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Abstract: In the present paper, we consider an important problem from the application perspective in
science and engineering, namely, one-dimensional porous—elastic systems with nonlinear damping,
infinite memory and distributed delay terms. A new minimal conditions, placed on the nonlinear
term and the relationship between the weights of the different damping mechanisms, are used to
show the well-posedness of the solution using the semigroup theory. The solution energy has an
explicit and optimal decay for the cases of equal and nonequal speeds of wave propagation.

Keywords: well-posedness; general decay; infinite memory; nonlinear damping; porous—elastic
system; distributed delay term

1. Introduction

As introduced in [1], the one-dimensional porous—elastic model constitutes a system
of two partial differential equations with unknown (1, ¢) given by

potst = Hilyx + By, in (0,1) x (0,L),
00k@i = apxx — Pux — Ter — C@, in (0,1) x (0,L), (1)

where [, L > 0 the constant p is the mass density, « is the equilibrated inertia and the
constants y, &, B, T, ¢ are assumed to satisfy the appropriate conditions. This type of problem
has been studied by many authors and a lot of results have been shown (please see [1-9]).
The pioneering contribution was made by [10] for the problem (1). The basic evolution
equations for one-dimensional theories of porous materials with memory effect are given by

ouy = Ty, Jou = Hy + G, ()

where T is the stress tensor, H is the equilibrated stress vector and G is the equilibrated
body force. The variables u and ¢ are the displacement of the solid elastic material and the
volume fraction, respectively. The constitutive equations are

T = puy + bp, H = 5¢ — /Otg(t —5)¢px(s)ds, G = —buy — . (©)]
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A porous—elastic system was considered by [11] in the system
pu — Pilyy — by =0, in (0,1) % (0, 0),
¢ @)
Jtt — 6pxx + bux + G + /o g(t —8)pxx(x,5)ds =0, in (0,1) x (0, 00).

System (4) subjected Neumann-Dirichlet boundary conditions, where g is the relaxation
function; the authors obtained a general decay result for the case of equal speeds of wave
propagation (See [12,13]). In [14], the authors improved the case of non-equal speed of
wave propagation. In [15] the authors considered the following system with memory and
distributed delay terms

putt — Py — bpr =0
t
91— s+ butx + 89+ [ g(5)pu(t =) -

e+ [ Ipa()gi(xt = o)do = 0.

The exponential stability results of systems with memory and distributed delay terms, for
the case of equal speeds of wave propagation under a suitable assumptions, are proved.
In [16], the following system was considered

Putt — Ulxy — b(Px =0,
(6)

91 = O+ bts 0+ [ g(5)gu(t — 9)ds + (1) £ (9r) = 0.

The authors proved the global well-posedness and stability results of (6), which has been
extended in [17] for the case of nonequal speeds of wave propagation. Very recently,
one-dimensional equations of an homogeneous and isotropic porous—elastic solid with an
interior time-dependent delay term feedbacks was treated by Borges Filho and M. Santos
in [1].

The result in [10] for system (1) was improved by Apalara to exponential stability in [18].
For more papers related to our paper, please see [19-22].

Motivated by all the above papers, we investigate the well-posedness and stabil-
ity results with distributed delay for the cases of equal and nonequal speeds of wave
propagation, under additional conditions of the following system

Ui — Hxxy — by =0
Tt — Oprx + bux + 5p +/O 8(P)¢xx(t — p)dp )

Fget [ (@It - ode -+ a(t)f(ge) =0,

where
(x,0,t) € (0,1) x (11, 2) x (0,00),

with the Neumann-Dirichlet boundary conditions
ux(0,t) = ux(1,t) = ¢(0,t) = ¢(1,¢) =0, t>0, 8)

and the initial data

¢r(x, —t) = fo(x,t), (x,t) €(0,1) x (0, 12). 9)
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Here, o, 11,],b,6,¢ and y; are positive constants satisfying ug¢ > b?, the term a(t) f(¢r),
where the functions « and f are specified later, represent the nonlinear damping term. The

T
term / ’ l2(0)|¢t(x,t — 0)do is a distributed delay that acts only on the porous equation
T

and 77, 77 are two real numbers with 0 < 71 < 15, where 5 is an L* function, and the
function g is called the relaxation function. We first state the following assumptions:

Hypothesis 1 (H1). g € C'(Ry,R) satisfying

g(0) >0, 5—Amg@MP:l>O,Awg@Mp:go (10)

Hypothesis 2 (H2). There exists a non-increasing differentiable function «, 17 : Ry — Ry such that

g'(t) < —n(t)g(t), t>0, 11)
and "
e _oc“(t()) =0 (12)

Hypothesis 3 (H3). f € C%(R,R) is non-decreasing such that there exist v1,vy,e > 0 and a
strictly increasing function G € C'(]0,0)), with G(0) = 0 and G is a linear or strictly convex
C2%-function on (0, €], such that

24 f2(s) < GUsf(s), Vsl <
vils| < [f(s)| < vals|, VI|s| >e. (13)

which implies that sf(s) > 0 for all s # 0. The function f satisfies
F(2) = f@0)] < ko(l92l® + [91P) 2 = 1], 91,92 € R, (14)
where kg, p > 0.

Hypothesis 4 (H4). The bounded function y; : [11, 7] — R, satisfying
o)
| (o) lde < . (15)
1

Now, as in [23], taking the following new variable

y(x,0,0,t) = pe(x,t — 0p),

then we obtain
oyt(x,0,0,t) +yo(x,0,0,t) =0
y(x,0,0,t) = Ppr(x, ).

As in [24], we introduce the following new variable
nt(x,8) = p(x,t) — p(x,t —s), (x,t,5) € (0,1) xRy xR,
where ' is the relative history of ¢ satisfies

m+nt=¢i(x,t), (x,t5s)€(0,1)x(0,1) x Ry x Ry
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Consequently, the problem (7) is equivalent to
putr — Pty — bpx =0
Jt — Ixx + buux + 5 + /0 8(p)1x(p)dp
k (16)
g+ [ lmle)ly(x 10 0o+ a(0)f () =
1
Qyt(x,0,0,1) + Yp(x,0,0,1) =0
M+ 11e = (1),
where
(x,0,0,t) € (0,1) x (0,1) X (11, 72) x (0,00),
with the following boundary and initial conditions
ux(0,t) = ux(1,t) = ¢(0,t) = ¢p(1,t) =0,t >0, (17)
u(x,0) = ugp(x), us(x,0) =u1(x), x€(0,1)
¢(x,0) = do(x), ¢t (x,0) = ¢1(x), x€(0,1)
y(x,p0.0 ) fo(x,p0), x€(0,1),0¢€ (0, 1) e€(0,m)
7'(x,0) = 0,1°(x,5) = yo(x,5), (x,5) € (0,1) x Ry.
Meanwhile, from (7)1 and (9), it follows that
& d 1
ﬁ/@ u(x, t)dx = 0. (18)
Therefire, by solving (18) and using the initial data of u, we get
1 1 1
/ u(x, t)dx = t/ ul(x)dx+/ up(x)dx
0 0 0
Consequently, if we let
_ 1 1
u(x, t) =u(x,t) —t | wup(x)dx — / up(x)dx, (19)
0 0

we get

1_
/ u(x,t)dx =0, Vt>O0.
0

Therefore, the use of Poincaré’s inequality for u is justified. In addition, a simple substitution shows

that (u, ¢,y,u') satisfies system (7). Hence, we work with u instead of u, but write u for simplicity

of notation.

By imposing new appropriate conditions (H3), with the help of some special results,
we obtain an unusual, weaker decay result using Lyaponov functiona, extending some
earlier results known in the existing literature. The main results in this manuscript are as
follows: Theorem 1 for the existence and uniqueness of solution and Theorem 2 for the

general stability estimates.
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2. Well-Posedness

In this section, we prove the existence and uniqueness result of the system (16)—(18)
using the semigroup theory. To achieve our goal, we first introduce the vector function

U = (u,us, g, o1, y,1)7,

and the new dependent variables v = u;, = ¢, ¢ = 7'; then, the system (16) can be
written as follows

{ut = AU +T(U) 20)
u(o) = uo = (uOI Uy, (POI(PllfOI UO)T/
where A : D(A) C H :— H is the linear operator defined by
v
b
%”xx + p¢x
4
! b 1 e
AU = | et jihe = %Px + 7/ g(p)gxx(p)dp | @1)
—% —f/ [n2(0)ly(x,1,0,t)de
0 P
—¢sty
and
0
0
= | ° @)
| -rw) |
0
0

and H is the energy space given by

H = HL(0,1) x L2(0,1) x H}(0,1) x L?(0,1) x L*((0,1) x (0,1) x (71, 72)) % Lg(0,1),
where

12(0,1) = {®el2(0,1) / /:d>(x)dx:0},

H!(0,1) = H'Y0,1)NL3(0,1),

L(0,1) = {®:R, — H}(0,1), // p)dp < oo},

where the space L¢(0, 1) is endowed with the following inner product

(@1, P2) 1,0, / /

p)®1x(p)Pax(p)dp.
For any

U= (u0,¢,¢y¢)" = (,9,¢,9,9.9)" € H.
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The space H equipped with the inner product is defined by
N 1 1 1
(u,uyy = p/ vﬁdx+y/ uxﬁxdx+1/ Pipdx
0 0 0
1 1 1
+ g/o ppdx +l/0 Pxprdx + b/o (ux + tixp)dx

1 1 T N .

+ /0 fo /T o|u2(0)lyydedodx + (¢, §)1,(0,1)- (23)
1

The domain of A is given by

D(A) =4 veH, yeH01), ¢€Lg(01),

{UEH/ueHzmHi,gbeHzmHg, }
Y. € L2((0,1) x (0,1) x (11, @2)), y(x,0,0,t) =,

where
H2(0,1) = {cp € H2(0,1) / @y(1) = D,(0) = 0}.

Clearly, D(.A) is dense in . Now, we can state and prove the existence result.

Theorem 1. Let Uy € ‘H and assume that (10)—(15) hold. Then, there exists a unique solution
U € C(R4, H) of problem (20). Moreover, if Uy € D(.A), then

UecCRy,D(A))NCHRY,H).

Proof. First, we prove that the operator A is dissipative. For any Uy € D(.A) and by using
(23), we have

(AU, U)y = —m/ ¢2dx—/ / ln2(0)|$y(x, 1,0, t)dodx

/// lp2(0 \]/pydedpdx—// P)@sp(p) s (p)dpdx.

(24)
For the third term of the RHS of (24), we have
1 1 T dodod 1 1 T 1 d Zd dod
—/0 /0 /T1 [12(0) lypydodp x“i/o /T1 /0 I12(Q) 77y dpdodx
1 1 T 5
5 | [ (@)l 1,0, t)ded
JO T
1 1 T 5
w5 [ (@00 dedz. @5)
0 T
Using Young’s inequality, we obtain
1 T 1 T 1 >
— [ [ elna(@)lgyx, 10, t)dodx < 5 ([ lna(o)lde) [ yPdx 26)
0 T Tl 0

1 1 %) )
+ 5/0 / \12(0)y”(x,1,0,t)dodx.
T

By integrating the last term of the right-hand side of (24), we have

// P)@xp(p)@x(p dpdx—z// p)dpdx. (27)
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Substituting (25), (26) and (27) into (24), using the fact that y(x,0,0,t) = ¥(x,t) and (15),
we obtained
T 1 ’ 1 1 poo , ’
(AU Wy < — (1= [ " lia(o)lde) [ 9Pax+5 [ [ "¢ (p)g2(p)apax
7 0 0o Jo
<0. (28)

Hence, the operator A is dissipative.

Next, we prove that the operator A is maximal. This is enough to show that the operator
(Al — A) is surjective. Indeed, for any F = (f1, f, f3, fa, f5, fs) T € H, we prove that there
isa unique V = (u,v,¢,¢,y, ¢) € D(A) such that

(A - A)V =F. (29)

That is
Au—v=f; € H(0,1)

PAD — ptzy — bx = pfo € L3(0,1)
Ap— o = fz € Hy(0,1)
JAY — Ipsx + bux + Gp — /0 8(p)oxx(p)dp (30)

+myp+ /le ln2(0)ly(x,1,0,t)do = Jfs € L*(0,1)

Agyi(x,0,0,t) +yo(x,0,0,1) = ofs € L2((0,1) x (0,1) x (71, 72))
Mg+ s — = fo € Le(0,1).
We note that the equation (30)5 with y(x,0, 0, t) = ¥(x, t) has a unique solution, given by

0
y(x,p,0t) = e_/\"’gt,b + Qe’\QP /0 e/\‘\’”f5(x, o,0,t)do, (31)
then .
yxL0,8) =+ 0™ [N fi(x,0,0,)do, (32)
0
and we infer from (30)¢ that
S
o= /0 e (P + fo(T))dT, (33)
and we have
v=Au—fi, p=Ap— f3. (34)

Inserting (32), (33) and (34) in (30), and (30)4, we get

AU — ity — by = hy € L2(0,1
{P Py — by 1 (0,1) (35)

U3P — papxx +buy = hy € LZ(O, 1),



Math. Comput. Appl. 2021, 26, 71 8 of 25
where o
gy = JA* + &+ A+ A/T |u2(0)le0do
1
pa =1+ /O g(p)(1—e*)dp,
hy = p(Af1+ f2)
(36)

©
hy = (JA+ +/ |H2(0)le™%do) f3 + ] fa
T
T 1
— [ Telma@)le™ [ e fi(x,00,t)dode
T 0

+ [Tsmev [" e+ fo(0)mdrdp.

We multiply (35) by I, ¢, respectively and integrate their sum over (0,1) to obtain the
following variational formulation

B((u,¢), (1, 9)) = Y(iL, ), (37)

where
B: (H(0,1) x H}(0,1))* = R,

is the bilinear form defined by
-~ 1 1 1
B((u,¢),(i1,¢)) = Azp/o uﬁdx—i—y_o,/o (i)cpdx—l—y/o Uyilydx

1 I
+,u4/0 ¢)x¢xdx+b/0 (ux¢p + piiy)dx, (38)

and
Y : (HL(0,1) x H}(0,1)) = R,

is the linear functional given by
A~ .1 l —~
Y(@,¢) = / hy fidx + / Todx (39)
JO 0
Now, for V = H!(0,1) x H}(0,1), equipped with the norm

I @5 = lullz+ 1917 + lxll3 + 2,

we have
1 1 1
B((u,¢), (1, 4)) — )\Zp/ uzdx+y3/ <p2dx+y/ 12dx
0 0 0

1 1
+2b /O xpdx + g /O $2dx. (40)

On the other hand, we can write

ity + 2bug + pap® = ;[#(ux+z¢)2+ﬂ3(¢+;;ux)2

(=) (o))
Since u¢ > b?, we deduce that

i+ 2+ > 5 (1 )+ (= )47
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then, for some My > 0

B((u, ¢), (u,¢)) = Mol (,9)|7- (41)

Thus, B is coercive, similarly,
Y(i,¢) = M| (@, §)|3- (42)
Consequently, using Lax-Milgram theorem, we conclude that (16) has a unique solution
(u,¢) € HL(0,1 x H}(0,1).
Substituting u, ¢ into (32), (33) and (34), respectively, we have

v € HL(0,1), ¢pe€H)0,1), ¢€Lg01)
Y € L2((0,1) x (0,1) x (1, ). (43)

Moreover, if we take i = 0 € H.(0,1) in (37) to obtain

U3 /01 PpPpdx + b/ol Uy pdx + iy /01 PrPrdx = /01 hod, (44)
we get
pa /01 Pxpxddx = /01 (h2 — pa¢p — bux)gdx, V¢ € Hy(0,1), (45)
which yields
oy = (ho — p3gp — buy) € L2(0,1). (46)
Thus,
¢ € H2(0,1) N HL(0,1). (47)

Consequently, (45) takes the following form

1 ~ —~
/O (—plagprx — o + 3+ buz)pdx = 0, ¥ € HL(0,1).

Hence, we get
—MaPxx + P3P + buy = hy.

This give (35),. Similarly, if we take ¢ = 0 € H}(0,1) in (37) to obtain
1 1 1 1

” / xilxdx + b / Piiydx + A2p / uitdx = / I dx,
0 0 0 0

we obtain . .
” /O Uilydx = /O (I + by — \ou)iidx, Vit € H(0,1), 48)

which yields
— ity = (1 + by — A2pu) € L%(0,1). (49)
Consequently, (48) takes the following form
1
/0 (— ity — hy — by + AN2ou)itdx = 0, Vi € HL(0,1).

Hence, we obtain
— iy — by + A2ou = hy.
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This give (35);.
Moreover, (48) also holds for any ® € C!([0,1]). Then, by using integration by parts, we
obtain

1 1
y/o 1y Dy +/O (—hy — b + A2ou)Pdx = 0, Y e C1([0,1]). (50)
Then, we obtain for any ® € C1([0,1])
ux(1)@(1) — ux(0)®(0) = 0. (51)

Since @ is arbitrary, we obtain that uy(0) = uy(1) = 0. Hence, u € H2(0,1) N HL(0,1).
Therefore, the application of regularity theory for the linear elliptic equations guarantees
the existence of unique U € D(.A) such that (29) is satisfied. Consequently, we conclude
that A is a maximal dissipative operator. Now, we prove that the operator I' defined in
(22) is locally Lipschitz in H. Let

U= (uw0¢,¢y 9" €HU=(5¢$75)"

Then, we have R R
IT(U) = T(U)|l% < Ms|[f(¥) = F(@) 12(01)-

By using (14) and Holder and Poincaré’s inequalities, we can obtain

A

1F@) = F@) ey < kollplis + 191511y — I
ks *¢x||L2(01)/

IN

which gives us
ITU) = T(U) 3 < Mal|U = U3

Then, the operator I' is locally Lipschitz in H. Consequently, the well-posedness result
follows from the Hille-Yosida theorem. The proof is completed. [

3. Stability Result

In this section, we state and prove our decay result for the energy of the system
(16)—(18) using the multiplier technique. We need the following Lemmas.

Lemma 1. The energy functional £, defined by

gty = %/1 [puf+yu§+]¢?+l¢§+§¢2+2bux¢}dx
5/ f) sp)ap)dpax
%/ / / olua(0)|y? (x, p, o, t)dodpdx, (52)
satisfies
£ < - / sty [ 7S p)px +alt) [ ef g
< (53)

where 17y = py — fr? [H2(0)ldg > 0and ¢(s) = ' = ¢p(x,t) — p(x,t — p).
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Proof. Multiplying (16); by u; and (16), by ¢, then integration by parts over (0,1) and
using (17), we get

1d

2 )
/ ‘th/ P)ex(p dpdx+y1/ prdx

s [0 [T @l Lo ndots 4ot [ fedar =0, 6

1
[pu% + 1 + J¢F + 692 + EP* + Zbuxﬂ dx

The last term in the LHS of (54) is estimated as follows

[0 [T el e ndets < ([ liatolde) [ e )

1 1 ro 5
w5 [ [ (@)1, 0 t)ded,
0 T

and

—/01¢>xt/000g(r))¢x(;7)dpdx < 5;/ / p)dpdx

/ / p)dpdx. (56)

Now, multiplying the equation (16)3 by y|p2(0)| and integrating the result over (0,1) x
(0,1) X (Tl,Tz)

d 1 -1 1 T >
T 5./0 /0 /T1 elm2(Q)ly”(x, p, 0, t)dodpdx

1 1 %)
= - / / / l12(0)yyo(x, p, 0, t)dodpdx
0 0 1
1 1 1 T d
= —f/// Iﬂz(@)Ifyz(xrpre/t)dedpdx

- z// 12(Q)(¥?(x,0,0,1) = y*(x, 1,0, 1) )dodx
1 1 /1 o
= 3/ (@l /0 ot =3 [ [*ha(@lP e 10 ndedr. &)

Now, using (54), (55), (56) and (57), we have

W < ~(m- [ haolde) [ dave g [ [T Ggpip
~alt) [ guf o0y, (58)

then, by (10), there exists a positive constant 7, such that

) < ;70/ fon dx+2/ / p)dpdx — a(t )/Ol@f(gbt)dx, (59)

hence, by (11)-(15) we obtain £ is a non-increasing function. [
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Remark 1. Using (u& > b?), we conclude that the energy & (t) definie by (52) satisfies
L N R S ST S
E(t) > 5 | [out+ - 17 + 193 + g
1 sl poo 2
5/ / 8(p)gx(p)dpdx
1
5/ / / ola(Q)|y*(x,p, o, t)dedpdsx, (60)
where ) 2
1, b 1
V—E( —€)>O, {= (@——) 0,
then E(t) is positive function.
Lemma 2. The functional
ot bo 1 ¥ o,
H=1 [ 4>t4>dx+7/0 0 [ wdyax+ B [ g, (61)
satisfies
/ Lo =1 2
Di(t) < —f/ <pxdx—y/<pdx+e1/ 2dx + ¢( 1—|— / ¢prdx
—i—c/ / p)ex(p dpdx+c/ A (pr)d
ve [ 7m0 (e 10 e, (62)
470

whereﬁ:{f—%z>0.

Proof. Direct computation using integration by parts and Young’s inequality, for £; > 0, yields

Di(t) = —1/1<p§dx—<g—>/ $Pdx + "/ ¢t/ e (y)dydx
[ [" spgutpriptato) [ o (g0
+{/ﬁﬂ—/¢/lm@W@Lawwx

—l/ ¢2dx—<g—>/ 4>2dx+c<1+ >/ ¢rdx
ver [ ([ w) des [ o [ sprontpripes

1 [ 1
[ 0 [ @y 1,0 dodx + att) [ pf (g (63)

IN

According to Cauchy-Schwartz inequality, it is clear that

/O1 ( /Oxut(y)dyfdx < /O 1 ( /O 1 utdx)de < /O .
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Therefore, estimate (63) becomes
Di(t) < —(5/ Prdx — (g-)/ 4)2dx+c(1+ )/ Prdx
—i—sl/ utzdx—/ 4)/ ln2(0)|y(x,1,0,t)dodx

+/ ¢x/ p)dpdx + a(t )/0 of (¢1)dx. (64)

The last term in the RHS of (64) is estimated as follows
/ qu/ p)ex(p)dpdx < ¢y / Prdx + 10, / / @2 (p)dpdx,

where we used Cauchy-Schwartz, Young and Poincaré’s inequalities, for d1, b, 3 > 0.
By substituting (65) into (63), we obtain

(65)

Di(t) < —(l — 01 — H1cdy — 6(53) /1 (])ﬁdx — (g — bz) /1 ¢2dx

+81/0 utdx+c(1+ /gbd +—// p)dpdx
15 // 2(Q)|y?(x, 1, 0.t Jdodx + 5~ /f (¢e)d (66)

Bearing in mind that u¢ > b? and letting §; = 6IC, 6 = L and 3 = L, we obtain

estimate (62). O

Lemma 3. Then, for any e, > 0 the functional

_ /01 cpxutdx+/ol Pritxdx — 7/ / P)p(t — p)dpdx,

satisfies

1 1 1 1
Di(t) < —2b] uidx%—c/ 4),2(dx+ce2/ ufdx—l—c/ Prdx

e / / p)dpdx — < / / p)dpdx

s [ [T (@ 1o Do ¢ /0 P

+ ((]5 — Z) /01 UxPxxdX. (67)

Proof. By differentiating D, then using (16), integration by parts and (17) we obtain

, b 1 + 1 b b

DZ(t) = _T 0 uidx‘i‘( ]gO V)/O ux(l)xx E 80 /(Px
4
ff uxfpd — ]/ <px/ p)dpdx

/ / dpdx—;x)/ wx f(¢r)dx

_%/0 Ptz = T/o iy /le m2(0) 1y (x,1, ¢, t)dodx. (68)
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In what follows, we estimate the last six terms in the RHS of (68), using Young, Cauchy-
Schwartz and Poincaré’s inequalities. For ,, d5, €5 > 0, we have

g 2 2
-5 e < 5/ dx+4](54/4>d

By letting 64 = 6%, using Poincaré’s inequality, we get

_¢ ux4>dx

b
J'Jo ~ 6o
and by Young and Chauchy-Schawrz’s inequalities, we get

/ <Px/ p)ex(p)dpdx < c55/ q)idx—kg/ / @%(p)dpdx.

By letting d5 = 6%], we obtain

1
"2y /0 $2dx, 69)

/ 4’x/ p)ox(p)dpdx < 67]/ 4;§dx+c/ / ¢ (p)dpdx.  (70)

Similarly, Ve, > 0 we have

]/ / p)dpdx < csz/ 2dx + — / / p)dpdx,

(71)
and
/ Pritedx < Vl 6 2dx+ 36 / Pdx, (72)
and
1 1 T 5 1
7w [l e dede < T [Cida (73)
o [ [T @1, 0.0a
ATS X, 1,0, 7
2]57/0-T1 H2(Q)1y g,t)ae
e 0 (03
ot o 8 2
_ <
] /0 uxf(@0dx < =57 /o 2]58/ fged 74)
Replacing (69)—(74) into (68) and letting dg = d7 = ﬁ and Jg = m, yields (67). O
Lemma 4. The functional
1
3(t) = —p/ upudx,
0
satisfies
1 3u (1 1,
D4(t) < —p/o uzdx + 7/0 uidx+c/0 Prdx. (75)

Proof. Direct computations give

1 1 1
D4(t) = —p/o u%dx+y/0 uidx—i—b/o Uxepdx.



Math. Comput. Appl. 2021, 26, 71 15 of 25
The estimate (75) easily follows using Young and Poincaré inequalities.
Dy(t) < - /1u2dx—|— /1u2dx+be/1u2dx+3/1 2dx
3 — p 0 t Au 0 X 0 X 48 0 4)
1 1 1 be 1
< _ 2 / 2 / 2 oc / 2
< p/o updx +p A uydx 4 be A uxdx+4€ A ¢Pdx,
by taking ¢ = £, we obtain (75). O
Lemma 5. The functional
1 r1 o B 5
Day(t) := /0 /O /T ge”*|u2(0)ly”(x, p, ¢, t)dodpdx,
1
satisfies
, 1 /1 ) 1
Dy(t) < —171/0 /0 /T elu2()ly (x,p,e,t)dedpdﬁm/o i dx
1
1 T 5
—1 /0 /T [n2(Q)ly”(x,1, ¢ t)dedx, (76)
1

where 11 is a positive constant.

Proof. By differentiating Dy, with respect to f, using the Equation (16)3, we have

Dy ()

1 1 o
2 / / / e % |p2(0)lyyp(x, p. 0, t)dodpdx
0 J0 Jry
11 .
B _/ / / ge”¥lp2(0)ly*(x, p, 0, t)dodpdx
0 Jo Jy
1 () o )
— [ [ @l 1,0, = (3,00 1)ldodx.
1

Using the fact that y(x,0,0,t) = ¢(x,t) and e7? <e7% <1, forall 0 < p < 1, we obtain

1 1 %)
Dy(t) = —171/0 /O/T olu2(0)1v?(x, p, 0, t)dodpdx
1

1 %) o 5 %) 1 5
—/ / e ?lpa(o)ly (xflfeff)deder/ qu(e)lde/ Ppdx.
0 Tl T 0

O

Since —e ¢ is an increasing function, we have —e=¢ < —e~ 2, forall o € [17, To).
Finally, setting #1 = ¢~ ™ and recalling (15), we obtain (76). We are now ready to prove the
main result.

Theorem 2. Assume (10)—(15) hold. Let h(t) = a(t). 11(t) be a positive non-increasing function.
Then, for any Uy € D(.A), satisfying, for some cy > 0

1 1
max{ / @3, (x,5)dx, / gb(%sx(x,s)dx} <cg, Vs>0, (77)
Jo Jo
there are positive constants B1, By and B3 such that the enerqy functional given by (52) satisfies

Ba+ Bs f(fh(p)w(z?)dp>
Jo h(p)dp '

E(t) < Br1Gy! < (78)
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where -
Go(t) = tG'(eot), Veo > 0, and @(s) = / ¢(0)do. (79)
S

Proof. We define a Lyapunov functional
L(t) := NE(t) + N1D1(t) + NaDo(t) + D3(t) + NyDy(t), (80)

where N, N1, Np, and Ny are positive constants, to be chosen later. By differentiating (80)
and using (53), (62), (67), (75), (76), we have

I _lNl 2 ! 2
L'(t) < —|——-cNp—¢ 47 dx — [p — N1&1 — Nocep] | uidx
| 0
“127 2} /0 dx +¢c[Ny + N, / / (p)dpdx
- 1 1
—|7oN —eNy (1 + ;) — Noc — V1N4} /0 prdx
1 .

) 1 T
N — Ny e [ [ lpal@)ly (1,0, dod

_le/ 4>2dx+[ CN2]/ / p)dpdx
—Nyin / / / olu2(0)|v*(x, p, 0, t)dodpdx
0 0 Tl
1 1
+C[N1+N2]/O f2(¢t)dX+N2X/O uxxgbxdx,

where x = (% - %) and by setting

_ o P
BTN 2T Ny
we obtain
1
L'(t) < l:lZ;h—CNQ 14+ Np) —C:|/ 4)2dx—g/ uzdx

0

bN. 3 1 foo
SR [ et [ [ s(p)oRpape

1
—[WON—ch(HNl)—ch—y1N4]/0 prdx

1 %)
—[Nui1 — cNy — cNy] / / l2(0)[y*(x, 1, 0,t)dodx

—Nm/ ¢2dx+[ ch}/ / p)dpdx

o)
— Ny /0 /O /T olu2(s) |y (x, p, 0, t)dodpdx
1

1 1
e+ No) [ 20+ Nox [ s

Next, we carefully choose our constants so that the terms inside the brackets are positive.
We choose a N that is large enough that
sz 3]1

alzT]—7>O,
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then, we choose a large enough Nj that

1
wzf%—cN2(1+N2)—c>0

then we choose a large enough Ny that
K3 = N4111 —cNp —cNp > 0,

thus, we arrive at
L'(t) < —062/ 4)§dx—uc0/ ¢*dx — P/ dx—ocl/ u2dx
170N7c/ q>dx+[c}// p)dpdx
+C/ / pgx(p dpdx—as/ / l12(0)[y?(x, 1, ¢, t)dodx
—oc4/ / / olu2(0)ly* (x,p, ¢, t)dodpdx
+c/ f (¢r dx+0c5/ UyxPrdx. (81)
where ap = Ny = (C — %Z)Nl, and as = Npx = Nz(% — %) On the other hand, if we let

£(t) = NlDl(t) + NzDz(t) + D3(t) + N4D4(t),

then

1 1 x
201 < N [ logidr T (Mo [y dx

.
0

1
+p /0 |upu|dx + Ny /0 /0 / e % ua2(0)ly*(x, p, o, t)dodpdx.
T

¢x”t+ux¢t_7”t/ p)px(t — p)dp|dx

Exploiting Young, Cauchy-Schwartz and Poincaré inequalities, we obtain

0] < of (@rgtrgiedrg)ixre [ [T alpodp)ipds

e /O /0 /Tl olp2(s) 12 (x, p, 0, t)dodp
c&(t)

Consequently, we obtain

[E(O] = [£(t) = NE()| < c&(h),

that is
(N—=c)E(t) < L(t) < (N+c)E(H). (82)

Now, by choosing a large enough N that

%—C>O,N—C>O,N170—c>0,
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and exploiting (52), estimates (81) and (82), respectively, we obtain

0E(H) < L(F) < c3E(1), ¥ >0,

and

L' <

for some kq, ko, k3,co,c3 > 0.

Casel.If)(:(E—(s

L'(t)

IN

By multiplying (85) by h(t) =

h(HL'(t) <

We distinguish two cases

—k1&(

s [

p)dpdx

1
+k3 /O (2 + F2(r))dx + a5 /0 Uaxrd,

7) = 0, in this case, (84) takes the form

k&t +k2//

p)dpdx

+s [ (g7 + (o0

—Kkih(t)E

a(t).n(t), we obtain

) + kah(t) //

p)dpdx

+ksh(1) /0 (9F + F(gr))dx

(83)

(84)

(85)

(86)

e Gislinear on [0, ¢]. In this case, using the assumption (13); and (53), we can write

kah(t) [ 63+ £ (o0 < ks

and by (11) we have

o) [ st

and by (77) we obtain

[ i

then, we obtain

o [f st

p) 9% (p)dpdx

IN

IN

) [ [ 1) (p)ips

< —a(t) /O1 /Otg’(P)qvi(P)dex
< —al) [ [ ¢ () pIapax
< —2a(H)€&'(t),

1 1
2/ O3 (x, t dx+2/ o3( x,t—s)dx

4 sup gbx(x s)dx + 2sup gbOX(x T)dx
s>0 /0 >0
8£(0
8200) + 2co,

I

pldpdx < (@ +2co)h(t )/too g(p)dp-

1
) [ euf@)dx < k(D' (),

(87)

(88)

(89)

(90)
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Hence,
W) [ [ sedpipar < —2(0E'0)
+ED e, on

Inserting (87) and (91) in (86). Since 1'(t) < 0,a/(t) < 0,7'(t) < 0. Then, we have

L4(H) € —kih(DE () +h(B(), ©2)
and
mlc‘)(t) < El(t) < ng(t), (93)
with
my =1, my=cah(0)+ksn(0)+ 2ka(0) + T,
where

L(t)

h(t)L(t) + (ksn(t) + 2kaae(t) + 1) E(E) ~ E(1), (94)

¥y = (%(O) +2¢9), 71 >0 and @(t) :/toog(p)dp.

Since £'(t) <0,V t > 0. By using (92), we have

T L1(0 ) 0
E(T)/O h(t)dt < ( ot h(t)a)(t)dt). (95)
Using the fact that G, !is linear. Then,
O) h
£(T) SCG()‘l( +f o (t ) (%)
0

withf1 =7, B2 = kgo), B3 = - This completes the proof.
G is nonlinear on [0, €], we choose 0 < g1 < ¢ and we consider

L(t)={x€(0,1), |pt| <er}, L ={x€(0,1), |pt| >e1},

we define

I= /11 Pf (Pr)dt

Using Jensen'’s inequality and the assumption (13);, we have

h(t) [ @7+ PO < Kh(t) [ o)
< KHOGTIM) ~Kn(E®.  O7)
Inserting (97) in (86), since &/ (t) < 0,7/ (t) < 0 and &' () < 0, we obtain
L(t) < —kih(t)E(t) +yh(t)@(t) + k3h(t)G 1 (I(t)). (98)

and
m35(t) < Eg(t) < 17145(t), (99)
with
msz =1, my=coh(0)+ksn(0)+ 2koa(0) + 7,
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where
Lo(t) = h(t)L(t)+ (Ksn(t) + 2ka(t) + 7)E(E) ~ E(t).

Now, for ¢y < €1 and by using £'(t) < 0,G' > 0and G” > 0 on (0, ¢], we define the
functional £3(t) by,

Ls(t) = G'(eo€(t))La(t) +RE() ~E(t), >0,
satisfies

Ly(t) = E'(t)(e0G (o€ (1)) Lo(t) + 1) + L5(1) G (0E(t))
~kih(t)Go(E(t)) + G (eo& (1)) 1(t)@(t)
+k5h ()G (e0€ (£))GL(I(E)). (100)

IN

To estimate the last term of (92), using the general Young's inequality
AB < G*(A)+G(B), if Ae(0,G'(¢)), Be(0,¢), (101)
where
G*(A) = s(G")'(s) = G((G)!(s), if s€(0,G'(e)),

satisfies

Ksh(£)G' (0 (1))GH(I(1)) < Kheoh()Go(E(H)) —Kyn(HE (). (102)
Inserting (102) in (92) and letting g9 = 2"713 we get

Lh(8) +Ksn(DE' (1) < —kih(H)Go(E()) + vG (o€ (1))h(D@(t).  (103)
Since 7' (t) < 0, then

Li(t) < —kh()Go(E(t)) + G (el (t))h(t)e(t),

where

Since a(t), Go(E(t)), G’ (eg€(t)) are non-increasing functions,
then, forany T > 0

LGo(E) [ < ki [ ) GoE ()

T
L£4(0) + 7G' (£0€(0)) /0 h(t)o(t)dt,

IN

16/ (20 (0))

which gives (78) with f; =1, B = £4(0) and 83 = .
1

k1
The proof is now completed.

CaseZ.If)(:(%—%);éOand

kl‘uzl
< e S
X< SR tto + o)
kL‘l/lz
X< 2np

if x<0

if x>0.
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This case is more important from the physical perspective, where waves are not necessarily

of equal speeds. Let
E(t) = E(u ¢y, 9) = &i(h).

Denotes the first-order energy defined in (52) and
52(t) = 5(1/[11, ¢t/ Yt, §9t)
Denotes the second-order energy; then, we have
&(t) < —’70/ Pridx + 2/ / P9 (p)dp
(t) / Pt f (1 )dx — a(t) / iif' (¢r)dx

= _’70/ 4’ttdx+2/ / P)@r(p
sl (2 / G (9 dx) (104)
() _ g

Since f, g are non-decreasing functions, «(t) is a positive function and lim;_,« 0

we deduce that

&(t) < _770/ prdx + 5 5 / / 5)@he
< *’70/0 Pridx, (105)
where 1p = 1 — [ [ua(0)lde > 0,
The last term in (84), by using (16)1, Young's inequality and by setting K = Xl;jzp %p

and a5 = YN, as follows

1
0(5/ UxxPrdx = 015P/ (pxuttdx——/ qb
0

= K< / cptuxdx—i—/ <pxutdx)

1
K / Uyhdx — bas / ¢2d
0

K<jt _/1 cptuxdx—i—/ Pxurdx )
|

LK / Fdx +|1<|/ 12dx. (106)

= </01 Pruxdx + /01 <pxutdx>,

IN

Let
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then (84)
1 foo
L0V < k& k[ [ s@)gdpicr B [ g
1 1
K| [ uldx ks [ (97 + Fg0)x
1 foo
< k&0 ke [ [ g(p)oddpds
K 1
P [ ghar ks [ g7+ o) (107)
where
ky =k —2‘K|
K
Let
R(t) = L(t) + KN (t) + N5(&1(t) + E2(t)). (108)
Indeed, by using Young's inequality, we obtain
1 1
NO = | [ pusdx] +] [ prusdx]
1/, 1/, 1/, 1/,
< 5/0 utdx+§/0 <ptdx+§/0 ¢xdx+§/0 uydx
< Goéi(t), (109)
where Cy = max{] i L 1
By (83) and (109), we obtam
[R(t) = N5(&1(t) + E(1))] < (e3 + Co)&n(t) < c(&n(t) + (1)), (110)
and
(N5 —c)(&1(t) + &(t) < R(t) < (Ns+c¢)(E1(t) + &(1)), (111)
and by using (105), (107) and (3), we obtain
RI(t) = L'(t) +KN'(t) + Ns(&1(t) + &(8))
1 poo
< —ksa(t) +ha /0 /0 8(p)ppdpdx
Vo o Kl [t o
ks [ (@F + Fg0)dx— (noNs =71 [ g (12)
We choose a large enough N5 that
1’]0N5—|4£| >0, Ns—c>0,
we obtain
R(E) ~ (&1(8) + &a(1)), (113)
and
1 poo
R(t) < ~ké&i()+k [ [ s(p)gddpix
1
ks [ (g7 + g0 (114)
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By multiplying (114) by h(t) = a(t).n(t), we obtain
HOR'() < —kah()E(E) + kah(t) / / p)dpdx
sl <>/ (¢ + 2(¢0))dx (115)
We distinguish two cases
* Gislinear on [0, ¢]. In the same way as in the previous case, we obtain
Ri(t) < —ksh(t)E(t) +yh(t)e(t), (116)
and
my (Ex(F) + E(1)) < Ra(t) < ma(&x(t) + E(1)), (117)
with
my =1, my=cyh(0)+ k3n(0)+ 2koa(0) + 11,
where

Ri(t) = h(R(E) + (kan(t) + 2kaa(t) + 1) E(t) ~ (E1(t) 4 Ex(1))

v = (g(()) +2¢0), 1§ >0 and w(t) = /toog(p)dp.

Since £'(t) < 0,Vt > 0. By using (116), we have

£(T) /OTh(t)dtg (R;Cio) +kl4 OTh(t)a)(t)dt>.

Using the fact that G !is linear. Then,

RO v (T h(t)o(t)dt
—1 k4 k4 0
£ < &G ( S n(t)at '

with By =, Bo = }cio), B3 = % This completes the proof.

(118)

(119)

. G is nonlinear on [0, €], we choose 0 < ¢1 < ¢. In a similar way to that in the previous

case, we have

Ry (t) < —kih(DE(t) + yh(t)@(t) + k5h(HG T (I(t)),

and

m3(E1(t) + Ea(t)) < Ra(t) < my(E1(t) + E(H)),
with

mz =1, my = coh(0)+Kksn(0) + 2koa(0) + 7,
where

Ro(t) = h(t)R(t) + (Kyn(t) + 2koa(t) + 1) E(t) ~ (E1(t) + E(t)).

(120)

(121)

Now, for ¢y < €1, and by using £’'(t) <0,G’ > 0and G” > 0 on (0, ¢], we define the

functional £3(t) by,

Rs(t) = G(e0E(t))Ra(t) + RE() ~ (E1(t) + &E(H)), T >0,
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satisfies

Ri(t) = &'(t)(e0G (o€ (1)) Ra(t) + 12) + Ry(t) G (e0&(t))
< —kgh(t)Go(E (>)+vG( o€ (1) h(t)@(t)
+k3h(1)G (e0€ (1)) G (I(1)). (122)

To estimate the last term of (122), again using the general Young’s inequality (101).

Inserting (122) in (121) and letting ey = 2kk’ ,

we get
Ra(t) +kan(HE'(t) < —ksh(t)Go(E(t)) + G (eol (t))h(t)d(t).  (123)
Since 1/(t) < 0, then
Ri(t) < —ksh(t)Go(E(t)) + G (o (1)) h(t) (1),
where

Ra(t) = Rs(t) +kan(H)E() ~ (&1(t) + Ex(1).-

Since a(t), Go(E(t)), G' (o€ (t)) are non-increasing functions, then, for any T > 0

T T
kaGo(E(T)) [ hndt < ke [ h(nGo(E(0)dt
< R4(0)—i—’yG'(soE(O))/OTh(t)co(t)dt,
which gives (78) with gy =1, B2 = ( and B3 = %‘f())

The proof is completed.
O

Author Contributions: Writing—original draft preparation, D.O.; writing—review and editing, K.B.;
visualization, A.M.; supervision, Y.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous referees and the handling
editor for their careful reading and for relevant remarks/suggestions to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Santos, M.L.; Junior, D.A. On porous-elastic system with localized damping. Z. Angew. Math. Phys. 2016, 67, 63. [CrossRef]

2. Bahri, N.; Beniani, A.; Zennir, K.; Zhang, H.W. Existence and exponential stability of solutions for laminated viscoelastic
Timoshenko beams. Appl. Sci. 2020, 22, 1-16.

3. Bouzettouta, L.; Zennir, K.; Zitouni, S. Uniform Decay for a Viscoelastic Wave Equation with Density and Time-Varying Delay in
R™. Filomat 2019, 33, 961-970.

4. Djebabla, A.; Choucha, A.; Ouchenane, D.; Zennir, K. Explicit Stability for a Porous Thermoelastic System with Second Sound
and Distributed Delay. Int. |. Appl. Comput. Math. 2021, 7, 50. [CrossRef]

5. Dridi, H.; Zennir, K. Well-posedness and energy decay for some thermoelastic systems of Timoshenko type with Kelvin—Voigt
damping. SeMA 2021, 78, 385—400. [CrossRef]

6.  Ouchenane, D.; Zennir, K.; Guidad, D. Well-posedness and a general decay for a nonlinear damped porous thermoelastic system
with second sound and distributed delay terms. J. Appl. Nonlinear Dyn. in press.

7. Ouchenane, D.; Zennir, K. General decay of solutions in one-dimensional porous-elastic system with memory and distributed
delay term with second sound. Commun. Optim. Theory 2020, 2020, 18.

8.  Rivera, ].EM.,; Pamplona, P.X.; Quintanilla, R. On the decay of solutions for porous-elastic system with history. J. Math. Anal.

Appl. 2011, 379, 682-705.


http://doi.org/10.1007/s00033-016-0622-6
http://dx.doi.org/10.1007/s40819-021-00997-5
http://dx.doi.org/10.1007/s40324-021-00239-0

Math. Comput. Appl. 2021, 26, 71 25 of 25

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

Zennir, K. Stabilization for Solutions of Plate Equation with Time-Varying Delay and Weak-Viscoelasticity in R™. Russ. Math.
2020, 64, 21-33. [CrossRef]

Quintanilla, R. Slow decay in one-dimensional porous dissipation elasticity. Appl. Math. Lett. 2003, 16, 487—491. [CrossRef]
Apalara, T.A. General decay of solution in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 2017, 469,
457-471. [CrossRef]

Zennir, K.; Ouchenane, D.; Choucha, A.; Biomy, M. Well-posedness and stability for Bresse-Timoshenko type systems with
thermodiffusion effects and nonlinear damping. AIMS Math. 2021, 6, 2704-2721. [CrossRef]

Hebhoub, F.; Zennir, K.; Miyasita, T.; Biomy, M. Blow up at well defined time for a coupled system of one spatial variable
Emden-Fowler type in viscoelasticities with strong nonlinear sources. AIMS Math. 2021, 6, 442—-455. [CrossRef]

Feng, B. On the decay rates for a one-dimensional porous elasticity system with past history. Commun. Pure Appl. Anal. 2019, 19,
2905-2921. [CrossRef]

Choucha, A.; Ouchenane, D.; Zennir, K. General Decay of Solutions in One-Dimensional Porous-Elastic with Memory and
Distributed Delay Term. Tamkang J. Math. 2021, 52, 1-18. [CrossRef]

Khochemane, H.; Bouzettouta, L.; Zitouni, S. General decay of a nonlinear damping porous-elastic system with past history.
Ann. Univ. Ferrara 2019, 65, 249-275. [CrossRef]

Khochemane, H.; Djebabla, A.; Zitouni, S.; Bouzettouta, L. Well-posedness and general decay of a nonlinear damping porous-
elastic system with infinite memory. J. Math. Phys. 2020, 61, 021505. [CrossRef]

Apalara, T.A. Exponential decay in one-dimensional porous dissipation elasticity. Q. J. Mech. Appl. Math. 2017, 70, 363-372,
Correction in 2017, 70, 553-555. [CrossRef]

Apalara, T.A.; Soufyane, A. Energy decay for a weakly nonlinear damped porous system with a nonlinear delay. Appl. Anal. 2021.
[CrossRef]

Apalara, T.A. A general decay for a weakly nonlinearly damped porous system. J. Dyn. Control Syst. 2019, 25, 311-322. [CrossRef]
Dos Santos, M.].; Feng, B.; Junior, D.S.A.; Santos, M.L. Global and exponential attractors for a nonlinear porous elastic system
with delay term. Discrete Contin. Dyn. Syst. B 2021, 26, 2805.

Freitas, M.M.; Santos, M.L.; Langa, J.A. Porous elastic system with nonlinear damping and sources terms. J. Diff. Equ. 2018, 264,
2970-3051. [CrossRef]

Nicaise, A.S.; Pignotti, C. Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 2008,
21, 935-958.

Fernandez Sare, H.D.; Munnoz Rivera, ]J.E. Stability of Timoshenko systems with past history. J. Math. Anal. Appl. 2008, 339,
482-502.


http://dx.doi.org/10.3103/S1066369X20090030
http://dx.doi.org/10.1016/S0893-9659(03)00025-9
http://dx.doi.org/10.1016/j.jmaa.2017.08.007
http://dx.doi.org/10.3934/math.2021164
http://dx.doi.org/10.3934/math.2021027
http://dx.doi.org/10.3934/cpaa.2019130
http://dx.doi.org/10.5556/j.tkjm.52.2021.3519
http://dx.doi.org/10.1007/s11565-019-00321-6
http://dx.doi.org/10.1063/1.5131031
http://dx.doi.org/10.1093/qjmam/hbx012
http://dx.doi.org/10.1080/00036811.2021.1919642
http://dx.doi.org/10.1007/s10883-018-9407-x
http://dx.doi.org/10.1016/j.jde.2017.11.006

	Introduction
	Well-Posedness
	Stability Result
	References

