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Abstract: Bayesian Belief Networks are used in many fields of application. Defining the conditional
dependencies via conditional probability tables requires the elicitation of expert belief to fill these
tables, which grow very large quickly. In this work, we propose two methods to prepare these tables
based on a low number of input parameters using specific structures and one method to generate the
table using probability tables of each relation of a child node with a certain parent. These tables can
be used further as a starting point for elicitation.

Keywords: Bayesian Belief Networks; expert elicitation; conditional probability

1. Introduction

A Bayesian Belief Network (BBN) is a probabilistic graphical model that represents a
set of variables and their conditional dependencies via a directed acyclic graph. Bayesian
networks can be used for probabilistic reasoning, deriving the effects of the occurrence
of an event by predicting the likelihood of other related events. The use of BBNs has
seen an enormous increase in recent years. Examples can be found in all kinds of appli-
cation areas where complex systems are found, such as natural ecosystems [1,2], human
behavior [3,4], risk assessment in constructions and complex technological systems [5–8],
military operations [9–11], medicine and healthcare [12,13] and business and cyber threat
analysis [14,15].

The main idea of a BBN is that it specifies the relations between variables, capturing
the probability that a variable has a specific state, depending on the state of other variables,
its parents. If we have three variables, X, Y and Z, each having two possible states (0, 1),
and the state of X depends on the state of Y and Z, which are mutually independent, the
marginal probability of X being 1 can be derived:

P(X = 1) = ∑
i,j∈{0,1}

P(X = 1|Y = i, Z = j)P(Y = i)P(Z = j). (1)

An example is depicted in Figure 1. The figure was created using the BBN tool Genie
(www.bayesfusion.com/genie, accessed on 23 July 2021).

Important here is that the conditional probability P(X|Y, Z) has to be specified. In the
example in Figure 1, this means a table with conditional probabilities has to be provided as
depicted in Table 1.

As an example, in this conditional probability table (CPT), it is stated that P(X =
1|Y = 0, Z = 0) = 0.1. This table is not that hard to fill. However, when a child has a larger
number of states and multiple parents that have many states of their own, the number of
entries in this table can grow very large. Such tables are not only tedious to fill, but basic
relationships between parents (and their states) are difficult to identify and unambiguously
process in the table.
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Figure 1. Example of a BBN, expressing the marginal probability of X.

Table 1. Example of a conditional probability table.

Y State 0 State 1

Z State 0 State 1 State 0 State 1

X-State 0 0.9 0.5 0.1 0.5
X-State 1 0.1 0.5 0.9 0.5

A lot has been written about the elicitation process of expert beliefs, merely about how
to quantify the opinions and uncertainty of experts, starting with the work of Cooke [16]
and O’Hagan [17], as well as the work of Hanea [18]. A review of methods to fill the large
conditional probability tables is given by Werner et al. [19]. Elaborate methods to fill the
table automatically, e.g., as a start point for the experts, are given in the works of Wisse
et al. [20] and Hassall et al. [21]. The main differences between their work are the number
of values to be scored and the way the overall score is divided over the states of the child
node that is under assessment. Examples of values to be scored are the relative weights of
influence of the parent nodes on the child node and the direction of the relationship. What
is left open is the fact that still there are a huge number of ways to translate these values
in the CPT. One could of course try to fit it best to elicited beliefs of experts; however, we
see in practice that this fitting is already very hard [17]. It then can be helpful to create a
number of conditional probability tables that represent a trend to assess the influence of
these patterns on the main, target variable of the BBN.

For some applications, the CPT or even the structure of the model can be generated
automatically by using ontology-driven approaches, machine learning techniques or struc-
tural equation modeling, including entropy-based approaches [22]. However, Maung and
Paris have shown that the general problem of finding the maximum entropy solution in
probabilistic systems is NP complete [23,24].

In this work, we elaborate on the works of Wisse et al. [20] and Hassall et al. [21].
We assume BBNs having discrete states. We also assume that experts are able to order
the states that follow from all combinations of the parents’ states in some way, e.g., the
best or worst case. First, an idea is presented to create conditional probability tables that
use limited input from experts, based on pre-defined patterns for the distribution of the
probabilities over the table, and can be used as a starting point for further elicitation. We
will compare these patterns with the approach as presented in [21]. Next, we present an
approach for specific applications, where conditional probability tables for each parent are
combined to create the full CPT. We end with some conclusions.

2. CPT Algorithms Using Limited Input

In this section, we present the CPT algorithms. First, we present the algorithm as
introduced by Hassall et al. [21]. Next, we suggest two other methods in which we use the
freedom we have to create other patterns within the CPT. In Figure 2, we see a graphical
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representation of the outcome of Hassall’s algorithm. Here, the CPT, for some order of all
combinations of the parents’ states, for four child states is shown as a heat map, where a
probability of one for a child state gives a very small black rectangle, and a probability of
zero results in a white rectangle. What we try to do here is look through the eyelashes to
the total CPT, where ones are black and zeros are white. In this way, you see in one glance
the general distribution of the probability mass. Note that you can see now that Hassall’s
algorithm distributes the probability quite evenly over all states, resulting in many gray
rectangles. In Figures 3 and 4, the two other algorithms are shown, where we see a clear
pattern. These approaches also reach higher values, evident from the black parts. The
first, in Figure 3, we will name ‘Weighted Diagonal’, giving a non-zero probability to at
most two states per combination of parent states. The second, in Figure 4, we will name
‘Weighted Diamond’, where the non-zero values form a rhomboid or diamond shape.

Figure 2. Graphical representation of the probability mass distribution of Hassall’s algorithm as a
heat map, where a probability of one gives black values and zero white values.

Figure 3. Graphical representation of the probability mass distribution of the Weighted Diagonal
algorithm as a heat map, where a probability of one gives black values and zero white values.

Figure 4. Graphical representation of the probability mass distribution of the Weighted Diamond
algorithm as a heat map, where a probability of one gives black values and zero white values.

2.1. Hassall’s Algorithm

To specify a score that captures the relative effects of different parent nodes, in a first
step, an expert assigns a weight of relative importance, as shown in [21], to each parent
node. This weighting is used to define the relative effects of each parent on the probability
distribution of the child node. Parents with a larger weight are assigned a greater level of
influence in determining the conditional probability table such that changes in the states of
the parent with the largest weight will result in the biggest differences in the distribution
of the child node.

The second step is to define the direction of the relationship between each parent and
child. Each parent can have either a positive, negative or other relationship with the child
node. A relationship is considered positive if, as the states of the parent change, according
to the order they have been defined, the probability the child node is in its higher states also
increases. Conversely, a negative relationship is appropriate if as the states of the parent
changes according to the order they have been defined, the probability the child node is
in its higher states decreases. Not every parent–child relationship can be categorized as
having either a positive or negative relationship.

So, Hassall’s algorithms use as input the relative weights of the influence of the parent
nodes on the child node (wi ∈ R+) and the direction of the relationship of the parent state
on the child states. They allow for a relationship where the order can be defined separately
from the order the parent states are defined in the BBN. We assume that the ranking is
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done beforehand such that the relationship is always positive, without loss of generality.
This means that we can define a score of the jth state of the ith parent by

Pij =
j− 1

ni − 1
, (2)

where ni is the number of states of parent i. Now, for a combination k of parent states, we
define a score, given by a weighted average of the constituent scores:

Score{k} =
∑i wiPi{k}

∑i wi
, (3)

where {k} is the kth combination of parent states, with Pi{k} denoting the associated score
of parent i for combination k. This score is translated to probabilities for the child states.
Here, a specific translation is made, where all kinds of translations are possible. Formally,
it is stated as: having a child with M > 2 states, the probability that the child is in state
m is given by twice the area of the mth trapezium formed when the linear line between
the two probabilities of a corresponding two-state child is cut into M equal intervals. For
the mth child state and the kth combination of parent nodes, this means using an auxiliary
variable δ:

δ = 1
M (Score{k} − (1− Score{k})), (4)

Pm,{k} =
2
M

((1− Score{k}) +
1
2 δ(2m− 1)). (5)

This scoring system assumes that all states can be considered on an equally spaced
linear scale and that the range of CPT rows for a two-state child node will contain values in
the full range of 0–100%. These assumptions act as a constraint on the construction of the
scores. The next two alternative algorithms will relax parts of these assumptions to create
other patterns.

2.2. Weighted Diagonal

The first alternative algorithm that we propose is the ‘Weighted Diagonal’ algorithm.
Now, at most, two child states get a non-zero probability for each combination of parent
states. The steps in Hassall’s algorithm as presented in the previous section are followed;
however, we not only ask for a ranking of the parent states, but also for a relative weight
(ωi,j ∈ R+), with a higher weight corresponding to a better state, as defined by the experts.
This means that choosing ωi,j = nj− j+ 1 results in the same ranking as Hassall’s algorithm.
We now define:

score best combination: BS = ∑
i
(max

j
ωi,j)wi, (6)

score worst combination: WS = ∑
i
(min

j
ωi,j)wi, (7)

and auxiliary variables: δ = 1
M−1 (BS−WS), and ηm = BS−mδ. (8)

Now, for the kth combination of parent nodes, we define

Scorek = ∑
i

wiPik. (9)
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We can define for each child state m the following variables:

vmin,1 = 1, (10)

vmin,m = 1 + 1
δ max

(
0, min

(
ηm−2, Scorek

)
−

(
ηm−1

))
, m = 2, ..., M, (11)

vmax,M = 1, (12)

vmax,m = 1
δ max

(
0, min

(
ηm−1, Scorek

)
−

(
ηm

))
, m = 1, ..., M− 1, (13)

and from these variables, we calculate the probability for the mth child state, given the kth
combination of parent nodes

Pm,k = vmin,m + vmax,m − 1. (14)

2.3. Weighted Diamond

The second algorithm that we propose is the ‘Weighted Diamond’ algorithm. First,
both the child state and the parent state have to be ordered. The child state has to be
ordered in some relation from most preferred to least preferred. The parent state has to be
ordered such that the resulting child state is expected to be decreasing. In practice, this is
done by defining some ranking rules, with which the order can be generated automatically.
Now, start with the combination of parent states, for which the most preferred child state
gets a probability of one, and end with the combination of parent states, for which the least
preferred child state gets a probability of one. For the middle one of all the combinations
of the parent states, all child states have the same probability 1/M. Again, we add extra
flexibility by not only asking for a ranking of the parent states, but also assigning a relative
weight (ωi,j ∈ R+), with a higher weight corresponding to a better state and no further
scaling needed. Using the same definition for BS and WS, we define

δ′ = 1
2M−2 (BS−WS), (15)

η′m = BS−mδ′. (16)

For the kth combination of parent nodes, we define

Scorek = ∑
i

wiPik, (17)

Score′k =
∣∣∣Scorek − 1

2 (BS + WS)
∣∣∣+ 1

2 (BS + WS). (18)

Now, find the j for which η′j−1 ≤ Score′k < η′j and calculate:

P′j+1 =
1

j + 1

η′j−1 − Score′k
−δ

, (19)

P′m = (1− P′j+1)/j m = 1, ...j. (20)

The last step is calculating the resulting probabilities:

Pm,k = P′m if TS ≥ 1
2 (BS + WS), (21)

Pm,k = P′m−j+1 if TS < 1
2 (BS + WS). (22)

2.4. Example

We now look at an example. Assume that a child node has four states (Child1, ..., Child4)
and four parent nodes (Parent1, ..., Parent4), having four, two, three and four states, respec-
tively. The weights of the parent nodes and the weights of the parent states (StateXY for
state Y of parent X) are depicted in Table 2 When we order the states of the system on the
score per combination of parent states, the probability per child state can be depicted. This
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is shown in Figures 5–7. Note that despite the weights, the patterns are totally symmetric.
The weights have an influence on the order of the combinations of parent states, which
influences the probability per combination. The figures show that Hassall’s algorithm
spreads the probability over the child nodes with small deviations. In all cases, all child
states have a non-zero probability of occurrence. The Weighted Diagonal algorithm indeed
gives a value to (at most) two child states at the same time, using the total range from zero
to one. The Weighted Diamond algorithm starts (and ends) with full probability on one of
the states and has, for the middle combination of parent states, the situation that all states
have an equal probability.

Because the definition of the score parameter differs per method, the combinations of
parent states are not ordered the same for each method. This is shown in Figures 8–10. The
given combination is for Hassall’s algorithm a bit left of the middle, and the other two are
on the right side of the middle.

Table 2. The weights of the parent nodes and the weights of the child states.

Parent1 Parent2 Parent3 Parent4

Node weight 0.4 0.25 0.2 0.15

StateX1 weight 2.0 2.0 2.0 2.0
StateX2 weight 1.7 1.0 1.5 1.7
StateX3 weight 1.3 - 1.0 1.3
StateX4 weight 1.0 - - 1.0

Figure 5. Hassall’s algorithm: the probability per child state, given the ordening of the parents states
on the x-axes.

Figure 6. Weighted Diagonal: the probability per child state, given the ordening of the parents states
on the x-axes.
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Figure 7. Weighted Diamond: the probability per child state, given the ordening of the parents states
on the x-axes.

Figure 8. Hassall’s algorithm: example to show the order of the parent’s states.

Figure 9. Weighted Diagonal: example to show the order of the parent’s states.

Figure 10. Weighted Diamond: example to show the order of the parent’s states.

3. CPT Generation Using CPT per Parent

The second approach to generate the CPT for a child with multiple parents is using
a CPT per parent and combining these to one generic table. This approach can be used
when the influence of a parent, i.e., the CPT per parent, is available or can be generated
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quite easily and the parents are (supposed) independent of each other. Here also, there are
multiple ways to realize this. Again, we have the relative weights of the influence of the
parent nodes on the child node (wi ∈ R+). Now, we assume a given CPT per parent and
use pm,i,j to denote the probability of parent i, state j on child state m. Next, we introduce
a child state (state M) that stands for ‘NONE’. Now, for a specific combination of parent
states k = {k1, ..., kK}, we calculate, using the intermediate variables Zm and Ym:

Zm =
K

∑
i=1

pm,i,ki
wi m = 1, ..., M− 1, (23)

Ym =
Zm

∑M−1
i=1 Zi

·
K

∏
i=1

1pm,i,ki
>0 m = 1, ..., M− 1, (24)

YM = 1−
M−1

∑
m=1

Ym, (25)

to obtain the probability for the mth child state, given the kth combination of parent nodes

Pm,k = Ym. (26)

This means that we calculate the probabilities of combining the parent states. If a certain
combination is not possible, meaning pm,i,j = 0, this probability mass is assigned to the
state ‘NONE’. We will call this method using the ‘NONE’ state for all combinations of
parent states that are not possible in the first approach. An alternative, the second approach, is
that the probability mass that disappears by a certain pm,i,j = 0 is redistributed pro rata.
Now, state ‘NONE’ is a generic state, leading to

P′m,k = Y′m =
Zm

∑M−1
i=1 Zi

m = 1, ..., M. (27)

Example

We look at an example where a certain node has three parents, where each parent has
two states and the child has three states and a ’NONE’ state. The conditional probability
table of each parent is given in Table 3. Here, SP11 stands for State 1 of Parent 1. The
resulting CPT for the first approach is shown in Table 4. See, for example, that the combi-
nation {SP11, SP21, SP31} has a zero probability for State 3 (Table 4), caused by the zero
probability of SP31 on State 3 (Table 3). For the second approach (P′m,k), the probabilities are
listed in Table 5. Now, the zero-probability entries disappear, as expected.

Table 3. Example CPT for each parent separately.

Parent 1 Parent 2 Parent 3
State SP11 SP12 SP21 SP22 SP31 SP32

Node weight 4 4 4

State 1 weight 0.3 0.2 0.2 0.2 0.8 0.0
State 2 weight 0.2 0.6 0.2 0.5 0.2 0.5
State 3 weight 0.5 0.1 0.4 0.0 0.0 0.3
’NONE’ weight 0.0 0.1 0.2 0.3 0.0 0.2
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Table 4. Example of the final CPT for the first approach, using the ‘NONE’ state for all combinations
of parent states that are not possible.

SP11 SP12

SP21 SP22 SP21 SP22

SP31 SP32 SP31 SP32 SP31 SP32 SP31 SP32

State 1 0.46 0 0.48 0 0.44 0 0.46 0
State 2 0.21 0.35 0.33 0.48 0.37 0.52 0.50 0.67
State 3 0 0.46 0 0 0 0.32 0 0
NONE 0.32 0.19 0.19 0.52 0.19 0.16 0.04 0.33

Table 5. Example of the final CPT for the second approach.

SP11 SP12

SP21 SP22 SP21 SP22

SP31 SP32 SP31 SP32 SP31 SP32 SP31 SP32

State 1 0.43 0.17 0.43 0.17 0.40 0.13 0.40 0.13
State 2 0.20 0.30 0.30 0.40 0.33 0.43 0.43 0.53
State 3 0.30 0.40 0.17 0.27 0.17 0.27 0.03 0.13
NONE 0.07 0.13 0.10 0.17 0.10 0.17 0.13 0.20

4. Conclusions

Filling conditional probability tables when working with BBNs can be hard to do,
caused by the size of those tables and the necessity of insight into all the relations and
dependencies to fill the table in a structured way. Generating standardized starting points,
based on limited input, for further use in the elicitation process can help here. Using
those processes shows that there is a lot of freedom, where the modeler has to make a
choice. Starting from the algorithm by Hassall et al., we proposed two other algorithms
to create specific patterns for the CPT. These patterns provide a starting point, based on a
small number of parameters, that can be elaborated further in co-operation with domain
experts. For when there is more information available, for example a CPT per parent node,
we propose another algorithm that creates the full CPT over all parent nodes. Here also,
there are many choices that a modeler can exploit. For further research, we recommend to
compare the approaches presented in this paper, Wisse et al. [20] and Hassall et al. [21] to
the automated entropy-based solutions, like [22].
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