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Abstract: In this paper, we study the dynamics of HIV under gene therapy and latency reversing
agents. While previous works modeled either the use of gene therapy or latency reversing agents, we
consider the effects of a combination treatment strategy. For constant treatment controls, we establish
global stability of the disease-free equilibrium and endemic equilibrium based on the value ofR0.
We then consider time-dependent controls and formulate an associated optimal control problem that
emphasizes reduction of the latent reservoir. Characterizations for the optimal control profiles are
found using Pontryagin’s Maximum Principle. We perform numerical simulations of the optimal
control model using the fourth-order Runge–Kutta forward-backward sweep method. We find that a
combination treatment of gene therapy with latency reversing agents provides better remission times
than gene therapy alone. We conclude with a discussion of our findings and future work.

Keywords: HIV; gene therapy; latent reservoir; global stability; optimal control

1. Introduction

Uncovering a functional cure or new preventative methods for the Human Immun-
odeficiency Virus (HIV) remains a challenge and focus of medical research. Acquiring
HIV infection leads to a weakened immune system that leaves the host more susceptible
to other infections and diseases. If HIV goes untreated for a prolonged interval of time,
the infection can progress to acquired immunodeficiency syndrome (AIDS).

Antiretroviral therapy (ART) remains the primary method of limiting the spread of the
virus. Though ART is effective at reducing the viral load to undetectable levels, even short
lapses in treatment grant the virus the capability to rapidly rebound within weeks [1]. This
can be attributed to the presence of a minute number of latently infected cells that store the
genetic information of HIV yet are not actively replicating virions, thus evading typical
ART strategies. If an individual stops taking ART for a period of time, natural reactivation
of this latent reservoir can quickly lead to an increase in viral load. In the search for a
functional cure that would alleviate the need for lifelong ART medication, recent studies
suggested the usage of other methods such as gene therapy and latency reversing agents
to help overcome the limitations of ART treatments [1].

A motivating example for the usage of gene therapy is the Berlin Patient, an individual
who received an allogeneic transplant from a donor in hopes of curing his leukemia. This
transplant introduced CCR5-deficient bone marrow [1,2]. The CCR5 receptor is the main
coreceptor in which HIV attaches itself to the target cell, and thus the introduction of this
bone marrow transplant into the patient’s body reduced the number of susceptible target
CD4+ T-cells by replacing the CCR5+ cells with the more resilient CCR5− cells [3]. In the
subsequent 10 years following the procedure, a rebound of the virus in the Berlin Patient
was not observed [1].

The CRISPR-Cas9 gene therapy program seeks to provide a similar treatment to
the bone marrow transplant that the Berlin Patient received by altering the DNA of the
susceptible target CD4+ T-cells to negatively express the CCR5 coreceptor [4]. However,
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current levels of efficacy are insufficient to provide a reasonable level of reduction in viral
load, and thus, combinations of strategies will likely be needed to increase the odds of
reaching a functional cure [1]. To supplement the efficacy of current gene therapy, as well as
to explicitly address the existence of the latent reservoir, we additionally consider latency-
reversing agents (LRAs), also generally referred to as “shock and kill” therapy. LRAs
activate latently infected cells so they can be detected and attacked by the immune system
or by ART [5,6].

Mathematical models provide a useful framework for exploring disease dynamics and
associated treatment programs [7]. Over the past several decades, systems of ordinary dif-
ferential equations were used to better understand the complex interaction of HIV and the
immune system, as well as explore potential treatment options in the search for a functional
cure [8–12]. Additionally, recent HIV modeling approaches incorporated latent reservoirs
to better understand viral rebounds [13–17]. In 2018, Ke et al. explored the dynamics of
LRAs through a mathematical model with three compartments: latently infected cells, cells
activated by LRA treatment, and refractory cells temporarily resistant to LRA treatment [6].
In 2019, Davenport et al. proposed a mathematical model for the use of gene therapy in
HIV prevention [1]. The model describes the dynamics between a susceptible population
and refractory (nonsusceptible) population that has received gene therapy, in addition to
standard interactions with actively infected cells and free virions. The authors used the
model to establish efficacy thresholds for gene therapy to achieve a functional cure for HIV
for various ranges of basic reproductive ratios, and noted that combination strategies may
serve to reduce the efficacy needed from any individual treatment.

The goal of this paper is to build upon the works of Ke et al. [6] and Davenport et al. [1]
by constructing and analyzing a mathematical model that incorporates the combination
of gene therapy and LRA treatment. We aim to explore possible synergies between these
treatment methods for both constant and time-dependent descriptions of the treatment
controls.

2. Model Development

In this paper, we use the following system of differential equations to model the
dynamics of an HIV infection under the combined effects of CRISPR-Cas9 gene therapy,
latency reversing agents, and antiretroviral therapy. For the purpose of our work, we are
interested in the interactions between CCR5− cells Tu, CCR5+ cells Ts, latently infected
cells L, actively infected cells I, and free virions V.

dTu

dt
= λ f − δTTu

dTs

dt
= λ(1− f )− δTTs − βTsV

dL
dt

= εβTsV − (α + η + δ)L + γI

dI
dt

= (1− ε)βTsV + (α + η)L− (c + δ + γ)I

dV
dt

= pI − δVV

(1)

In system (1), f represents the fraction of CD4+ T-cells that become nonsusceptible
to HIV as a result of gene therapy. Susceptible Ts cells become latently infected at an
interaction rate of εβ and actively infected at an interaction rate of (1 − ε)β. Latently
infected cells are naturally activated at a rate of η. Latency reversing agents are activated

cells at a rate of α and cells stay activated for a duration of
1
γ

days before returning to the

latent stage. Actively infected cells are removed through antiretroviral therapy at a rate
of c, and produce free virions at a rate of p. The target cell death rate, infected cell death
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rate, and virus clearance rate are given by δT , δ, and δV , respectively. We summarize these
parameter roles, along with baseline values gathered from literature, in Table 1.

Table 1. Parameter Values.

Control Description Range Source

f Fraction of susceptible target cells that become 0–1 [1]refractory (nonsusceptible) as a result of gene therapy

α Cell activation as a result of latency reversing agents 0–1.8 day−1 [6]

c Death of cells by antiretroviral treatment 0–1 day−1 [18]

Parameter Description Value Source

λ Rate of production of susceptible target cells 105 cells day−1 [7]

δT Death rate of target cells 0.1 day−1 [7]

β The infectivity of free virus into target cells 2.0× 10−7 cells−1 day−1 [19]

ε Fraction of cells that become latently infected 10−4 [18]

η Natural activation rate of latently infected cells 1.63× 10−6 day−1 [1]

δ Death rate of infected cells 0.5 day−1 [7]

γ Rate of transition from actively infected to latently infected 0.5 day−1 [6]

p Production rate of free virus by infected cells 1000 virions cells−1 day−1 [18]

δV Clearance rate of virions 23 day−1 [18]

3. Model Analysis

Assuming system (1) is subject to non-negative initial conditions, we note that the
system is invariant in the non-negative orthant. Additionally, because the associated vector
field is continuously differentiable, given a set of initial conditions there exists a unique
solution to our system by the Picard–Lindelof Theorem [20].

Let N denote the total cell population so that N(t) = Tu(t) + Ts(t) + L(t) + I(t) and

∆ = min{δT , δ}. Then lim sup
t→∞

N(t) ≤ λ

∆
. This also implies that lim sup

t→∞
V(t) ≤ pλ

∆δV
. Thus,

solution trajectories of system (1) remain bounded over time.

3.1. Basic Reproductive Ratio: R0

We denote the disease-free equilibrium by E0 =
(

T0
u , T0

s , 0, 0, 0
)
=

(
λ f
δT

,
λ(1− f )

δT
, 0, 0, 0

)
and calculate R0 using the next generation matrix. To derive the next generation matrix, we
first calculate the transmission matrix F and the transition matrix V evaluated at E0. These are
given by:

F =


0 0 0 0 0
0 0 0 0 − βλ(1− f )

δT

0 0 0 0 εβλ(1− f )
δT

0 0 0 0 (1−ε)βλ(1− f )
δT

0 0 0 0 0


and

V =


δT 0 0 0 0
0 δT 0 0 0
0 0 α + η + δ −γ 0
0 0 −(α + η) c + δ + γ 0
0 0 0 −p δV

.
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R0 is the spectral radius of the next generation matrix FV−1, thus

R0 =
βλp(1− f )(α + η + δ(1− ε))

δTδV((α + η + δ)(c + δ) + δγ)
.

3.2. Global Stability of the Disease Free Equilibrium

Theorem 1. WhenR0 ≤ 1, the disease free equilibrium E0 is globally asymptotically stable.

Proof. Consider the Lyapunov function

L =
(

Tu − T0
u − T0

u ln
(

Tu
T0

u

))
+
(

Ts − T0
s − T0

s ln
(

Ts
T0

s

))
+ α+η

α+η+(1−ε)δ
L + α+δ+η

α+η+(1−ε)δ
I + βλ(1− f )

δTδV
V.

Then

dL
dt

=

(
1− T0

u
Tu

)
(λ f − δT Tu) +

(
1− T0

s
Ts

)
(λ(1− f )− δT Ts − βTsV)+

α + η

α + η + (1− ε)δ
(εβTsV − (δ + η + α)L + γI) +

α + δ + η

α + η + (1− ε)δ
((1− ε)βTsV + (η + α)L− (δ + c + γ)I)+

βλ(1− f )
δTδV

(pI − δV V)

= λ f
(

2− Tu

T0
u
− T0

u
Tu

)
+ λ(1− f )

(
2− Ts

T0
s
− T0

s
Ts

)
+

(
(α + η)γ

α + η + (1− ε)δ
+

βλp(1− f )
δTδV

− (α + δ + η)(δ + c + γ)

α + η + (1− ε)δ

)
I

= λ f
(

2− Tu

T0
u
− T0

u
Tu

)
+ λ(1− f )

(
2− Ts

T0
s
− T0

s
Ts

)
+

(δ + c)((α + δ + η) + δγ)

α + η + (1− ε)δ
(R0 − 1)I.

Since the arithmetical mean is always greater than or equal to the geometric mean,

it follows that R0 ≤ 1 implies
dL
dt
≤ 0 for all Tu, Ts, L, I, V ∈ R≥0. Hence, it is a conse-

quence of LaSalle’s Invariance Theorem [20] that the disease free equilibrium is globally
asymptotically stable.

3.3. Global Stability of the Endemic Equilibrium

Theorem 2. WhenR0 > 1, there exists a unique endemic equilibrium (T∗u , T∗s , L∗, I∗, V∗).

Proof. To establish equilibria of system (1), we must solve the following system of equations:

0 = λ f − δTT∗u (2)

0 = λ(1− f )− δTT∗s − βT∗s V∗ (3)

0 = εβT∗s V∗ − (α + η + δ)L∗ + γI∗ (4)

0 = (1− ε)βT∗s V∗ + (α + η)L∗ − (c + δ + γ)I∗ (5)

0 = pI∗ − δVV∗ (6)

We see from Equation (2) that T∗u =
λ f
δT

. If I∗ = 0, we recover our disease free

equilibrium
(

λ f
δT

,
λ(1− f )

δT
, 0, 0, 0

)
. To solve for an endemic equilibrium, suppose I∗ 6= 0

and use Equations (3), (4), and (6) to solve for T∗s , L∗ and V∗ in terms of I∗:

T∗s =
λ(1− f )
δT + βV∗

L∗ =
εβT∗s V∗ + γI∗

α + η + δ

V∗ =
pI∗

δV
.
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Substituting these expressions into Equation (5), we see that the number of internal
equilibria is determined by the number of solutions to f (I∗) = 0, where

f (I∗) = −(c + γ + δ) +
(1− f )pβ(1− ε)λ

δTδV + pβI∗
+

(α + η)(γδTδV + pβ(γI∗ + (1− f )ελ)

(α + δ + η)(δTδV + pβI∗)
.

Note that

1. f (0) =
(c + δ)(α + δ + η) + δγ

α + δ + η
(R0 − 1);

2. f ′(I∗) = − (1− f )p2β2λ(α + (1− ε)δ + η)

(α + δ + η)(pβI∗ + δTδV)2 ; and

3. lim
I∗→∞

f (I∗) = −c− δ(α + γ + δ + η)

α + δ + η
.

Thus, when R0 > 1, f (I∗) has a unique positive root. It follows that there exists a
unique endemic equilibrium whenR0 > 1.

Theorem 3. WhenR0 > 1, the endemic equilibrium is globally asymptotically stable.

Proof. Notate the endemic equilibrium as (T∗u , T∗s , L∗, I∗, V∗) and consider the Lyapunov
function

L =

(
Tu − T∗u − T∗u ln

(
Tu

T∗u

))
+

(
Ts − T∗s − T∗s ln

(
Ts

T∗s

))
+

(
α + η

α + η + (1− ε)δ

)(
L− L∗ − L∗ ln

(
L
L∗

))
+

(
α + η + δ

α + η + (1− ε)δ

)(
I − I∗ − I∗ ln

(
I
I∗

))
+

(
βT∗s
δV

)(
V −V∗ −V∗ ln

(
V
V∗

))
.

Then

dL
dt

=

(
1− T∗u

Tu

)
(λ f − δT Tu) +

(
1− T∗s

Ts

)
(λ(1− f )− δT Ts − βTsV)

+

(
α + η

α + η + (1− ε)δ

)(
1− L∗

L

)
(εβTsV − (δ + η + α)L + γI)

+

(
α + δ + η

α + η + (1− ε)δ

)(
1− I∗

I

)
((1− ε)βTsV + (η + α)L− (δ + c + γ)I) +

(
βT∗s
δV

)(
1− V∗

V

)
(pI − δVV)

= λ f
(

2− Tu

T∗u
− T∗u

Tu

)
+ δT Ts ∗

(
2− Ts

T∗s
− T∗s

Ts

)
+ 2βT∗s V∗ − βT∗s V∗

T∗s
Ts
− βT∗s V∗

IV∗

I∗V

+

(
(α + η)εβT∗s V∗

α + η + (1− ε)δ

)(
1− L∗TsV

LT∗s V∗

)
+

(
(α + η)γI∗

α + η + (1− ε)δ

)(
1− IL∗

I∗L

)
+

(
(α + δ + η)(1− ε)βT∗s V∗

α + η + (1− ε)δ

)(
1− I∗TsV

IT∗s V∗

)
+

(
(α + δ + η)(α + η)L∗

α + η + (1− ε)δ

)(
1− I∗L

IL∗

)
.

Since

βT∗s V∗ =
(α + η)εβT∗s V∗

α + η + (1− ε)δ
+

(α + δ + η)(1− ε)βT∗s V∗

α + η + (1− ε)δ

we have

dL
dt

= λ f
(

2− Tu

T∗u
− T∗u

Tu

)
+ δT Ts ∗

(
2− Ts

T∗s
− T∗s

Ts

)
+

(α + η)γI∗

α + η + (1− ε)δ

(
2− IL∗

I∗L
− I∗L

IL∗

)
+

(α + η)εβT∗s V∗

α + η + (1− ε)δ

(
4− L∗TsV

LT∗s V∗
− I∗L

IL∗
− T∗s

Ts
− IV∗

I∗V

)
+

(α + δ + η)(1− ε)βT∗s V∗

α + η + (1− ε)δ

(
3− I∗TsV

IT∗s V∗
− T∗s

Ts
− IV∗

I∗V

)
.

Thus, dL/dt < 0 for all (Tu, Ts, L, I, V) ∈ R5
≥0, (Tu, Ts, L, I, V) 6= (T∗u , T∗s , L∗, I∗, V∗),

and so the endemic equilibrium is globally asymptotically stable whenR0 > 1.

4. Model Predictions

Using the parameter values found in Table 1, in the absence of any treatment we find
that system (1) has a baseline basic reproductive ratio of R0 = 8.6948. This aligns with
typical HIV basal reproductive ratios as described in [1]. By allowing f to vary, we find that
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R0( f ) < 1 when f > 0.8850, i.e., gene therapy alone is capable of achieving a functional
cure provided that at least 88.50% of susceptible target cells become refractory in response
to gene therapy treatment. For a combination treatment strategy, we find that using upper
limits for the LRA activation rate of α = 1.8 and ART removal rate of c = 1 reduces the
effectiveness of gene therapy required to achieve R0( f ) < 1 to f > 0.8150.

However, given current optimistic gene therapy efficacy rates of f = 0.3 [1], we may
consider instead the potential benefits of using gene therapy in combination with LRAs
and ART therapy to achieve an elongated remission time. We assume the reactivation rate
r of cells from the latently infected reservoir is directly proportional to the steady-state size
of the latent reservoir L∗, i.e., r = ηL∗, where η is the natural activation rate of a latently
infected cell. Using gene therapy alone at current efficacy levels of f = 0.3, we find that
the duration of remission 1/r is 10.49 days. However, using an LRA activation rate of
α = 1.8 and ART removal rate of c = 1 improves the duration of remission to 88.13 days.
We summarize the added benefit of LRA+ART shock and kill treatment for other levels of
gene therapy efficacy in Figure 1.

Figure 1. Duration of HIV remission achieved for various efficacy levels of gene therapy (GT), using
either gene therapy alone or a combination of gene therapy with shock and kill (SK) treatment.

These results demonstrate that both gene therapy and shock and kill treatments can
contribute to extending remission times and progressing toward a functional cure. To better
understand optimal treatment protocols and allow for nonconstant treatment controls, we
turn to an optimal control model in the sections to follow.

5. Optimal Control

Applying constant controls for arbitrarily long periods of time may be unsustainable,
thus we next aim to find an optimal treatment strategy over a finite time horizon that
minimizes the total burden of infection while also minimizing the cost of implementing
such a strategy. We introduce into the model time-dependent controls for f (t), the gene
therapy treatment, α(t), the latent reservoir activation, and c(t), the ART treatment. This
yields the system

dTu

dt
= λ f (t)− δTTu

dTs

dt
= λ(1− f (t))− δTTs − βTsV

dL
dt

= εβTsV − (α(t) + η + δ)L + γI

dI
dt

= (1− ε)βTsV + (α(t) + η)L− (c(t) + δ + γ)I

dV
dt

= pI − δVV

(7)
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The objective functional we choose to minimize is given by

J( f , α, c) =
∫ τ

0
A1L + A2 I + A3V + A4 f 2 + A5α2 + A6c2dt,

where A1, A2, A3, A4, A5, and A6 are positive weights and τ is the final time. The weights
A4, A5, and A6 are associated with quadratic costs of implementing the gene therapy, LRA,
and ART treatments. The set of admissible control functions is given by

U = {( f , α, c) ∈ L∞(0, τ)3 | ( f (t), α(t), c(t)) ∈ [0, 1]× [0, αmax]× [0, cmax] ∀ t ∈ [0, τ]}.

Thus, we seek an optimal control set ( f ∗, α∗, c∗) such that

J( f ∗, α∗, c∗) = min{J( f , α, c) | ( f , α, c) ∈ U}.

We proceed by utilizing Pontryagin’s Maximum Principle [21] to exchange the problem
of minimizing the objective functional for a problem of finding the pointwise minimum of
the following Hamiltonian with respect to f , α, and c:

H = A1L + A2 I + A3V + A4 f 2 + A5α2 + A6c2 + λ1(λ f − δTTu) + λ2(λ(1− f )− δTTs − βTsV)

+λ3(εβTsV − L(δ + η + α)) + λ4((1− ε)βTsV + L(η + α)− I(γ + δ + c)) + λ5(pI − δVV)

where λ1, λ2, λ3, λ4, and λ5 are the adjoint or costate variables associated with the state
variables Tu, Ts, L, I, and V. The following theorem establishes the existence of an optimal
control set and characterizations for the optimal control functions.

Theorem 4. There exists an optimal control set ( f ∗, α∗, c∗) that minimizes J( f , α, c) over U.
Furthermore, there exist adjoint variables λ1, λ2, λ3, λ4, and λ5 that satisfy the following system of
differential equations:

dλ1

dt
= − ∂H

∂Tu
= δTλ1

dλ2

dt
= − ∂H

∂Ts
= (δT + βV)λ2 − εβVλ3 − (1− ε)βVλ4

dλ3

dt
= −∂H

∂L
= −A1 + (δ + η + α)λ3 − (η + α)λ4

dλ4

dt
= −∂H

∂I
= −A2 − γλ3 + (δ + γ + c)λ4 − pλ5

dλ5

dt
= −∂H

∂V
= −A3 + βTSλ2 − εβTSλ3 − (1− ε)βTSλ4 + δVλ5

(8)

with transversality conditions λ1(τ) = λ2(τ) = λ3(τ) = λ4(τ) = λ5(τ) = 0. Also, the optimal
control set has the characterization:

f ∗ = min
{

1, max
(

0,
λ(λ2 − λ1)

2A4

)}

α∗ = min
{

αmax, max
(

0,
Lλ3 + Iλ4

2A6

)}

c∗ = min
{

cmax, max
(

0,
Iλ4

2A5

)}
Proof. Using Corollary 4.1 of [22], the existence of an optimal control set follows from the
Lipschitz property of system (1) with respect to the state variables, a priori boundedness of
the state solutions established in Section 3, and the convexity of the integrand of J with
respect to ( f , α, c).

By applying Pontryagin’s Maximum Principle, the adjoint variables must satisfy
system (8) with zero final time conditions. To obtain the characterizations of the optimal
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controls, we solve
∂H
∂ f

=
∂H
∂α

=
∂H
∂c

= 0 on the interior of the control set U. Using the

bounds on the controls, we obtain the desired characterization.

We note that the optimality system consists of the state system (7) with initial time
conditions, the adjoint system (8) with final time conditions, and the above characterizations
of the optimal controls. Due to the opposite time orientations of the state and adjoint
systems, the uniqueness of the optimal control solution is only guaranteed for small final
time τ [23].

6. Numerical Results

We follow the method presented in [24] and utilize an iterative procedure to numeri-
cally solve the boundary value problem associated with the above optimality system. Using
an initial guess for each of the three controls, we first solve the state system forward in time
using a fourth-order Runge–Kutta procedure. Using the resulting state values and final
time values, we next solve the adjoint system with transversality conditions backwards
in time, again with a fourth-order Runge–Kutta scheme. The controls are then updated
using a convex combination of the previous control values and the values resulting from
the characterizations of each control. This iterative process then repeats until convergence,
which occurs when the maximum relative error between each of the state variables, adjoint
variables, and controls over successive iterations is less than a specified value δ.

The optimality system was solved using parameter values found in Table 1, a final
time of t f = 10 days, and the following initial conditions: Tu(0) = 0, TS(0) = 106, L(0) = 1,
I(0) = 104, and V(0) = 106. Furthermore, reasonable estimates for the weights A1,
A2, A3, A4, A5, and A6 are necessary to ensure convergence is achieved and to obtain
meaningful optimal control profiles. Using the extra degree of freedom to select A3 = 1,

we then solve A1L = A2 I = A3V = A4
∫ t f

0 f 2 dt = A5
∫ t f

0 α2 dt = A6
∫ t f

0 c2 dt to balance
the contributions of each weight, where we substitute the median values of each state
variable and control: L = 16,810.8, I = 36,405.3, V = 1,585,277, f = 0.5, α = 0.9, c = 0.5.
We further adjust A1 by a factor of 10 to prioritize reduction of the latent reservoir. This
procedure yields weights of A1 = 943.01, A2 = 43.54, A3 = 1, A4 = 634,111, A5 = 195,713,
A6 = 634,111.

The optimal control profiles f ∗, α∗, and c∗ are shown in Figure 2.

Figure 2. Optimal control profiles for gene therapy ( f ), latency reversing agents (α), and ART therapy (c). Each control must
be maximally effective through approximately day 5–6, with combination LRA/ART therapy allowing for an earlier decline
in gene therapy efficacy.

We see in each case the maximum allowable control being applied through approx-
imately day 5–6 before steadily decreasing. This allows for optimal reduction in the
total burden of infection in the early days of the treatment regimen before the associated
quadratic costs of treatment become too large. We note that including shock and kill
treatment allows for the optimal efficacy of gene therapy to decline sooner. The impact
of the optimal controls on HIV state variables may be seen in Figure 3. In the absence of
any controls, the latent reservoir reaches a peak of 269,051 cells, while using gene therapy
alone reduces this maximum burden to 229,443 cells. A combination strategy with both
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gene therapy and shock and kill therapy is far more effective, reducing the peak burden
to 66,486 cells and quickly suppressing the latent reservoir to negligible levels. We ob-
serve similar results with the actively infected cell population, beginning with a peak of
639,879 cells with no treatment while achieving a reduced maximum burden of 392,943 cells
using an optimal combination treatment strategy. The free virion particles are also reduced
from a peak of 2.769× 107 virions to 1.699× 107 virions under optimal combination treat-
ment. To summarize, the optimal combination of gene therapy and LRA/ART therapy
yields an overall decrease in the peak latent, actively infected, and free virion population
levels of 75.33%, 38.59%, and 38.63%, respectively. As expected, the selection of weights
above prioritized a larger reduction in the latent reservoir, which will be crucial for novel
treatment strategies aiming to prolong remission times and progress towards a functional
cure for HIV.

Figure 3. Impact of optimal treatment strategies on latent cell, actively infected cell, and free virion populations. Gene
therapy ( f ) alone yields moderate reductions in all populations. Combination therapy including latency reversing agents (a)
and ART therapy (c) provides significant reductions, especially in the latent reservoir.

7. Conclusions

In this paper, we developed a mathematical model for HIV which includes the latent
reservoir and captures the dynamics of combination treatment strategies using gene ther-
apy, latency reversing agents, and antiretroviral therapy. We performed a complete global
stability analysis of the model, calculating the basic reproductive ratio and establishing
the existence and global stability of both disease free and endemic equilibria. We then
computed threshold levels of treatment efficacy needed to achieve a functional cure, or al-
ternatively, prolong remission times when reaching the disease-free equilibrium, which
would require prohibitively high levels of treatment effectiveness. During this analysis, we
showcased and quantified the added benefits of supporting gene therapy treatments with
shock and kill methods designed to attack the latent reservoir.

Given that multiple treatment strategies provided tangible benefits to the long-term
progression of HIV infection, we next formulated an optimal control problem to achieve
the largest reduction in infected compartments using nonconstant treatment profiles. Our
results yielded a substantial reduction in the latent reservoir when using the optimal
combination of gene therapy, latency reversing agents, and antiretroviral medication.

The model presented here has some limitations which can inspire future directions
of study. We do not capture the diminished efficacy of treatments over time due to
acquired drug resistance or virus mutation. The mass action description of the interaction
between susceptible cells and free virions could also be refined to consider other limited
infection rates. Furthermore, additional data should be collected to establish more reliable
parameters and weights for the optimal control system. This will potentially allow for
extended time windows in the numerical simulation and improve the discovery of optimal
combination treatment regimens.
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