only has a simpler
expression for the value interval but also can clearly represent the strain energy variation
of a structure subjected to load effect, and then it can be employed in this study.

3. Mathematical Relation Model Deduction of Structural Reliability and
Structural Robustness

3.1. Establishment of Mathematical Relation Model

In this section, the strength is a uniform distribution along with the length of structural
member or element, and the ultimate bending moment of structural member or element is
M0
(
µM0 , σM0

)
. With consideration of the moment effect M(x)

(
µM(x), σM(x)

)
, the mathe-
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matical expression of the performance function of structural reliability of structural member
or elementis shown as follows:

Z = M0 −M(x) (11)

The reliability index (β) of structural member or element is shown as follows:

β =
µM0 − µM(x)√

σ2
M0

+ σ2
M(x)

(12)

According to the static force and mathematical relation, the bending strain energy

(U) generated by the moment M(x) is
∫ l

0
M(x)2

2EI
dx (EI represents structural stiffness, and

l is the length). The structural robustness evaluation index (R) of structural member or
element subjected to the average moment value effect µM(x) is shown as follows:

R = 1− 1
UM

∫ l

0

M(x)2

2EI
dx = 1− 1

UM

∫ l

0

µ
2

M(x)

2EI
dx (13)

The mathematical relation expression of structural robustness evaluation index and
structural reliability index is shown as follow:

R = 1− 1

lµ2
M0

∫ l

0

(
µM0 − β

√
σ2

M0
+ σ2

M(x)

)
dx (14)

In terms of a specific and given structure, supposing the length is l, the bending
stiffness is EI, and the ultimate bending moment is M0. The average value and standard
deviation of the bending moment are µM and σM. The mathematical expression of structural
reliability index is shown in Equation (15), and the mathematical expression of structural
robustness evaluation index can also be shown in Equation (16). The corresponding
diagram is also supplemented and shown in Figure 1 (Rmax = 1, the vertex coordinate
corresponding to the axis of symmetry is the maximum of the parabola).

β =
µM0 − µM√

σ2
M0

+ σ2
M

(15)

R = 1− 1
lµ2

M0

(
µM0 − β

√
σ

2
M0

+ σ2
M

)
(16)Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 6 of 14 
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0
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=
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D

V D V

λ μ μ
β

λ μ μ

−

 
(19)
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0

22 2 2 2
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M
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l D

λ μ β λ μ μ
λ μ

= − −
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Figure 1. Mathematical relation model of structural robustness evaluation index (R) and structural
reliability index (β ∈ [β1, β0]).
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In Figure 1, the parabolic function is expressed with an independent variable (β) and
dependent variable (R). The structural robustness evaluation index (R) increases with the
increase of structural reliability index (β). The mathematical relation model of structural
robustness evaluation index and structural reliability index is then established.

3.2. Effect of Structural Damage, Random Variation Factor, and Sensitivity

Most of the building and civil structures will suffer different damage effects after a
long-term service, and these will also be affected by different randomvariation factors.
The study on damage effects and random variation effects for structural robustness and
structural reliability plays an important role in the normal service of in-service structures.
Moreover, different sensitivities can also be employed for the further decision-making of
different evaluation indexes.

Supposing VM0 and VM(x) are the random variation coefficients of the ultimate bending
moment and the external load effect of structural member or element. λD is the structural
damage effect. The mathematical expressions are shown as follows:

VM0 =
σM0

µM0

(17)

VM(x) =
σM(x)

µM(x)
(18)

Substituting Equations (17) and (18) into Equation (12), the mathematical expression
of structural reliability index is shown as follows:

β =
(1− λD)µM0 − µM(x)√

V2
M0

(1− λD)2µ2
M0

+ V2
M(x)µ

2
M(x)

(19)

Substituting Equation (19) into (14), the mathematical expression of structural robust-
ness evaluation index is shown as follows:

R = 1− 1

l(1− λD)2µ
2
M0

∫ l

0

(
(1− λD)µM0 − β

√
V2

M0
(1− λD)2µ2

M0
+ V2

M(x)µ
2
M(x)

)
dx (20)

Making the derivation of the mean value of the ultimate bending moment in
Equations (19) and (20), the sensitivity of structural robustness evaluation index and struc-
tural reliability index can then be further calculated.

4. Two Case Studies

In this section, we take a rectangular cross-section cantilever beam subjected to the
external load effect P as an example (b and h are the width and height). The beam is
discretized into five elements, the strength is uniform distribution along with the rod
length l, and the random variables are assumed as normal distribution (Figure 2). l = 5 m,
b = 0.5 m, h = 0.35 m, and P(1000, 100)N. The ultimate bending moment of the cross-
section is M(6000, 600)N ·m. The variation coefficient of the designed section resistance
and external load effect is 0.1. Moreover, a truss beam subjected to the external load effect
P is also taken as another example (λD = 0). The random variables are assumed as normal
distribution (Figure 3). The length of the horizontal and inclined member is

√
2l and

l. θ = 60◦, and P(5000, 500)N. The ultimate tension resistance of members 3 and 5 is
RI(2000, 125)N. The ultimate tension resistance of the rest members is RI I(8000, 500)N.
The variation coefficient of resistance (RI , RI I) and external load effect (P) is 0.0625 and 0.1.



Math. Comput. Appl. 2021, 26, 26 7 of 14

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 7 of 14 
 

 

4. Two Case Studies 
In this section, we take a rectangular cross-section cantilever beam subjected to the 

external load effect P  as an example ( b  and h  are the width and height). The beam 
is discretized into five elements, the strength is uniform distribution along with the rod 
length l , and the random variables are assumed as normal distribution (Figure 2). 5l m=
, 0 5b . m= , 0 35h . m= , and ( )1000 100P , N . The ultimate bending moment of the cross-
section is ( )6000 600M , N m⋅ . The variation coefficient of the designed section resistance 
and external load effect is 0.1. Moreover, a truss beam subjected to the external load effect 
P  is also taken as another example ( 0Dλ = ). The random variables are assumed as nor-
mal distribution (Figure 3). The length of the horizontal and inclined member is 2l  and 
l . 60θ =  , and ( )5000 500P , N . The ultimate tension resistance of members 3 and 5 is 

( )2000 125IR , N . The ultimate tension resistance of the rest members is ( )8000 500IIR , N . 

The variation coefficient of resistance ( IR , IIR ) and external load effect ( P ) is 0.0625 and 
0.1. 

 
Figure 2. Cantilever beam subjected to external load effect ( P ). 

 
Figure 3. Truss beam subjected to external load effect ( P ). 

4.1. Verification for Mathematical Relation Model 
The mathematical expressions of structural robustness evaluation index and struc-

tural reliability index with consideration of the ultimate bending moment effect are shown 
in Equations (21) and (22) ( 1 2 3 5i , , ,=  , representing different elements of the cantilever 

beam, iRC  and iC β  are the constant terms). The mathematical expressions of structural 
robustness evaluation index and structural reliability index by considering the ultimate 
axial force effect are shown in Equations (23) and (24) ( 1 2 3 7j , , ,=  , representing the 
member number of the truss beam, jRC  and jC β  are the constant terms). Structural ro-
bustness evaluation index, structural reliability index, and the fitting curves of the 

Figure 2. Cantilever beam subjected to external load effect (P).

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 7 of 14 
 

 

4. Two Case Studies 
In this section, we take a rectangular cross-section cantilever beam subjected to the 

external load effect P  as an example ( b  and h  are the width and height). The beam 
is discretized into five elements, the strength is uniform distribution along with the rod 
length l , and the random variables are assumed as normal distribution (Figure 2). 5l m=
, 0 5b . m= , 0 35h . m= , and ( )1000 100P , N . The ultimate bending moment of the cross-
section is ( )6000 600M , N m⋅ . The variation coefficient of the designed section resistance 
and external load effect is 0.1. Moreover, a truss beam subjected to the external load effect 
P  is also taken as another example ( 0Dλ = ). The random variables are assumed as nor-
mal distribution (Figure 3). The length of the horizontal and inclined member is 2l  and 
l . 60θ =  , and ( )5000 500P , N . The ultimate tension resistance of members 3 and 5 is 

( )2000 125IR , N . The ultimate tension resistance of the rest members is ( )8000 500IIR , N . 

The variation coefficient of resistance ( IR , IIR ) and external load effect ( P ) is 0.0625 and 
0.1. 

 
Figure 2. Cantilever beam subjected to external load effect ( P ). 

 
Figure 3. Truss beam subjected to external load effect ( P ). 

4.1. Verification for Mathematical Relation Model 
The mathematical expressions of structural robustness evaluation index and struc-

tural reliability index with consideration of the ultimate bending moment effect are shown 
in Equations (21) and (22) ( 1 2 3 5i , , ,=  , representing different elements of the cantilever 

beam, iRC  and iC β  are the constant terms). The mathematical expressions of structural 
robustness evaluation index and structural reliability index by considering the ultimate 
axial force effect are shown in Equations (23) and (24) ( 1 2 3 7j , , ,=  , representing the 
member number of the truss beam, jRC  and jC β  are the constant terms). Structural ro-
bustness evaluation index, structural reliability index, and the fitting curves of the 
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4.1. Verification for Mathematical Relation Model

The mathematical expressions of structural robustness evaluation index and structural
reliability index with consideration of the ultimate bending moment effect are shown in
Equations (21) and (22) (i = 1, 2, 3 · · · , 5, representing different elements of the cantilever
beam, CiR and Ciβ are the constant terms). The mathematical expressions of structural
robustness evaluation index and structural reliability index by considering the ultimate
axial force effect are shown in Equations (23) and (24) (j = 1, 2, 3 · · · , 7, representing
the member number of the truss beam, CjR and Cjβ are the constant terms). Structural
robustness evaluation index, structural reliability index, and the fitting curves of the
cantilever beam and the truss beam subjected to the external load effect P are shown in
Figures 4 and 5.

Ri = 1− CiRP2

M2
0

(21)

βi =
µM0 − CiβµP√

V2
M0

µ2
M0

+
(
CiβσP

)2
(22)

Rj = 1−
CjRP2

F2
0

(23)

β j =
µF0 − CjβµP√

V2
F0

µ2
F0
+
(
CjβσP

)2
(24)
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In Figure 4, with consideration of the external load effect P, a significant parabolic
increase trend for structural robustness evaluation index is observed, while the structural
reliability index almost has a linear increase trend. A consistent variation tendency is also
observed for structural robustness evaluation index and structural reliability index. Ele-
ment 1 (the fixed end) has the smallest structural robustness and structural reliability, while
element 5 (the free end) has a significant structural robustness and structural reliability.
Figure 5 shows that for different members of the truss beam subjected to the external load
effect P, a similar variation tendency is observed for structural robustness evaluation index
and structural reliability index. Members 3 and 5 have the smallest structural robustness
and structural reliability, while member 6 has the significant structural robustness and
structural reliability.

This is consistent with traditional mechanical analysis. With respect to the ultimate
strain energy of a given member or element, the greater the stress, the greater the strain
energy, and the lower the reliability index and structural robustness will be. Local failures
will also be noticed when strain energy exceeds the ultimate value (please see the structural
reliability index of the cantilever beam in Figure 6). Moreover, structural robustness
evaluation index increases with the increase of structural reliability index. A parabolic
variation curve for structural robustness evaluation index and structural reliability index is
also fitted. The structural robustness evaluation index is regarded as a variable, and the
structural reliability index is regarded as an independent variable.
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Figure 6. Different variation trends of structural robustness evaluation index (R) and structural reliability index (β) of
the cantilever beam subjected to damage effect (λD) and variation factor (VM) (Left: R vs. λD, middle: β vs. λD,and
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4.2. Effect of Structural Damage and Random Variation Factor

Supposing λD (0.01, 0.05, 0.09, 0.13, 0.17, 0.21, 0.25) and VM (0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35) are structural damage and random variation coefficients. With consideration
of structural damage and random variation factor, the structural robustness evaluation
index and structural reliability index of different elements of the cantilever beam and the
truss beam are shown in Figures 6 and 7 (β is less than 0, which means the failure of the
discrete element).
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Figures 6 and 7 indicate that affected by different damage effects, the variation curves
of structural robustness evaluation index and structural reliability index show a decreasing
trend. In terms of the cantilever beam, element 1 (the fixed end) has the smallest struc-
tural robustness and structural reliability, while element 5 (the free end) has a significant
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structural robustness and structural reliability index. As for the truss beam, members 3
and 5 have the smallest structural robustness and structural reliability, while member 6
has a significant structural robustness and structural reliability. Only part of the curve of
structural robustness is of parabola variation. It is reflected that the damage effect only has
a limited influence on structural robustness and structural reliability.

With the joint effect of structural damage and random variation factor, a significant
decline tendency is observed for structural reliability index, and then the variation tendency
tends to be stable gradually.The complexity of the joint effect of structural damage effect and
random effect should be worthy of our attention. Specifically, according to the variation
trend of structural reliability index, three kinds of damage stages can also be further
developed, including mild impairment, moderate impairment, and severe impairment. In
the mild impairment stage (0.01 ≤ λD ≤ 0.05 and 0.05 ≤ VM ≤ 0.10), the numerical value
of structural reliability index differs significantly from each other. As for the moderate
impairment stage (0.05 ≤ λD ≤ 0.25 and 0.10 ≤ VM ≤ 0.35), the difference of the
numerical value of structural reliability index is getting smaller and smaller. Along with
the service time increase, it can be expected that the degree of structural damage will
continue to increase (i.e., 0.25 ≤ λD), and this is the severe impairment.

Moreover, in the mild impairment stage, the reliability index of the truss beam is still
at a higher level. A gradual decline for the reliability index of the truss beam can also
be observed in the moderate impairment stage. While in the severe impairment stage,
structural robustness and structural reliability decrease significantly and gradually become
stable. Some local failures can also be further observed. Taking the structural reliability
index of the cantilever beam case study in Section 4 as an example, when the structural
damage effect (λD) is greater than 0.15, β 1 is observed to be negative. This means that
the cantilever beam will be accompanied by local failure.

4.3. Sensitivity Analysis

In this section, λD (0.01, 0.05, 0.09, 0.13, 0.17, 0.21, 0.25) and VM (0.05, 0.10, 0.15,
0.20, 0.25, 0.30, 0.35) are still taken as the structural damage and random variation co-
efficients. Making the derivation of the mean value of the ultimate bending moment
in Equations (21) and (22), as well as the ultimate axial force and its’ mean value in
Equations (23) and (24). The sensitivities of structural robustness evaluation index and
structural reliability index of the cantilever beam and the truss beam with consideration of
structural damage and random variation factor can be shown in Figures 8 and 9.
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Figure 8. Different sensitivities of the structural robustness evaluation index (∂R) and structural reliability index (∂β) of the
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According to Figures 8 and 9, the sensitivity of structural robustness evaluation index
is overall smaller than the sensitivity of structural reliability index. In regards to the
cantilever beam, both of them fall from the fixed end to the free end. As for the truss
beam, members 3 and 5 have the largest sensitivity while member 6 has the smallest
sensitivity. Affected by different damage effects (in different damage stages), an increase
trend for the sensitivities of structural robustness evaluation index and structural reliability
index is also observed. Moreover, with consideration of the joint effect of structural
damage and random variation factor, the sensitivity of structural reliability index has a
significant decline tendency, and then the variation tendency tends to be stable gradually.
The complexity of the joint effect of structural damage effect and random effect should be
worthy of our attention.

5. Summary

In this study, theoretical deriving analysis (Section 3) and validation case studies
(Section 4) indicate that a new mathematical relation model of structural reliability and
structural robustness can be established. A three-stage framework for structural life-cycle
maintenance management is further proposed. Details are shown as follows:

The structural robustness evaluation index increases with the increase of structural
reliability index. A parabolic curve model between structural robustness evaluation index
and structural reliability index is established. The structural robustness evaluation index is
regarded as a variable and the structural reliability index is regarded as an independent
variable. The structural damage effect has a limited influence on structural robustness
evaluation index and structural reliability index, as well as their sensitivities. While
with consideration of the joint effect of structural damage and random variation factor,
a significant decline tendency for structural reliability index, as well as the sensitivity of
structural reliability index is observed. The difference in the numerical value of structural
reliability index is also getting smaller and smaller. These new findings can give us a better
understanding of structural reliability and structural robustness in different damage stages,
as well as allow better decision-making. More attention should also be paid to the structure
after a long term of service and even an extended service (severe impairment). As the
materials of this kind of structure will suffer different degrees of deterioration, the random
influencing factors will increase significantly.

Moreover, a three-stage framework can also be further proposed for structural life-
cycle maintenance management by considering the variation trend of the structural relia-
bility index that is affected by different degrees of structural damage (mild impairment,
moderate impairment, and severe impairment). The first stage is defined from initial health
status to minor injury status. It refers to those structures that have not been in-service
for a long time or have not suffered any safety accidents. The structural reliability index
is still at a higher level. The second stage can be considered from mild impairment to
moderate impairment. In this stage, in-service structures have been in operation for years
and even decades. Structural damage and safety accidents can be observed from time to
time. A gradual decline in structural reliability index is also observed. The third stage is
from moderate impairment to severe impairment. In-service structures, after a long-term
service and even extended service, are usually accompanied by different cross-section
losses and material deteriorations. Structural robustness and structural reliability will
decrease significantly and gradually become stable.

In terms of practical project applications (i.e., in-service bridge SHM sensor measure
point arrangement), structural robustness analysis can be carried out firstly. With consider-
ation of different random variation coefficients, structural reliability analysis can also be
further employed if necessary. Specifically, it is proposed that either structural robustness
or structural reliability analysis can be employed in the first stage. The structural element
or member with a smaller structural robustness or structural reliability should be worthy of
our attention. Structural robustness can be performed for the second stage. More attention
should be paid to the element or member with a smaller structural robustness. While in
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the third stage, the ultimate status analysis should be carried out. Some reinforcement
measures should also be further implanted for the structural element or member with a
smaller ultimate tension or pressure.
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