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Abstract: The objective of this work is to study the coupling of two efficient optimization techniques,
Aerodynamic Shape Optimization (ASO) and Topology Optimization (TO), in 2D airfoils. To achieve
such goal two open-source codes, SU2 and Calculix, are employed for ASO and TO, respectively,
using the Sequential Least SQuares Programming (SLSQP) and the Bi-directional Evolutionary
Structural Optimization (BESO) algorithms; the latter is well-known for allowing the addition of
material in the TO which constitutes, as far as our knowledge, a novelty for this kind of application.
These codes are linked by means of a script capable of reading the geometry and pressure distribution
obtained from the ASO and defining the boundary conditions to be applied in the TO. The Free-Form
Deformation technique is chosen for the definition of the design variables to be used in the ASO,
while the densities of the inner elements are defined as design variables of the TO. As a test case, a
widely used benchmark transonic airfoil, the RAE2822, is chosen here with an internal geometric
constraint to simulate the wing-box of a transonic wing. First, the two optimization procedures are
tested separately to gain insight and then are run in a sequential way for two test cases with available
experimental data: (i) Mach 0.729 at α = 2.31◦; and (ii) Mach 0.730 at α = 2.79◦. In the ASO problem,
the lift is fixed and the drag is minimized; while in the TO problem, compliance minimization is set
as the objective for a prescribed volume fraction. Improvements in both aerodynamic and structural
performance are found, as expected: the ASO reduced the total pressure on the airfoil surface in
order to minimize drag, which resulted in lower stress values experienced by the structure.

Keywords: aerodynamic shape optimization; computational fluid dynamics; topology
optimization; airfoil

1. Introduction

The usage of numerical optimization algorithms has allowed for lighter and more aero-
dynamically efficient wing designs. These algorithms include, among others, Aerodynamic
Shape Optimization (ASO) and Topology Optimization (TO). In the former, a given shape,
for example a wing or an airfoil, after being adequately parameterized is optimized for a
specific aerodynamic goal, such as lift-to-drag ratio maximization or drag minimization,
while fulfilling a prescribed set of constraints. The latter consists in finding an internal
structure that minimizes its compliance in a given solid domain for a known set of bound-
ary conditions. ASO [1] and TO [2] have been applied in both academic and industrial
applications related to aeronautics, including wings and airfoils.

TO is a useful computational tool that can be used to reach lighter wing structures
and so it has been applied to different aircraft types such as transport, unmanned aerial
vehicles and even micro air vehicles in recent decades. Maute and Allen [3] developed

Math. Comput. Appl. 2021, 26, 34. https://doi.org/10.3390/mca26020034 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-7849-0877
https://orcid.org/0000-0002-2678-9797
https://orcid.org/0000-0002-1927-6352
https://doi.org/10.3390/mca26020034
https://doi.org/10.3390/mca26020034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26020034
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca26020034?type=check_update&version=1


Math. Comput. Appl. 2021, 26, 34 2 of 18

a framework to optimize the topology of a wing structure considering Fluid-Structure
Interaction (FSI). Krog et al. [4] in a joint effort between Airbus and Altair tested different
topology optimization strategies considering 10 load cases to optimize a wing-box rib.
Gomes and Suleman [5] used TO for the design of a wing-box such that the aileron reversal
speed is maximized. Stanford and Ifju [6] used aeroelastic TO to design the membrane
structure of a micro air vehicle’s wing, considering different objective functions including
lift-to-drag ratio maximization. In [7], the authors tested their TO methodology on the
internal structure of a tapered and swept wing-box, formed by a constant symmetrical
airfoil, subjected to a pressure load. They observed an asymmetrical structure, formed to
withstand the also asymmetrical span-wise pressure load, which presents more material
near the root to support the bending and cross trusses to withstand shear. In [8], the internal
structure of a unmanned aerial vehicle’s wing is optimized recurring to TO considering
aerodynamic loads. Dunning et al. [9] optimized the wing of the Common Research Model
(CRM) considering the trimmed lift. Félix et al. [10] considered the wing’s self-weight,
besides an aerodynamic load, to design it topologically. Capasso et al. [11] employed TO to
design a morphing structure made of a hyperelastic material.

ASO of airfoils and wings can be conducted by means of a gradient-based optimization
algorithm or a gradient-free one. The former is more common than the latter and it is
particularly efficient when gradients are computed by means of the adjoint method [12]
to explore high-dimensional design spaces and find local minima [13]; however, global
search gradient-free algorithms (such as genetic algorithms) might be more adequate to
find a global minimum. Nemec et al. [14] performed ASO of the RAE2822 airfoil for
two objectives and multiple flow conditions, using a gradient-based algorithm where the
sensitivities are computed by means of the adjoint method. The results obtained compared
well with those reached with a genetic algorithm. Later, Zingg et al. [15] compare these
two optimization approaches for ASO of airfoils, reaching the conclusion that despite
both reached the same solution, the latter one takes 5 to 200 times longer than the former.
Martins and his coworkers have been conducting ASO using gradient-based optimizations
for several wing applications, spanning from conventional aircraft configurations [16] to
unconventional solutions (e.g., camber morphing [17]) and designs (the blended-wing-
body [18] and the strut-braced wing [19]) with the aim of improving performance. Several
parameterization techniques are compared for ASO of airfoils in [20], including Free-
Form Deformation (FFD), non-uniform rational B-Splines (NURBS), Class Function/Shape
Function Transformations (CST) and Hicks-Henne. The authors noticed that 20 to 25 design
variables are required to fully cover the design space. De Gaspari and Ricci [21] developed
a framework to design camber morphing solutions which consists of two steps: (i) first a
gradient-based optimization of the aerodynamic shape of the airfoil is done for a given
objective; and (ii) then an internal truss-like structure is optimized such that is able to
achieve the desired morphing shape, using a genetic algorithm. Antunes and Azevedo
conducted their ASO studies using genetic algorithms [22]. Surrogate models based on
machine learning have also been studied for ASO of airfoils using both gradient-free [23,24]
and gradient-based [25] algorithms. With these surrogate models the computational burden
of ASO can be relieved at a cost of generating large databases. The computational cost of
the latter can overpass the former if only a reduced number of optimization iterations are
needed as noted by Bouhlel et al. [25].

Despite these optimization algorithms having been employed in several wing and
airfoil applications, their combined application is much less common in the literature. ASO
is normally done before the TO as in [26], although there are some papers where two
optimizations process are carried out simultaneous for performance [27] or aeroelastic
applications [28]. Maute and Reich [26] developed a sequential framework to design mor-
phing structures based firstly on ASO and secondly on TO. James et al. [27] coupled both
optimization processes in their Multidisciplinary Design Optimization (MDO) framework
and compared it with the sequential approach for the design of the Common Research
Model (CRM) wing. They noticed that their coupled approach was able to achieve a wing
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model with 18% less drag than with the sequential approach. Gomes and Palacios [28]
applied a fully-coupled aerodynamic and stiffness-based TO methodology for designing a
compliant airfoil using FSI. Their methodology consists in two sequential steps: (i) firstly,
the airfoil shape is optimized for a given aerodynamic-related objective and a set of con-
straints considering both ASO and TO; (ii) followed by an inverse design where the internal
structure is optimized for a mass minimization objective.

These works [26–28] use the Solid Isotropic Material with Penalization (SIMP) model [29]
to parameterize the structural domain, while in the present work the Bidirectional Evolu-
tionary Structural Optimization (BESO) model [30] is used. BESO has the main advantage
of being able to both remove and add material, and it has been applied to solve both aca-
demic and industrial problems [31]. This model has been applied to the structural design
of a hypersonic wing considering aerothermoelasticity by Munk et al. [32]. For the present
work, the authors developed a sequential framework to optimize airfoils considering both
ASO and TO. To the authors’ best knowledge TO with BESO has not been coupled with
ASO for airfoil applications.

This paper is organized as follows: first a literature review is provided in Section 1;
followed by the theoretical background required to conduct aerodynamic shape optimiza-
tion and topology optimization of airfoils in Section 2; then the methodology employed
in this work is presented in Section 3; followed by the obtained results in Section 4; and
ending with the concluding remarks drawn from this study in Section 5.

2. Background

This section presents a brief introduction to the theory behind the methods used in
the aerodynamic shape optimization and topology optimization parts of this work.

2.1. Aerodynamic Shape Optimization

Aerodynamic shape optimization is the process of obtaining the set of design variables
D that produce the best (minimum) value of a single or a set of objective functions f , while
coping with a set of inequality g and equality h constraints. The objective function is
dependent on both the design variables and the solution of some equations (represented by
the vector of conservative variables U) that can be expressed as the residual R. A general
view of the problem can be defined as

minimize f (D, U(D))

w.r.t. D

subject to gj(D, U(D)) ≤ 0 j = 1, m

hk(D, U(D)) = 0 k = 1, n

R(D, U(D)) = 0.

(1)

Typical objective functions are the lift or drag produced by an airfoil (or their ratio), and the
design variables are parameters that define the shape of the airfoil by means of a particular
parameterization. A flowchart depicting the Aerodynamic Shape Optimization process
followed is provided in Figure 1.
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Figure 1. General algorithm for the ASO methodology.

2.1.1. Flow Governing Equations

In this work, the flow is modeled by the Reynolds Averaged Navier–Stokes (RANS)
equations, using the turbulent model provided by Spalart and Allmaras [33]. The final
formulation for the RANS model can be described in a differential form [34] as

R(U) =
∂(U)

∂t
+∇ · Fc −∇ · Fv −Q = 0 in Ω, t > 0, (2)

where Ω is the domain, U is the vector of conservative variables defined as U = {ρ, ρv, ρE},
being ρ the density, v the velocity and E the total energy. R is the numerical residual, Q the
source terms and (Fc, Fv) the respective convective and viscous fluxes, defined as

Fc =


ρv

ρv⊗ v + Īp
ρEv + pv

 (3)

and

Fv =


·
τ̄

τ̄ · v + κ∇T

, (4)

with T being the temperature obtained from the ideal gas equation of state, p the static
pressure, κ the thermal conductivity and τ̄ the viscous stress tensor. Further information
on the details of the equations can be found in [34].

2.1.2. Adjoint-Based Gradient Computation

The adjoint method provides an efficient way of computing the gradients of a set of
objective functions with respect to a set of design parameters with a computational cost that
is nearly independent of the number of design parameters. It is particularly advantageous
in aerodynamic shape optimization problems where the number of objective functions (and
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constraints) is usually much smaller than the number of design parameters. The adjoint of
the flow governing equations can be expressed as[

∂R
∂U

]T
Ψ =

[
∂ f
∂U

]T
, (5)

where Ψ is the adjoint vector, or solution, which can be used to compute the total gradient
of f with respect to D as

d f
dD

=
∂ f
∂D

+ ΨT ∂R
∂D

. (6)

The system of equations in (5) only has to be solved once for each objective function f
(and for each constraint). The choice of design variables D is only limited to the possibility
of being able to define the objective function, constrains and residual as a function of
those same variables. Typically, in ASO, the computational mesh coordinates X are used,
and the sensitivity of the function of interest to a more meaningful design parameter can
be obtained using the chain-rule as

d f
dD

=
d f
dX

dX
dD

. (7)

The last term of the previous equation will depend not only on the geometry definition
approach but also on the mesh generation/deformation technique that is used.

2.1.3. Parametrization Technique: Free-Form Deformation

In this work, the Free-Form Deformation (FFD) methodology is used. Developed by
Sederberg [35] to model solids, it has its recognition not only due to its versatility but also
since it does not manipulate directly the geometry of the object, in opposition to other
parametrization techniques, but rather the lattice of a certain region in the domain where
the object is embedded. For two-dimensional cases the region looks like a rectangle and like
a parallelpiped for 3D cases. A set of control points Pi,j,k are defined on the surface of the
enclosing region. Their number depends on the order of the chosen Bernstein polynomials.
The points inside this region can then be parameterized as a FFD function

xFFD(s, t, u) =
l

∑
i=0

m

∑
j=0

n

∑
k=0

Bl
i (s)Bm

j (t)Bn
k (u)Pi,j,k, (8)

where l, m, n are the degrees of the FFD function, s, t, u ∈ [0, 1] are the parametric coordi-
nates of x and Bl

i (s), Bm
j (t) and Bn

k (u) are the Bernstein polymonials. By modifying the
control points defined along the boundaries of the parallelpiped region, the points inside
(and thus, the geometry they define) inherit a smooth deformation.

2.2. Topology Optimization

Topology optimization is a numerical method used to determine the best material
distribution for a given set of boundary conditions. Different algorithms can be used for
this task, such as the SIMP or BESO. The latter is used for this work.

The BESO algorithm removes material from the low-stressed areas of a domain which
is understood to be inefficient and adds material where it is strictly necessary to provide a
higher stiffness to the structure. A ’hard-kill’ method is used, which uses two ratios: (i) a
rejection ratio crr to mark as removable the material at elements with values lower than this
parameter; and (ii) an addition ratio car to identify elements which are assigned material
for value higher than this ratio. The rejection criteria uses the von Mises stress of a cell,
σvM

e , and compares it with a threshold, σvM
max, which could be a maximum or a prescribed

value, thus: {
σvM

e ≤ crrσvM
max → Element removal

σvM
e ≥ carσvM

max → Element addition
. (9)



Math. Comput. Appl. 2021, 26, 34 6 of 18

The followed procedure aims at finding the stiffest geometry for a given volume, one
of the most common goals in topology optimization. The objective is thus to minimize the
strain energy (and consequently the compliance) for a given volume fraction, by attributing
material or void to each element of a previously defined mesh of the structure. A standard
formulation of this problem is as follows:

minimize C(χ) =
1
2

f Tu(χ)

w.r.t χ

subject to VFin −
N

∑
i=1

Viχi = 0

u(χ) = K−1(χ) f .

(10)

In the above equation: C is the mean compliance of the structure; u and f are the dis-
placement and load vectors, respectively; VFin denotes the target volume fraction; Vi is
the volume of each element; N is the total amount of elements, which corresponds to the
number of design variables; χ is the binary description of the presence of mass, being 0 a
void and an 1 a filled state; and K is the stiffness matrix of the structure.
A general view of the algorithm followed is depicted in Figure 2.

Geometry

Mesh Parameters

BESO ParametersFEM Parameters

FEM Analysis

Sensitivity
Analysis

Add or remove
material based on
von-Mises stress

No

YesStopping
Criteria

Reached?

Optimized
Structure

FEM Parameters

FEM Analysis

Sensitivity
Analysis

Add or remove
material based on
von-Mises stress

Figure 2. General algorithm for the BESO methodology.

Regarding the solid mechanics theory behind the case of study, the airfoil structure is
considered to behave inside the elastic region of the material, specifically within the linear
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region. Therefore, the Hooke’s law is valid, which implies a proportional relation between
the stresses σ and the correspondent strains ε by means of the constitutive matrix D:

σ = Dε . (11)

For isotropic materials, the constitutive matrix requires only the Young’s modulus E and the
Poison ratio ν. The strains relate with displacements by means of the strain-displacement
matrix B as follows:

ε = Bu . (12)

3. Methodology

In this work, a sequential optimization approach is followed, where for a given airfoil:
(i) first its shape is optimized considering only aerodynamics; and (ii) then its internal
structure is topologically optimized for the resulting aerodynamic load. This process is
depicted in Figure 3 and its steps are thoroughly discussed in this section.

Initial Geometry

CFD Simulation

Sensitivity
Analysis

Geometry
Deformation

No

Yes

Stopping
Criteria

Reached?

Optimal Aerodynamic Shape

FEA Simulation

BESO
Optimization

No

Yes

Stopping 
Criteria

Reached?

Optimized Internal Structure

CFD Simulation

Sensitivity
Analysis

Geometry
Deformation

Figure 3. Sequential approach algorithm followed in this work.

The RAE2822 transonic airfoil is chosen for this work since it is widely used in the
literature [14,20], due to the availability of experimental data [36] to validate the obtained
Computational Fluid Dynamics (CFD) results. It was designed specifically for transonic
regimes where a shock-wave is present, specially at the Reynolds number for which the
simulations are established, i.e., Re = 6.5× 106. Given the fact that experimental data is
available in [36] the following conditions of Reynolds number, Re, Mach number, M and
angle of attack, α, are considered in this work: (1) Re = 6.5× 106, M = 0.729 and α = 2.31◦

and (2) Re = 6.5× 106, M = 0.730 and α = 2.79◦.

3.1. Aerodynamic Shape Optimization

The flow governing equations of the aerodynamic problem are solved using the finite-
volume solver SU2 [34]. Widely used in aerodynamic shape optimization problems, it is
coupled with the SciPy library for gradient-based optimization, with the gradients being
computed using the adjoint method. The Sequential Least Squares Programming (SLSQP)
is used as the optimization algorithm.
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3.1.1. Mesh Definition

The computational mesh for the aerodynamics simulation is a C-type mesh, as il-
lustrated in Figure 4, generated using Gmsh while taking the following considerations
into account, to obtain good mesh quality: (i) the constraints are applied at the domain’s
boundaries such that they do not have a noticeable influence on the results [37]; (ii) mesh
quality parameters are evaluated (e.g., element’s orthogonality and flow alignment); (iii) the
magnitude of the y+ parameter is tracked to adequately represent the flow in the boundary
layer; and (iv) a far-field boundary condition is set.

Figure 4. Topology of the C-type mesh used in the aerodynamic simulations.

Moreover, a mesh refinement is applied at the airfoil geometry to adequately represent
the boundary layer development, converting the grid into a structured distribution with
several layers surrounding the airfoil (see Figure 5) aiming at a wall-grid spacing of 10−6c,
where c is the airfoil chord.

Figure 5. Detailed view of the refinement near the airfoil surface.

Following a mesh convergence study, presented in Table 1, a mesh with a total number
of 53,492 elements was selected, providing a trade-off between results accuracy and com-
putational requirements. Though aware that a finer mesh would provide more accurate
results, the limited computational resources available together with a relative difference
of only 5% in the drag coefficient (lift coefficient was already converged) led to the se-
lection of the medium mesh in the ASO. In what concerns the lift and drag coefficients,
listed in Table 2, the results of the medium mesh also compare well with the experimental
data. Relative differences of 3.7% and 8.2% are obtained for the lift and drag coefficients,
respectively, which is deemed acceptable for the purpose of this work.
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Table 1. Mesh convergence study for the CFD simulations.

Number of Elements (-) Cl (-) Cd (Drag Counts)

Coarse 43322 0.6737 138.8
Medium 53492 0.7164 137.4

Fine 75130 0.7205 130.2
Refined 85098 0.7215 130.5

Table 2. Comparison between the numerical and the experimental results for the RAE2822 airfoil.

Cl (-) Cd (Drag Counts)

Present Work 0.7164 137.4
Experimental Work [36] 0.7436 127.0

From Figure 6 it is possible to notice that the obtained CFD results with this mesh are
similar to the experimental ones from [36].

0.0 0.2 0.4 0.6 0.8 1.0
x/c (-)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

C p
 (-
)

Experimental
Numerical

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

y/
c 
(-)

Figure 6. Comparison of the computational pressure coefficient distribution with the experimental
one from [36].

3.1.2. Optimization Problem

After defining a suitable mesh for the fluid domain, the optimization problem can
be defined in the SU2 environment by setting the objective function, constraints and
design variables.

To explore the potential of ASO, two case studies previously mentioned are optimized.
Both aim at drag minimization for a given lift coefficient, which are set as objective function
and constraint, respectively. Table 3 presents the initial values of Cl and Cd for the two cases.

Table 3. Case studies for the RAE2822 airfoil analyzed and optimized in the work.

Case Initial Cl (-) Initial Cd (Drag Counts)

1 0.7164 137.4
2 0.8030 183.6

The design variables are defined based on the FFD method, which is used to parametrize
the airfoil. The airfoil is enveloped in a box, as illustrated in Figure 7, that can be deformed by
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a given set of control points, acting as design variables. This box is designed such that it is
close but does not intersect the airfoil surface. Since in a wing model the airfoil would have
a wing-box crossing it, no design variables are added to the problem in the region of the
wing box (delimited in Figure 7 in red) to prevent the surface deformation in that region.
The hypothetical wing-box is defined between 25% and 75% of the chord. In the end, a total
of 30 design variables, as identified in Figure 7, is used in the optimization process.

Figure 7. Control points defined for the FFD method that are used as design variables in the ASO
process. The red box marks the hypothetical wing-box which control points remain fixed during
the optimization.

3.2. Topology Optimization

The topology optimization problem is solved using the BESO algorithm as described
in [38] and available in [39]. The structural analysis is performed with the Finite Element
Model (FEM) open-source solver Calculix.

3.2.1. Finite Element Model Definition

Once the aerodynamic optimization results are obtained, the pressure distribution
along the airfoil’s surface is set as an input for the Finite Element Model (FEM) to be built.
The structural domain, marked in gray in Figure 8, is discretized in triangular elements
and is delimited externally (airfoil’s surface) and internally (wing-box) by skins of constant
thickness 0.002c and 0.008c, respectively. An aluminum with the following properties
is considered for this work: Young’s modulus E = 68 GPa; Poisson ratio ν = 0.33; and
material density ρm = 2700 kg/m3.

Figure 8. Graphical representation of the RAE2822 case of study complemented with the airfoil and
wing-box skins.

The pressure distribution obtained from the CFD simulations is applied on the airfoil’s
skin as a load, after preprocessing it. As the pressure is discretized in the nodes, the loads
should follow the same behavior. Therefore, the load should be applied at the node where
its correspondent pressure value is obtained. To do so, the second space variable is defined
using the initial geometry lines between nodes. By coupling the halves of the previous
segment and the following one coming from the primary geometry, a balanced and accurate
representation is achieved. Furthermore, the pressure value is not applied then at the node
but at the new formed line following the direction of its normal vector. Then, the force
direction depends on the magnitude of the pressure, being towards the inner structure
when it is positive and outwards when it is negative. An illustration of this process is given
in Figure 9.
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Figure 9. Methodology used to apply concentrated loads from discrete pressure values.

In Figure 9, the initial nodes are marked in blue and the geometry is represented by
black dashed lines. Then, the distance between nodes is also provided with the variable
dxp(node1,node2). Before the FEM analysis, the initial segments are divided in their mid-point,
as seen in the red dotted lines; subsequently new segments are formed which connect the
mid-nodes and save the information in the dxi variable, which also has its own normal
vector n̂i. Therefore, and shown by the brackets, the pressure value from the specific
aerodynamic node is applied along that surface defined by (dxi × 1c)× n̂i.

As a boundary condition for the FEM analysis, the displacements and rotations in the
wing-box are set to zero, thus constraining the airfoil on that internal surface.

A mesh convergence study to evaluate its impact on the results is then carried out for
the gray domain in Figure 8. Different meshes are generated for this task and their results
are shown in Figure 10 for the maximum values of von Mises stress and displacement. Even
though convergence is reached for about 30,000 nodes, the largest mesh (77,144 nodes) is
chosen due to the reasonable computational cost and potential to better explore the design
space in the TO problem.
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Figure 10. Structural variables’ evolution with the number of nodes.

3.2.2. Optimization Problem Definition

The objective function for the TO problem is set to minimize the compliance-to-weight
ratio (i.e., to maximize the stiffness-to-weight ratio) for a given volume fraction; the latter
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is set as a problem constraint. The design variables are the presence or absence of material
in the previously defined design domain.

To avoid instabilities such as the checkerboard pattern [40], a filter as described in [30]
is employed for this work. Some parameters are then defined to improve the results, such
as the filter radius and the mass addition and removal rates. These parameters are set after
performing some studies, which led to the following choices: filter radius of 0.01c, which
represents 8 to 10 times the mesh element size; mass addition and removal ratios of 1% and
4%, respectively, which means that at each iteration, the solver can add up to 1% material
or remove up to 4%.

The influence of the prescribed volume on the structural topology is also evaluated.
Figure 11 shows the layouts obtained for 50%, 35%, 25% and 10%. Despite the failure index
criteria being lower than 1 for the 10% structural layout, the authors opted to use the 25%
volume fraction for the results section.

Figure 11. Material layout distribution for the general case study, considering 50%, 35%, 25% and
10% mass constraint reduction targets.

4. Results

This section is divided intro three subsections. The first presents the results of the
aerodynamic optimization of the profile, aiming at the drag minimization. In the second
subsection, the results of the structural analysis of a filled aerodynamically optimized
airfoils (with the exception of the wing box) are presented and discussed. Lastly, the third
section presents the results of the topological optimization of the optimal airfoils of the two
study cases.

4.1. Aerodynamic Optimization

As previously stated, two case studies are aerodynamically optimized by fixing the
lift coefficient and minimizing the drag. Furthermore, the wing-box area of the airfoil is
also set as fixed (as illustrated in Figure 7), thus any shape modifications only appear at the
leading and trailing edges.

4.1.1. Case 1

The optimized solution for the first case study involves small deformations which,
despite small, reduced the drag coefficient by 13.9% as it can be seen from Table 4.

Table 4. Aerodynamic coefficients for the optimized airfoil’s shape.

Shape Cl (-) Cd (Drag Counts)

Original 0.7164 137.40
Optimized 0.7164 118.23

When analyzing the pressure distribution shown in Figure 12, it is possible to observe
that even for small modifications in shape the pressure distribution substantially changes.
The magnitude of the highest shape deformation is 0.001c, thus highlighting the impact
that sensitivity analysis has on the optimized result. Note that in order to reduce the drag
while constraining the lift, the solver tries to increase the curvature near the leading edge
in order to absorb some of the kinetic energy near the shock-wave formation.
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Figure 12. Pressure coefficient comparison for Case 1.

4.1.2. Case 2

For the second case study, an even higher drag reduction (29.04%) than in the first
case is reached, as shown in Table 5. Despite the geometric changes in the leading edge
being more visible for this case, a similar approach as before is followed.

Table 5. Aerodynamic coefficients for the second case optimized airfoil’s shape.

Shape Cl (-) Cd (Drag Counts)

Original 0.803 183.62
Optimized 0.803 130.29

Regarding the pressure coefficient distribution along the airfoil, Figure 13, there is
a higher peak of suction closer to the leading edge than in Figure 12. As well as in the
previous case, the greater magnitude of the modifications of the geometry is in the order
of 0.005c (if the chord was defined as 1 m, the deformation would be 5 mm), thus it is not
easily noticed.

4.2. Structural Results

For the two aerodynamically optimized airfoils, a completely-filled airfoil structure
is studied in terms of the displacements and stresses caused by the pressure load. In this
section, visual and numerical comparisons are provided for the two case studies.

When aerodynamically optimizing the airfoil’s shape, the stress and displacements dis-
tributions inside the airfoil change completely for both case studies, not only in magnitude,
as it can be seen in Table 6, but also in its location. The aerodynamic load is reduced for the
optimized airfoils since drag is minimized for the same lift coefficient. As a consequence,
the stress and displacement values are also lower for the optimized airfoil’s structure.
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Figure 13. Pressure coefficient distribution comparison for case 2.

Table 6. Structural parameters comparison between the aerodynamically optimized and the original
airfoil’s geometries.

Case Geometry σmax
vM [Pa] |dmax| [c]

1 Original 2.63× 106 1.47× 10−5

Optimized 7.48× 104 1.19× 10−6

2 Original 2.51× 106 1.40× 10−5

Optimized 3.72× 104 4.03× 10−7

In Figure 14, the von Mises stress distribution is compared for the two case stud-
ies, considering the original and aerodynamically optimized airfoils. The displacement
distribution is not plotted since its magnitude is very small when compared to the chord.

(a) Case 1 - Orginal (b) Case 1 - Optimized

(c) Case 2 - Orginal (d) Case 2 - Optimized

Figure 14. von Mises stress distributions (in MPa) for the two case studies and for the original and
aerodynamically optimized airfoils.

Regarding the first case, the maximum von Stress value has substantially decreased in
97%, from 2.63 MPa to 74.8 kPa, while the stress distribution has moved towards the trailing
edge, where it has the lowest material density. For the second case study, the new stress
distribution represents only 1.48% of the loading state for case 1, reaching a maximum
value of 37.2 KPa. It is worth noting how very small changes to the airfoil surface can
influence so considerably the stress distribution.
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4.3. Aerodynamic and Structural Optimizations

As previously mentioned and illustrated in Figure 3, a sequential approach is followed
in this work since it can provide useful insights on the design of aerostructurally optimized
airfoils, even though the authors recognize that a fully coupled approach would have the
potential to reach further optimized solutions. Here, an aerodynamic shape optimization is
first conducted to the airfoil, followed by a topology optimization to its structure.

4.3.1. Case 1

The topologically optimized structure is depicted in Figure 15, considering a volume
fraction of 25%.

Figure 15. Topologically optimized structure for case 1.

It is worth pointing out how the Failure Index (FI) of Figure 16a is two orders of
magnitude lower than in the original airfoil suggesting that, from a first case, the structure
should perfectly withstand the loading state. In terms of stresses (Figure 16b), the structure
finds itself in a more relaxed situation, because the pressure loads are softened when the
airfoil is aerodynamically optimized and are also absorbed in the leading edge region
due to the appearance of new material. Apart from this latest statement, note how the
inner stresses have a higher value than in the completely material-filled airfoil shown in
Figure 14b (but in the same magnitude range), which is expected since the main purpose
of the topology optimization is to redistribute the loads towards specific regions of the
geometry while removing the unnecessary ones.

(a) (b)

Figure 16. (a) Failure index distribution and (b) von Mises stress distribution for the topologically
optimized structure of case 1.

4.3.2. Case 2

The second case study resulted in a slightly different topologically optimized structure
depicted in Figure 17, as expected since the load is also slightly different.

Figure 17. Topologically optimized structure for case 2.

A similar comment regarding the failure index and stresses distribution can be made
for this second case study. It is worth noting that these two parameters are now slightly
smaller as can be seen from Figure 18.
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(a) (b)

Figure 18. (a) Failure index distribution and (b) von Mises stress distribution for the topologically
optimized structure of case 2.

5. Concluding Remarks

This research aimed at coupling both aerodynamic and structural designs of airfoils
using efficient optimization tools such as aerodynamic shape optimization and topology
optimization. Firstly, based on the analysis carried out along the process to reach the stated
target, it allowed the researchers to conclude that this field has the capacity to develop
highly-influential new designs.

In terms of the aerodynamics, the study has shown that, for very small geometric
modifications, noticeable changes in the behavior were found. For instance, the shock-wave
was softened even for small shape changes of 0.001c, leading to considerable drag reduc-
tions of 13.9% and 29.04% for case 1 and 2, respectively. Then, the research showed that by
improving the aerodynamic behavior of the airfoil, the structure stress state is alleviated.

Discussing then the inner topology distribution, the BESO method has proved to be
a robust and practical optimization algorithm since it allows for adding material besides
removing it from the structural domain.

The development of a sequential methodology for both optimization processes has
enabled the aerostructural optimization of airfoils. This approach has shown synergies
between both optimization processes since by designing the airfoil to reduce drag for a
given lift coefficient, the load is also reduced and as a consequence the material required to
withstand the aerodynamic load is also decreased.
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