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Abstract: In this paper, we consider the balancing domain decomposition by constraints (BDDC)
algorithm with adaptive coarse spaces for a class of stochastic elliptic problems. The key ingredient
in the construction of the coarse space is the solutions of local spectral problems, which depend
on the coefficient of the PDE. This poses a significant challenge for stochastic coefficients as it is
computationally expensive to solve the local spectral problems for every realization of the coefficient.
To tackle this computational burden, we propose a machine learning approach. Our method is
based on the use of a deep neural network (DNN) to approximate the relation between the stochastic
coefficients and the coarse spaces. For the input of the DNN, we apply the Karhunen–Loève expansion
and use the first few dominant terms in the expansion. The output of the DNN is the resulting coarse
space, which is then applied with the standard adaptive BDDC algorithm. We will present some
numerical results with oscillatory and high contrast coefficients to show the efficiency and robustness
of the proposed scheme.

Keywords: BDDC; stochastic partial differential equation; artificial neural network; coarse space;
high contrast

1. Introduction

Coefficient functions are often one of the main difficulties in modeling a real life
problem. Due to the nature of the phenomena, these coefficients can be oscillatory and with
high contrast features, all such conditions hinder the development of a fast and accurate nu-
merical solution. Under some conditions, numerical methods like discontinuous Galerkin
methods could give a robust scheme, as in [1,2]. However, more importantly, coefficients
are not constant and they usually involve uncertainties and randomness. Therefore, a
stochastic partial differential equation (SPDE) is considered for the modeling of these
stochastic coefficient functions. There are several popular approaches for solving SPDE
numerically, for example, the Monte Carlo simulation, stochastic Galerkin method, and
the stochastic collocation method in [3–5]. All these methods require a high computational
power in realistic simulations and cannot be generalized to similar situations. In the past
few decades, machine learning techniques have been applied on many aspects, such as
image classification, fluid dynamics, and solving differential equations in [6–14]. In this
paper, instead of directly solving the SPDE by machine learning, we choose a moderate step
that involves the advantage of machine learning and, also, the accuracy from the adaptive
BDDC algorithm.

The combination of machine learning and domain decomposition methods has been
discussed in [15–17] for different applications. A unified review on current approaches is
presented in [10], which introduces three general approaches on this combination method:
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the first one uses machine learning techniques to improve the convergence properties and
the computational efficiency of domain decomposition methods. For the second type of
approach, DNN is used as discretization methods and solvers to solve the differential equa-
tions directly. The last one makes use of the properties and ideas of domain decomposition
methods to improve the performance of neural network.

Although close to the first approach descried, our idea in this paper is not actually
the same. We first apply the Karhunen–Loève expansion on the stochastic coefficient as
in [18–20] to capture the characteristic with finite terms. After this expansion, the stochastic
coefficient function of SPDE is reduced to a finite expansion with desired accuracy and can
be solved with a balancing domain decomposition by constraints (BDDC) algorithm, which
can prevent the computational problem caused by the refinement of spatial mesh resolution
and give an accurate solution rather than directly using machine learning technique without
suitably designed conditions. After obtaining sufficient number of random solutions from
the BDDC method, we can derive the statistics of the original SPDE solution. However,
the cost for forming and solving generalized eigenvalue problems in the BDDC algorithm
with good accuracy is considerable especially for high dimensional problems. We note
that such eigenvalue problems are considered to enrich the coarse space adaptivity in the
BDDC algorithm. Therefore, we introduce neural network with a user-defined number
of layers and neurons to compensate the increase in computational cost with unexpected
times of BDDC solutions.

The adaptive BDDC algorithm with enriched primal unknowns is considered in this
paper as its ability on oscillatory and high contrast coefficients has been shown in [21,22].
Among different domain decomposition methods, the considered adaptive BDDC does
not require a strong assumption on coefficient functions and the subdomain partitions
to achieve a good performance like the standard BDDC algorithm [23,24]. It is because
the additional coarse space basis functions computed by the dominant eigenfunctions are
related to the ill-conditioning in the standard BDDC algorithm with highly varying coeffi-
cients. The introduction of these dominant eigenfunctions, thus, could greatly improve the
robustness of numerical scheme for problems with rough and high contrast coefficients.
Moreover, an estimate of condition number of this adaptive BDDC algorithm can be shown
to be only controlled by a given tolerance without any extra assumptions on the coefficients
or subdomain partitions. For simplicity, in the remaining of the paper, we will call the
resulting new numerical scheme combining the machine learning technique and adaptive
BDDC algorithm as learning adaptive BDDC algorithm.

Finally, to end this section, we state the main idea of our proposed scheme and the
model problem. In this paper, we integrate an artificial neural network with learning abili-
ties into a BDDC algorithm with adaptively enriched coarse spaces for efficient solutions
of the neural network approximation of stochastic elliptic problems. Let D be a bounded
domain in Rd, d = 2, and Ω be a stochastic probability space:

−∇ · (ρ(x, ω)∇u) = f , in D,

u = 0, on ∂D,
(1)

where x ∈ D, ω ∈ Ω, and ρ(x, ω) is uniformly positive and is highly heterogeneous with
very high contrast. Here, we only assume the two-dimensional spatial domain, however,
the three-dimensional case is also applicable and is shown to be robust for deterministic
elliptic problems in [21]. Moreover, as the model problem (1) can be extended to fluid flow
problems, we seldom call the coefficient function ρ(x, ω) as permeability function.

The rest of the paper is organized as follows. In Section 2.1, a brief formulation
of the BDDC algorithm with adaptively enriched coarse problems is presented for two-
dimensional elliptic problems. Then, the Karhunen–Loève expansion is introduced and
the details of the artificial neural network used are clarified in Section 2.2. Two concrete
examples with an explicit analytical expression of the Karhunen–Loève expansion, some
network training, and testing parameters, are presented in the first half of Section 3 and the
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results of various numerical experiments are presented subsequently. Finally, a concluding
remark is given in Section 4.

2. Materials and Methods
2.1. Adaptive BDDC Algorithm

The main feature of the adaptive BDDC is the local generalized eigenvalue problem
defined on every subdomain interface, which introduces the adaptively enriched primal
unknowns. In this subsection, we repeat the formulation presented by the first and second
authors in [21] and give a brief overview of the adaptive BDDC algorithm. We refer
to [21,22] for further details, where the analysis of the condition number estimation and
the robustness of numerical scheme with oscillatory and high contrast coefficients can
be found.

2.1.1. Local Linear System

We first introduce a discrete form of the model problem (1) in a deterministic fashion.
Let Vh be the space of conforming linear finite element functions with respect to a given
mesh on D with the mesh size h > 0 and with the zero value on ∂D. We will then find the
approximate solution u ∈ Vh such that

a(u, v) = ( f , v), ∀v ∈ Vh, (2)

where
a(u, v) =

∫

D
ρ(x)∇u · ∇v dx, ( f , v) =

∫

D
f v dx. (3)

We assume that the spatial domain D is partitioned into a set of N non-overlapping
subdomains {Di}, i = 1, 2, · · · , N, so that D = ∪N

i=1Di. We note that the subdomain
boundaries do not cut triangles equipped for Vh. We allow the coefficient ρ(x) to have
high contrast jumps and oscillations across subdomains and on subdomain interfaces. Let
ai(u, v) be the bilinear form of the model elliptic problem (2) restricted to each subdomain
Di defined as

ai(u, v) =
∫

Di

ρ(x)∇u · ∇v dx, ∀u, v ∈ Xi,

where Xi is the restriction of Vh to Di.
In the BDDC algorithm, the original problem (2) is reduced to a subdomain interface

problem and solved by an iterative method combined with a pre-conditioner. The interface
problem can be obtained by solving a Dirichlet problem in each subdomain. After choosing
dual and primal unknowns on the subdomain interface unknowns, the interface problem is
then solved by utilizing local problems and one global coarse problem corresponding to the
chosen sets of dual and primal unknowns, respectively. At each iteration, the residuals are
multiplied by certain scaling factors to balance the errors across the subdomain interface
regarding to the energy of each subdomain problem. The coarse problem aims to correct
the global part of the error in each iteration and, thus, the choice of primal unknowns
is important in obtaining a good performance as the number of subdomains increases.
The basis for primal unknowns is obtained by the minimum energy extension for a given
constraint at the location of primal unknowns and such a basis provides a robust coarse
problem with a good energy estimate. We refer to [23–26] for general introductions to
BDDC algorithm.

2.1.2. Notation and Preliminary Results

To facilitate our discussion, we first introduce some notation. Let S(i) be the Schur
complement matrix obtained from the local stiffness matrix A(i) after eliminating unknowns
interior toDi, where A(i) is defined by ai(u, v) = uT A(i)v, for all u, v ∈ Xi. In the following,
we will use the same symbol to represent a finite element function and its corresponding
coefficient vector in order to simplify the notations.
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Recall that Xi is the restriction of the finite element space Vh to each subdomain Di.
Let Wi be the restriction of Xi to ∂Di. We then introduce the product spaces

X =
N

∏
i=1

Xi, W =
N

∏
i=1

Wi,

where we remark that the functions in X and W are totally decoupled across the subdomain
interfaces. In addition, we introduce partially coupled subspaces X̃, W̃, and fully coupled
subspaces X̂, Ŵ, where some primal unknowns are strongly coupled for functions in X̃ or
W̃, while the functions in X̂, Ŵ are fully coupled across the subdomain interfaces.

Next, we present the basic description of the BDDC algorithm; see [23–26]. For
simplicity, the two-dimensional case will be considered. After eliminating unknowns
interior to each subdomain, the Schur complement matrices S(i) are obtained from A(i)

, and gi is denoted as the corresponding right-hand side unknowns on the subdomain
boundary. Summing up across the subdomains, the problem (2) is reduced in the BDDC
algorithm, which is to find ŵ ∈ Ŵ, such that

N

∑
i=1

RT
i S(i)Riŵ =

N

∑
i=1

RT
i gi, (4)

where Ri : Ŵ → Wi is the restriction operator into ∂Di, and gi ∈Wi depends on the source
term f . Note, the solution ŵ to problem (4) is actually the restriction of u in (2) to the
subdomain boundaries.

The BDDC pre-conditioner is built based on the partially coupled space W̃. Let
R̃i : W̃ →Wi be the restriction into ∂Di, and let S̃ be the partially coupled matrix defined by

S̃ =
N

∑
i=1

R̃T
i S(i)R̃i.

For the space W̃, we can express it as the product of the two spaces

W̃ = W∆ × ŴΠ,

where ŴΠ consists of vectors of the primal unknowns and W∆ consists of vectors of dual
unknowns, which are strongly coupled at the primal unknowns and decoupled at the
remaining interface unknowns, respectively. We define R̂ : Ŵ → W̃ such that

R̂ =

(
R∆
RΠ

)
,

where R∆ is the mapping from Ŵ to W∆ and RΠ is the restriction from Ŵ to ŴΠ. We note
that R∆ is obtained as

R∆ =




R(1)
∆

R(2)
∆
...

R(N)
∆




,

where R(i)
∆ is the restriction from Ŵ to W(i)

∆ and W(i)
∆ is the space of dual unknowns of Di.

The BDDC pre-conditioner is then given by

M−1
BDDC = R̂T D̃S̃−1D̃T R̂, (5)
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where D̃ is a scaling matrix of the form

D̃ =
N

∑
i=1

R̃T
i DiR̃i.

Here, the matrices Di are defined for unknowns in Wi and they are introduced to make
the pre-conditioner robust to the heterogeneity in ρ(x) across the subdomain interface.
In more detail, Di consists of blocks D(i)

F and D(i)
V , where F denotes an equivalence class

shared by two subdomains, i.e., Di and its neighboring subdomain Dj, and V denotes the
end points of F, respectively. We call such equivalence classes F and V as edge and vertex
in two dimensions, respectively. In our BDDC algorithm, unknowns at subdomain vertices
are included to the set of primal unknowns and adaptively selected primal constraints
are later included to the set after a change of basis formulation. For a given edge F
in two dimensions, the matrices D(l)

F and D(l)
V satisfy a partition of unity property, i.e.,

D(i)
F + D(j)

F = I and ∑l∈n(V) D(l)
V = 1, where n(V) denotes the set of subdomain indices

sharing the vertex V. The matrices D(l)
F and D(l)

V are called scaling matrices. As mentioned
earlier, the scaling matrices help to balance the residual error at each iteration with respect
to the energy of subdomain problems sharing the interface. For the case when ρ(x) is
identical across the interface F, D(i)

F and D(j)
F are chosen simply as multiplicity scalings, i.e.,

1/2, but for a general case when ρ(x) has discontinuities, different choice of scalings, such
as ρ-scalings or deluxe scalings, can be more effective. The scaling matrices D(l)

V can be
chosen using similar ideas. We refer to [27] and references therein for scaling matrices.

We note that by using the definitions of R̂ and S̃, the matrix in the left hand side of (4)
can be written as

N

∑
i=1

RT
i S(i)Ri = R̂T S̃R̂.

In the BDDC algorithm, the system in (4) is solved by an iterative method with the
preconditioner (5). Thus, its performance is analyzed by estimating the condition number of

M−1
BDDCR̂T S̃R̂ = R̂T D̃S̃−1D̃T R̂R̂T S̃R̂. (6)

2.1.3. Generalized Eigenvalue Problems

After the preliminaries, we are ready to state the generalized eigenvalue problems
which introduce the adaptive enrichment of coarse components. For an equivalence class F
shared by two subdomains Di and Dj, the following generalized eigenvalue problem is
proposed in [28]:

(
(D(j)

F )TS(i)
F D(j)

F + (D(i)
F )TS(j)

F D(i)
F

)
v = λ

(
S̃(i)

F : S̃(j)
F

)
v, (7)

where S(i)
F and D(i)

F are the block matrices of S(i) and Di corresponding to unknowns

interior to F, respectively. The matrix S̃(i)
F are the Schur complement of S(i) obtained

after eliminating unknowns except those interior to F. In addition, for symmetric and
semi-positive definite matrices A and B, their parallel sum A : B is defined by, see [29],

A : B = B(A + B)+A, (8)

where (A + B)+ is a pseudo inverse of A + B. We note that the problem in (7) is identical
to that considered in [30] when D(i)

F are chosen as the deluxe scalings, i.e.,

D(i)
F = (S(i)

F + S(j)
F )−1S(i)

F .
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We note that a similar generalized eigenvalue problem is considered and extended to
three-dimensional problems in the first and second authors’ work [21].

2.2. Learning Adaptive BDDC Algorithm

In addition to the BDDC algorithm, we perform the Karhunen–Loève (KL) expan-
sion to decompose the stochastic permeability ρ(x, ω) for the preparation of the learning
adaptive BDDC algorithm. As shown by Theorem 2.7, Proposition 2.18 in [31] and the
numerical examples in [20], a small number of terms in the KL expansion can approximate
the stochastic permeability with a reasonable accuracy. Thus, corresponding computational
cost can also be reduced efficiently. Once we obtain the KL series expansion, we can easily
produce a certain amount of sample data as a training set for the artificial neural network.
After the training process, the neural network learns the main characteristics of the domi-
nant eigenvectors from the adaptive BDDC algorithm, and neural network approximation
on coarse spaces can be obtained. In our proposed algorithm, we still need some resulting
samples from the BDDC algorithm to train the neural network, which is a process of a
relatively high computational cost. However, after this setup, we can apply this network
to obtain an approximate solution directly without the use of other stochastic sampling
methods, such as the Monte Carlo simulation, which involves even higher computational
cost for the generation of large number of random samples or realizations.

In this subsection, we discuss the proposed algorithm in details. Moreover, our
resulting neural network can be also applied on problems with similar stochastic properties.
It thus saves the cost of training again and we can readily use the trained neural network
for prediction. Some testing samples will be generated to test the network performance
and to show its generalization capacity in the later section.

2.2.1. Karhunen–Loève Expansion

To start our learning adaptive algorithm, we first apply the KL expansion on the
stochastic field ρ(x, ω). To ensure the positivity of stochastic permeability field, a logarith-
mic transformation is considered as K(x, ω) = log(ρ(x, ω)). Let CK(x, x̂) be the covariance
function of K(x, ω) at two locations x and x̂. Since the covariance function CK(x, x̂) is
symmetric and positive definite, it can be decomposed into:

CK(x, x̂) =
∞

∑
i=1

λi fi(x) fi(x̂), (9)

where λi and fi are eigenvalues and eigenfunctions computed from the following Fredholm
integral equation:

∫

D
CK(x, x̂) f (x) dx = λ f (x̂), (10)

where { fi(x)} are orthogonal and deterministic functions. It is noted that for some specially
chosen covariance functions, we can find the (λ, f ) eigenpair analytically. We will list some
examples in the section of numerical results. After solving the Fredholm integral equation,
we are ready to express the KL expansion of the log permeability:

K(x, ω) = E[K](x) +
∞

∑
i=1

√
λiξi fi(x). (11)

Here E[K](x) is the expected value of K(x, ω) and ξi are independent and identically
distributed Gaussian random variables with mean 0 and variance 1. As mentioned above,
a few terms in KL expansion can give a reasonably accurate approximation, which can
be explained now as we can just pick the dominant eigenfunctions in (11) and the other
eigenvalues will decay rapidly.
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Therefore, KL expansion is an efficient method to represent the stochastic coefficient
and favors the subsequent process. Although analytical eigenfunctions and eigenvalues
cannot always be found, there are various numerical methods to compute the KL coeffi-
cients in [31,32]. After the generation of some sets of {ξi}, which are the only stochastic
variables in the permeability after KL expansion, as the input of neural network, we plug
back KL expanded permeability coefficients into the adaptive BDDC algorithm, and the
resulting dominant eigenfunctions in the coarse spaces will be the target output of the our
designated neural network.

2.2.2. Neural Network

There are many types of neural networks for different usages. Since in our learning
adaptive BDDC algorithm the desired neural network is to capture numeric feature from
the data as a supervised learning, a fully connected feed-forward neural network is chosen.
An illustration of the neural network structure is shown in Figure 1. In a general feed-
forward neural network, there are L hidden layers between the input and output layer,
and the arrows from layers to layers indicate that all the neurons in the previous layer are
used to produce every neuron in the next layer. Computational cost increases with L, but
significant improvements in predictions of our tests are not always resulted, L = 1 is thus
chosen for most of the numerical experiments.

We denote the number of neurons in the input layer to be R, which is the number
of terms in the truncated KL expansion. The inputs are actually the Gaussian random
variables {ξi} in one realization. The output of the network is a column vector that consists
of all dominant eigenvectors in the coarse space. The number of neurons in the output
layer is denoted as O, which is the sum of length of all resulting eigenvectors obtained
from the BDDC algorithm. This value O depends on many factors, such as the geometry of
the spatial domain, the structure of the grid, and parameters of the BDDC algorithm.

x1

x2

...

xR

y(1)1

y(1)2

...

y(1)
n(1) y(2)

n(2)

...

y(2)2

y(2)1

. . .

. . .

. . .

y(L−1)
n(L−1)

...

y(L−1)
2

y(L−1)
1 y(L)

1

y(L)
2

...

y(L)
n(L)

y(L+1)
1

y(L+1)
2

...

y(L+1)
O

input layer
1st hidden layer

Lth hidden layer2nd hidden layer

(L− 1)th hidden layer
output layer

Figure 1. An illustration of neural network structure of a (L + 1)-layer perceptron with R input
neurons and O output neurons. The lth hidden layer contains n(l) hidden neurons.

In the training, we use the scaled conjugate gradient algorithm in [33] to do the task of
minimization. Therefore, unlike the gradient descent method, we do not need to determine
the value of learning rate at each step. However, the initial choice for the scaled conjugate
gradient algorithm may still affect the performance of training. Before training, we have
to generate training samples and decide some conditions on stopping criteria. When the
minimization process is completed for all the training samples, we are said to finish one
epoch. There are two stopping criteria that are usually considered. They are the tolerance
of the cost function gradient and the maximum number of epochs trained. When either
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of these conditions are satisfied, that is, the cost function gradient is below the specified
tolerance or the number of epochs reaches the maximum number, the training is stopped
and the network will be tested for performance on a testing set.

In both training and testing results, in order to obtain an error measure less affected
by scales of data set, a normalized root mean squared error (NRMSE) is used as an error of
reference to see how well are the network estimation and prediction:

RMSE =

√
∑M

i=1
1
O ||y(ξ(i))− fNN(ξ

(i))||22
M

,

NRMSE =
RMSE

maxi=1,2,...,M ||y(ξ(i))− fNN(ξ
(i))||∞

,

where ξ(i) ∼ N(0, 1) ∈ RR is a column vector of random variables that follow the standard
normal distribution in the i-th realization, y(·) is the dominant eigenvectors obtained from
the adaptive BDDC algorithm when the KL expanded stochastic permeability function
is used, and fNN(·) is the regression function describing the neural network (NN). Here,
O is the dimension of network output, and M is the number of samples. For simplicity,
the considered NRMSE can be understood as the root mean squared error divided by the
maximum element of the absolute difference of all the eigenvectors.

Overall, the proposed scheme can be concluded as follows:

• Step 1: Perform KL expansion on the logarithmic stochastic permeability function
K(x, ω);

• Step 2: Generate M realizations of {ξ(i)} and obtain the corresponding BDDC domi-
nant eigenvectors {y(ξ(i))}, which are the training data for the neural network;

• Step 3: Define training conditions and train the neural network;
• Step 4: Examine the network performance whether the NRMSE is satisfied, otherwise,

go back to Step 3 and change training conditions.

3. Results and Discussion

In this section, supporting numerical results are presented to show the performance
of our proposed learning adaptive BDDC algorithm. We will consider various choices of
permeability coefficients ρ(x, ω) with two major stochastic behaviors. As the concern of our
numerical tests are on the learning algorithm, we fix all the parameters that are not related.
In most of the experiments, D ∈ R2 is chosen to be a unit square spatial domain, and it is
partitioned into 16 uniform square subdomains with H = 4−1 as the coarse grid size. Each
subdomain is then further divided into uniform grids with a fine grid size h = 32−1. We
will state clearly if other grid sizes are used. In the following, we will first describe the
considered stochastic coefficients and training conditions.

3.1. Choices of Stochastic Coefficients

From the KL expansion expression (11), we know the eigenvalues and eigenfunctions
computed from the Fredholm integral equation are related to the covariance function of
K(x, ω), which can be treated as the starting point of KL expansion. Throughout the experi-
ments, two specially chosen covariance functions whose eigenvalues and eigenfunctions in
the Fredholm integral equation can be computed analytically are considered with different
expected values. For x = (x1, x2)

T and x̂ = (x̂1, x̂2)
T , these two covariance functions are

1. Brownian sheet covariance function:

CK(x, x̂) = min(x1, x̂1)min(x2, x̂2),
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where the corresponding eigenvalues and eigenfunctions are

λk =
16

((2i− 1)2π2)((2j− 1)2π2)
,

fk(x) = 2 sin
(
(i− 1

2
)πx1

)
sin
(
(j− 1

2
)πx2

)
.

2. Exponential covariance function:

CK(x, x̂) = σ2
K exp

(
−|x1 − x̂1|

η1
− |x2 − x̂2|

η2

)
,

where σ2
K and ηi are the variance and correlation length in the xi direction of the

process, respectively. The corresponding eigenvalues and eigenfunctions are

λk =
4η1η2σ2

K
(r2

1,iη
2
1 + 1)(r2

2,jη
2
2 + 1)

,

fk(x) =
r1,iη1 cos(r1,ix1) + sin(r1,ix1)√

(r2
1,iη

2
1 + 1)/2 + η1

r2,jη2 cos(r2,jx2) + sin(r2,jx2)√
(r2

2,jη
2
2 + 1)/2 + η2

,

where r1,i is the i-th positive root of the characteristic equation

(r2
1,iη

2
1 − 1) sin(r1,i) = 2η1r1,i cos(r1,i)

in the x1 direction. The same for r2,j, which is in the j-th positive root of the character-
istic equation in the x2 direction. After arranging the roots r1,i and r2,j in ascending
order, we can immediately obtain a monotonically decreasing series of λk, which
favors our selection of dominant eigenfunctions in the truncated KL expansion with
R terms.

For clarification, the positive indices i and j are mapped to index k so that λk is
monotonically decreasing. It is noted these eigenvalues and eigenfunctions are just the
product of solutions of the one-dimensional process in the Fredholm integral equation,
since the covariance functions are separable. First four terms of the eigenfunctions for the
second covariance function with (σ2

K, η1, η2) = (1, 0.25, 0.25) are illustrated in Figure 2.
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• Sample size of testing set: M = 500

(a) f1(x) (b) f2(x)

(c) f3(x) (d) f4(x)
Figure 2. Illustration of first four eigenfunctions fk(x) for the second covariance function with
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The first set of numerical tests bases on the KL expansion of Brownian sheet covariance
function with the following expected functions E[K](x):

(A) 10s

(B) 5 sin(2πx1) sin(2πx2) + 5.

Figure 2. Illustration of first four eigenfunctions fk(x) for the second covariance function with
(σ2

K , η1, η2) = (1, 0.25, 0.25).

3.2. Adaptive BDDC Parameters and Training Conditions

In the setting of BDDC parameters, we fix the number of dominant eigenvectors on
every coarse edge to be 2 and deluxe scaling is always considered. We remark that we
have fixed the number of coarse basis functions on each edge. In general, one should
vary the number of coarse basis functions according to the local heterogeneities. If the
number of coarse basis function is too large, then the coarse problem is more expensive
to solve. On the other hand, if the number of coarse basis function is too small, then the
number of iteration will increase. It is worth note that, the output layer of neural network
is composed by the total dominant eigenvectors on all the coarse edges, so the output layer
size O is determined by the coarse grid size H, fine grid size h, and also the number of
dominant eigenvectors on every coarse edge. When solve the system by the conjugate
gradient method, the iteration is stopped when the relative residual is below 10−10.

In the training, there are different sets of hyperparameter that could affect the training
performance of the neural network. Unless specified, the following training conditions
are considered:

• Number of truncated terms in KL expansion: R = 4;
• Number of hidden layers: L = 1;
• Number of neurons in the hidden layer: 10;
• Number of neurons in the output layer: O = 336;
• Activation function in hidden layer: hyperbolic tangent function;
• Activation function in output layer: linear function;
• Stopping criteria:

– Minimum value of the cost function gradient: 10−6; or
– Maximum number of training epochs: 1,000,000;
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• Sample size of training set: M =10,000;
• Sample size of testing set: M = 500.

After we obtain an accurate neural network from the proposed algorithm, besides the
NRMSE of testing set samples, we also present some characteristics of the pre-conditioner
based on the approximate eigenvectors from the learning adaptive BDDC algorithm, which
include the number of iterations required, minimum and maximum eigenvalues of the
pre-conditioner. To show the performance of pre-conditioning on our predicted dominant
eigenvectors, we will use the infinity norm to measure the largest difference and also the
following symmetric mean absolute percentage error (sMAPE), proposed in [34], to show a
relative error type measure with an intuitive range between 0% and 100%:

sMAPE =
1
M

M

∑
i=1

|qi − q̂i|
|qi|+ |q̂i|

,

where qi are some target quantities from pre-conditioning and q̂i is the same type of quantity
as qi from pre-conditioning using our predicted eigenvectors. In the following subsections,
all the computation and results were obtained using MATLAB R2019a with Intel Xeon
Gold 6130 CPU and GeForce GTX 1080 Ti GPU in parallel.

3.3. Brownian Sheet Covariance Function

The first set of numerical tests bases on the KL expansion of Brownian sheet covariance
function with the following expected functions E[K](x):

(A) 10s

(B) 5 sin(2πx1) sin(2πx2) + 5.

Expected function A is a random coefficient as s ∈ [−1, 1] is randomly chosen for
each fine grid element, and expected function B is a smooth trigonometric function with
values between [0, 10]. The common property between these two choices is that the resulting
permeability function ρ(x, ω) is highly oscillatory with magnitude order about 10−2 to 105,
which are good candidates to test our method on oscillatory and high contrast coefficients.
Here, we show the appearance of mean functionsA andB and the corresponding permeability
function K(x, ω) in Figure 3. We can observe that from the first row of Figure 3 to the
second row, that is, from the appearances of expected function E[K](x) to the logarithmic
permeability coefficient K(x, ω), there are no significant differences except only a minor
change on the values on each fine grid element. Nevertheless, these small stochastic
changes cause a high contrast ρ(x, ω) after taking exponential function as in the third row
of Figure 3.
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(a) Expected function A (b) Expected function B

(c) A realization of K(x, ω) with
expected function A

(d) A realization of K(x, ω) with
expected function B

(e) A realization of ρ(x, ω) with
expected function A

(f) A realization of ρ(x, ω) with
expected function B

Figure 3. Realizations of permeability coefficient when expected functions A and B are used.

In Table 1, the training results of these two expected functions A and B under the
training conditions mentioned are presented. Although the random initial choice of
conjugate gradient algorithm for minimization may have influences, in general, the neural
network of expected function A usually needs more epochs until stopping criterion is
reached and, thus, the training time is also longer. However, this increase in training epochs
does not bring a better training NRMSE when compared with expected function B. We can
see the same phenomenon when the testing set is considered. The main reason is due to
the smoothness of expected function B, the neural network can capture its characteristics
easier than a random coefficient.
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Table 1. Training records when expected functions A and B are considered.

Case Epochs
Trained

Training
NRMSE Training Time Preparation Time

for 1 Sample

A 2.29 × 105 1.97 × 10−2 1.98 × 103 s 1.53 s
B 5.39 × 104 3.77 × 10−3 6.33 × 102 s 1.54 s

In the testing results, we consider another set of data containing M = 500 samples as
a testing set. After obtaining the predicted eigenvectors from neural network, we plug it
into the BDDC pre-conditioned solver and obtain an estimated pre-conditioner. For the esti-
mated pre-conditioner, we report several properties such as the number of iteration needed
for the iterative solver, the maximum and minimum eigenvalues of the pre-conditioned
system. Therefore, to better show the performance of network, besides the testing error
NRMSE, we also use the sMAPE and l∞ norm of difference of the iteration numbers, the
maximum and minimum eigenvalues of the estimated pre-conditioner and the target
pre-conditioner. The comparison results are listed in Table 2 below.

Table 2. Testing records when expected functions A and B are considered.

Case Testing NRMSE
sMAPE (l∞ Error) in

Iteration Number λmin λmax

A 6.58 × 10−2 6.94 × 10−2 (2) 2.58 × 10−7 (4.02 × 10−6) 4.45 × 10−3 (3.58 × 10−2)
B 6.73 × 10−3 6.93 × 10−2 (1) 3.19 × 10−5 (1.50 × 10−4) 2.01 × 10−3 (4.94 × 10−2)

It is clear that the testing NRMSE of expected function B is also much smaller than
expected function A. One possible reason is because the function used is smooth, and the
neural network can better capture the property of the resulting stochastic permeability
function. We can see that values of the testing NRMSE of both expected function A
and expected function B are just a bit larger than the training NRMSE. This suggests
that the neural network considered is capable to give a good prediction on dominant
eigenvectors in the coarse space even when the magnitude of coefficient function value
changes dramatically across each fine grid element. Nevertheless, even though a more
accurate set of eigenvectors can be obtained for the expected function B, but its performance
after the BDDC pre-conditioning is not always better than that of expected function A.
Obviously, l∞ errors in the aspects of λmax and λmin are larger for the expected function B.

Detailed comparisons can be found in Figure 4, where the area of overlapping rep-
resents how close the specified quantity of the estimated pre-conditioner is compared to
the target pre-conditioner. In the first row of figures, we can see the number of iteration
required for the predicted eigenvectors is usually more than the target iteration number,
however, the differences in the iteration number is not highly related to the difference
in minimum and maximum eigenvalues. We can see more examples to verify it in this
and later results. The bin width of the histogram of minimum eigenvalues for expected
function A is about 10−7, which is in coherence with the l∞ error, but we eliminate this
small magnitude effect and the sMAPE is considered. The high ratio of overlapping area
for expected function A confirms the usage of sMAPE as a good measure, as the resulting
sMAPE 2.58 × 10−7 of expected function A is much smaller than 3.19 × 10−5 of expected
function B.

For the last column of errors in Table 2, the l∞ norm of maximum eigenvalues is larger
for expected function B. Nevertheless, it does not mean that the neural network of expected
function B performs worse. From its histogram, we can see an extremely concentrated
and overlapping area at the bin around 1.04, moreover, there are some outliers for the
prediction results, which is one of the source for a larger l∞ norm. Therefore, the sMAPE
can well represent the performance of preconditioning on the estimated results, and we can
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conclude that both neural networks show a good results on oscillatory and high contrast
coefficients, which can be represented by NRMSE and sMAPE. In Section 3.4, besides an
artificial coefficient, we will consider one that is closer to a real life case.

Although the l∞ norm seems not describe the characteristics of performance in a full
picture, it is still a good and intuitive measure, for example, in the difference of iteration
number, we can immediately realize how large will be the worst case.

Figure 4. Comparisons in the performance of the BDDC preconditioner when expected functions A
(left column) and B (right column) are used.

Further Experiments on Different Training Conditions

To emphasize the changes of using different training conditions, we display the results
of increasing the truncated terms R in KL expansion and using less training samples. The
expected functions and stochastic property considered are the same as above to show the
effect of changing conditions only. For clarification, there are two experiments each with
only one condition is modified and other conditions are the same as stated in Section 3.2.
We state the new conditions as the follows:

• Modified experiment 1: R = 9;
• Modified experiment 2: Training sample is 5000.
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When R is increased, we can see in Table 3, the training time increases as the total
number of parameters increases with the input layer. In Table 4, the testing results of
expected function B clearly have better performance than in Table 2, which suggests that a
larger R could bring a smaller NRMSE.

Table 3. Training records when modified experiment 1 is considered.

Case Epochs Trained Training NRMSE Training Time Preparation Time for 1 Sample

A 2.17 × 105 2.74 × 10−2 2.47 × 103 s 1.77 s
B 1.15 × 105 4.02 × 10−3 1.19 × 103 s 1.75 s

Table 4. Testing records when modified experiment 1 is considered.

Case Testing NRMSE
sMAPE (l∞ Error) in

Iteration Number λmin λmax

A 6.97 × 10−2 5.85 × 10−2 (1) 2.15 × 10−6 (1.35 × 10−5) 2.29 × 10−2 (9.05 × 10−2)
B 5.40 × 10−3 6.73 × 10−2 (1) 2.99 × 10−5 (1.76 × 10−4) 1.96 × 10−3 (5.64 × 10−2)

The training and testing results of modified experiment 2 are shown in Tables 5 and 6,
respectively. Obviously, the testing results in Table 6 are worse than when 10,000 training
samples are used. Moreover, as the training time does not have a distinct reduction,
and with the aid of parallel computation, more training samples can be easily obtained.
Therefore, using less samples is not always a good choice, we should use appropriate
number of samples.

Table 5. Training records when modified experiment 2 is considered.

Case Epochs Trained Training NRMSE Training Time Preparation Time for 1 Sample

A 9.12 × 104 3.34 × 10−2 8.94 × 102 s 1.53 s
B 1.01 × 105 4.91 × 10−3 1.12 × 103 s 1.54 s

Table 6. Testing records when modified experiment 2 is considered.

Case Testing NRMSE
sMAPE (l∞ Error) in

Iteration Number λmin λmax

A 7.82 × 10−2 6.68 × 10−2 (2) 7.15 × 10−7 (6.59 × 10−6) 3.82 × 10−3 (1.57 × 10−1)
B 8.43 × 10−3 6.91 × 10−2 (1) 2.73 × 10−5 (1.64 × 10−4) 2.39 × 10−3 (6.61 × 10−2)

3.4. Exponential Covariance Function

To test our method on realistic highly varying coefficients, we consider expected
functions that come from the second model of the 10th SPE Comparative Solution Project
(SPE10), with the KL expanded exponential covariance function as the stochastic source.
For clarification, in this set of experiment, we first use the modified permeability of Layer
35 in the x-direction of SPE10 data as the expected function E[K](x) with (σ2

K, η1, η2) =
(1, 0.25, 0.25) in the exponential covariance function CK(x, x̂). We then train the neural
network, and the resulting neural network is used to test its generalization capacity on the
following different situations:

1. Different stochastic behavior:

• All remain unchanged except (η1, η2) = (0.2, 0.125) or (η1, η2) = (1, 1);

2. Different mean permeability function:



Math. Comput. Appl. 2021, 26, 44 16 of 24

• The expected function is changed to the Layers 1, 4, 34 in the x-direction of
SPE10 data, but the stochastic parameters are unchanged, i.e., (σ2

K, η1, η2) =
(1, 0.25, 0.25).

It is of note that, all the permeability fields used are modified into our computational
domain and shown in Figure 5 for a clear comparison. In the Layer 35 permeability field,
four sharp properties can be observed. There are one blue strip on the very left side, and
a reversed but narrower red strip is next to it. In the top right corner, a low permeability
area is shown and just below it, a small high permeability area is located in the bottom
right corner. So a similar but with slightly different properties of Layer 34, and two Layers
1, 4 with more distinct differences are chosen to test the generalization capacity of our
neural network.

Before showing the training and testing records of neural network, we further present the
logarithmic permeability K(x, ω), and permeability ρ(x, ω) when (σ2

K, η1, η2) = (1, 0.25, 0.25),
(1, 0.2, 0.125) and (1, 1, 1) in Figure 6. The sets of {ξi} used in these three rows of realizations
are the same. We can thus see the change in parameters does cause the stochastic behavior
to change, too. We present the training and testing records of neural network as below in
Tables 7 and 8, where we specify the expected functions considered in the first column.

Table 7. Training record when Layer 35 permeability is considered.

Case Epochs Trained Training NRMSE Training Time Preparation Time for 1 Sample

Layer 35 2.62 × 105 1.52 × 10−2 1.07 × 103 s 12.34 s

Math. Comput. Appl. 2021, 1, 0 16 of 24

(a) Mean permeability field of Layer 1 (b) Mean permeability field of Layer 4

(c) Mean permeability field of Layer 34 (d) Mean permeability field of Layer 35
Figure 5. Mean permeability fields of different layers in the x-direction.

Figure 5. Mean permeability fields of different layers in the x-direction.
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(a) Log permeability when
(σ2

K , η1, η2) = (1, 0.25, 0.25)
(b) Permeability ρ(x, ω) when
(σ2

K , η1, η2) = (1, 0.25, 0.25)

(c) Log permeability when
(σ2

K , η1, η2) = (1, 0.2, 0.125)
(d) Permeability ρ(x, ω) when
(σ2

K , η1, η2) = (1, 0.2, 0.125)

(e) Log permeability when
(σ2

K , η1, η2) = (1, 1, 1)
(f) Permeability ρ(x, ω) when

(σ2
K , η1, η2) = (1, 1, 1)

Figure 6. Realizations of Layer 35 permeability coefficient when different η1 and η2 are used.

Table 8. Testing records when Layer 1, 4, 34, 35, 35 * and 35 ** are considered.

Case Testing NRMSE
sMAPE (l∞ Error) in

Iteration Number λmin λmax

Layer 1 8.02e-02 1.04e-01 (2) 3.74e-06 (3.71e-05) 4.00e-02 (1.36e-01)
Layer 4 6.95e-02 7.18e-02 (1) 1.11e-05 (1.36e-04) 1.61e-02 (6.85e-02)
Layer 34 5.08e-02 2.52e-03 (1) 3.25e-05 (1.74e-04) 3.06e-02 (8.47e-02)
Layer 35 2.48e-02 3.65e-02 (1) 7.52e-06 (7.50e-05) 1.36e-03 (6.66e-02)

Layer 35 * 2.27e-02 3.89e-02 (1) 7.57e-06 (7.17e-05) 1.27e-03 (6.59e-02)
Layer 35 ** 2.75e-02 4.29e-02 (1) 8.52e-06 (7.13e-05) 1.81e-03 (8.10e-02)

Figure 6. Realizations of Layer 35 permeability coefficient when different η1 and η2 are used.

Table 8. Testing records when Layer 1, 4, 34, 35, 35 *, and 35 ** are considered.

Case Testing NRMSE
sMAPE (l∞ Error) in

Iteration Number λmin λmax

Layer 1 8.02 × 10−2 1.04 × 10−1 (2) 3.74 × 10−6 (3.71 × 10−5) 4.00 × 10−2 (1.36 × 10−1)
Layer 4 6.95 × 10−2 7.18 × 10−2 (1) 1.11 × 10−5 (1.36 × 10−4) 1.61 × 10−2 (6.85 × 10−2)
Layer 34 5.08 × 10−2 2.52 × 10−3 (1) 3.25 × 10−5 (1.74 × 10−4) 3.06 × 10−2 (8.47 × 10−2)
Layer 35 2.48 × 10−2 3.65 × 10−2 (1) 7.52 × 10−6 (7.50 × 10−5) 1.36 × 10−3 (6.66 × 10−2)

Layer 35 * 2.27 × 10−2 3.89 × 10−2 (1) 7.57 × 10−6 (7.17 × 10−5) 1.27 × 10−3 (6.59 × 10−2)
Layer 35 ** 2.75 × 10−2 4.29 × 10−2 (1) 8.52 × 10−6 (7.13 × 10−5) 1.81 × 10−3 (8.10 × 10−2)



Math. Comput. Appl. 2021, 26, 44 18 of 24

In Table 8, we clarify that the results of Layer 35 * also use Layer 35 permeability as
the expected function but with (η1, η2) = (0.2, 0.125). Similarly, Layer 35 ** is with another
set of parameters (η1, η2) = (1, 1). Each row corresponds to the results of different testing
sets, however, all the results are obtained using the same neural network of Layer 35 in
Table 7. Therefore, the testing results of Layer 35 are used as a reference to decide whether
the results of other testing sets are good or not.

We first focus on the testing results of Layer 35. From the corresponding histograms in
the left column of Figure 7, besides the iteration number required for predicted eigenvectors
are still usually larger by 1, we can observe a large area of overlapping, in particular, there
is only 8.4% of data that are not overlapped in the histogram of maximum eigenvalues.
Moreover, the small NRMSE and sMAPE again confirm with the graphical results. For
generalization tests, we then consider other testing sets with different stochastic behaviors
and expected functions.

When the stochastic behavior of Layer 35 is changed to (σ2
K, η1, η2) = (1, 0.2, 0.125)

and (σ2
K, η1, η2) = (1, 1, 1), we list the corresponding sMAPE and l∞ norms of differences in

iteration numbers, maximum eigenvalues and minimum eigenvalues of pre-conditioners
in the last two rows of Table 8. We can see the values of errors are very similar to the row
of Layer 35 and the NRMSE are very close. Therefore, we expect that the Layer 35 neural
network can generalize the coefficient functions with similar stochastic properties, and
give a good approximation on dominant eigenvectors for the BDDC pre-conditioner. It
is then verified by the histograms in the middle column of Figure 7. Moreover, a large
population of samples are concentrated around 0 in the histograms of difference between
the estimated pre-conditioner and target pre-conditioner in Figure 8. All these show our
method performs well with stochastic oscillatory and high contrast coefficients, and also
coefficient functions with similar stochastic properties.

Finally, we compare the performances when the expected function is changed to Layer
1, 4, and 34. Note, the NRMSE, sMAPE and l∞ errors of the three layers are almost all
much higher than those of Layer 35, which are crucial clues for a worse performance. It
is clear that when the permeability fields do not have many similarities such as Layer
1 and 4, the testing NRMSE increases distinctly. Even though the permeability fields of
Layer 34 and Layer 35 share some common properties and have a near magnitude, unlike
previous results for Layer 35 and Layer 35 *, we can see in the right column of Figure 7,
the prediction output and target output on maximum and minimum eigenvalues of pre-
conditioners are even two populations with different centres and only a little overlapping
area. The main reason is a minor difference in K(x, ω) can already cause a huge change
after taking exponential function. Therefore, when E[K](x) is changed to another entirely
different mean permeability with just some common properties, the feed-forward neural
network may not be able to capture these new characteristics, which will be part of our
future research.
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Figure 7. Comparisons in the performance of the BDDC preconditioner when expected functions of SPE10 Layer 35 (left
column), SPE10 Layer 35 * (middle column) and SPE10 Layer 34 (right column) are used.
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Figure 8. Differences in the performance of the BDDC preconditioner when expected functions of
SPE10 Layer 35 (left column) and SPE10 Layer 35 * (right column) are used.

3.5. Exponential Covariance Function with Multiple Hidden Layers

It is noted that after taking exponential function, the permeability fields in previous
experiments only show some global peaks, the single layer structure of neural network
may then suffice to give an accurate prediction. Therefore, in this subsection, we illustrate
an example with a high contrast coefficient cutting more interfaces and a realization of this
new coefficient function ρ̂(x, ω) is displayed in Figure 9. It is of note that, the stochastic
properties considered are still the exponential covariance function with (σ2

K, η1, η2) =
(1, 0.25, 0.25).



Math. Comput. Appl. 2021, 26, 44 21 of 24

Math. Comput. Appl. 2021, 1, 0 21 of 24

• Sample size of testing set: M = 100

Other conditions are kept to be unchanged as in Section 3.2. We show the new training
and testing records in Tables 9 and 10.

Table 9. Training records when new coefficient function ρ̂(x, ω) is considered.

(n(1), n(2)) Epochs Trained Training NRMSE Training Time Preparation Time for 1 Sample

(10,0) 1.00e+06 3.81e-02 4.89e+04 s
130.77 s(10,5) 6.46e+05 4.44e-02 2.65e+04 s

(10,7) 1.00e+06 4.11e-02 4.62e+04 s

Table 10. Testing records when new coefficient function ρ̂(x, ω) is considered.

(n(1), n(2)) Testing NRMSE
sMAPE (l∞ Error) in

Iteration Number λmin λmax

(10,0) 5.47e-02 2.12e-02 (4) 1.86e-06 (2.98e-05) 1.42e-01 (4.34e+02)
(10,5) 3.57e-02 7.81e-03 (5) 1.21e-06 (3.53e-05) 4.55e-02 (7.89e+01)
(10,7) 2.30e-02 1.12e-02 (5) 1.13e-06 (2.50e-05) 9.18e-02 (7.01e+01)

On one hand, when the number of neurons in the second hidden layer n(2) increases,
the training results do not show a distinct difference, the three training NRMSE are all
around 0.04 with a much longer training time than previous experiments. But on the other
hand, the testing results do show some improvements when n(2) increases. Obviously,
the testing NRMSE and preconditioner errors improve when a second hidden layer is
introduced. Moreover, the testing NRMSE also decreases when n(2) increases. We can see
the testing NRMSE of multiple hidden layers are slightly lower than the corresponding
training NRMSE.

This indicates that for more complicated coefficient functions, introduction of multiple
hidden layers could help to bring better performance. But as it also increases the complexity
of neural network and the training time, thus, a single layer of neural network should
be considered first if the problem is not complicated. In Figure 10, comparisons of the
iteration number, maximum and minimum eigenvalues are illustrated in histograms for
easy observation. Unlike the histograms in Figure 7, we can see more iterations are needed
for solving the problem and more outliers exist in the maximum eigenvalue comparison as
the problem itself becomes more complicated than previous experiments.

(a) Expected function E[K̂](x) (b) A realization of K̂(x, ω)
(c) A realization of
permeability ρ̂(x, ω)

Figure 9. Realization of new coefficient function ρ̂(x, ω).
Figure 9. Realization of new coefficient function ρ̂(x, ω).

To extract more features and details from the new coefficient, we consider a much
finer grid sizes, which are H = 1/10 and h = 1/600, and the spatial domain is still
the unit square [0, 1]2. With respect to this change, we change the following training
conditions accordingly:

• Number of hidden layers: L = 1 or L = 2;
• Number of neurons in the hidden layers: n(1) = 10 and n(2) = 0, 5 or 7;
• Number of neurons in the output layer: O = 21,240;
• Sample size of training set: M = 2000;
• Sample size of testing set: M = 100.

Other conditions are kept to be unchanged as in Section 3.2. We show the new training
and testing records in Tables 9 and 10.

Table 9. Training records when new coefficient function ρ̂(x, ω) is considered.

(n(1), n(2)) Epochs Trained Training NRMSE Training Time Preparation Time for 1 Sample

(10,0) 1.00 × 106 3.81 × 10−2 4.89 × 104 s
130.77 s(10,5) 6.46 × 105 4.44 × 10−2 2.65 × 104 s

(10,7) 1.00 × 106 4.11 × 10−2 4.62 × 104 s

Table 10. Testing records when new coefficient function ρ̂(x, ω) is considered.

(n(1), n(2)) Testing NRMSE
sMAPE (l∞ Error) in

Iteration Number λmin λmax

(10,0) 5.47 × 10−2 2.12 × 10−2 (4) 1.86 × 10−6 (2.98 × 10−5) 1.42 × 10−1 (4.34 × 102)
(10,5) 3.57 × 10−2 7.81 × 10−3 (5) 1.21 × 10−6 (3.53 × 10−5) 4.55 × 10−2 (7.89 × 101)
(10,7) 2.30 × 10−2 1.12 × 10−2 (5) 1.13 × 10−6 (2.50 × 10−5) 9.18 × 10−2 (7.01 × 101)

On one hand, when the number of neurons in the second hidden layer n(2) increases,
the training results do not show a distinct difference, the three training NRMSE are all
around 0.04 with a much longer training time than previous experiments. However, on the
other hand, the testing results do show some improvements when n(2) increases. Obviously,
the testing NRMSE and pre-conditioner errors improve when a second hidden layer is
introduced. Moreover, the testing NRMSE also decreases when n(2) increases. We can see
the testing NRMSE of multiple hidden layers are slightly lower than the corresponding
training NRMSE.

This indicates that for more complicated coefficient functions, introduction of multiple
hidden layers could help to bring better performance. However, as it also increases the
complexity of neural network and the training time, thus, a single layer of neural network
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should be considered first if the problem is not complicated. In Figure 10, comparisons of
the iteration number, maximum and minimum eigenvalues are illustrated in histograms for
easy observation. Unlike the histograms in Figure 7, we can see more iterations are needed
for solving the problem and more outliers exist in the maximum eigenvalue comparison as
the problem itself becomes more complicated than previous experiments.

Figure 10. Comparisons in the performance of the BDDC pre-conditioner when single hidden layer
(left column), two hidden layers with n(2) = 5 (middle column) and two hidden layers with n(2) = 7
(right column) are used.

4. Conclusions

A new learning adaptive BDDC algorithm is introduced and it consists of three main
parts, which are the Gaussian random variables in Karhunen–Loève expansion, artificial
neural network and the dominant eigenvectors obtained from the adaptive BDDC algo-
rithm in the coarse spaces. The considered neural network acts as a fast computational tool,
which turns the input Gaussian random variables into predicted dominant eigenvectors
as output. In addition, the neural network in the proposed algorithm is suitable for other
permeability coefficients with similar stochastic properties for generalization purpose.
Numerical results confirm the efficiency of the proposed algorithm and the generalization
abilities. On the other hand, we currently just use the simplest feed-forward neural network
structure without retraining when new characteristics are entered. In our future plan, we
will improve the neural network structure that matches with the computational domain
and some adaptive BDDC features. Deep learning technique will also be included for
higher accuracy in prediction, pre-conditioning, and also better generalization ability on
wider aspects of applications.
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