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Abstract: In this work, fractional-order strain theory was applied to construct a novel model that
introduces a thermal analysis of a thermoelastic, isotropic, and homogeneous nanobeam. Under
supported conditions of fixed aspect ratios, a two-temperature generalized thermoelasticity theory
based on one relaxation time was used. The governing differential equations were solved using the
Laplace transform, and their inversions were found by applying the Tzou technique. The numerical
solutions and results for a thermoelastic rectangular silicon nitride nanobeam were validated and
supported in the case of ramp-type heating. Graphs were used to present the numerical results.
The two-temperature model parameter, beam size, ramp-type heat, and beam thickness all have a
substantial influence on all of the investigated functions. Moreover, the parameter of the ramp-type
heat might be beneficial for controlling the damping of nanobeam energy.

Keywords: nanobeam; two-temperature; thermoelasticity; silicon nitride; fractional-order strain;
ramp-type heat

1. Introduction

The mixed heat thermoelasticity principle is composed of two different partial dif-
ferential equations: the energy conservation equation and the mechanical equation, both
of which are based on the Fourier fundamental theorem [1]. By adding the concept of
relaxation time for an isotropic body, Lord and Shulman (L-S) have modified and updated
the classical Fourier heat conduction rule [2]. Cattaneo’s rule of heat conduction was
developed to change the classic Fourier law by including the heat flow and its time scale
shift. In this context, the heat conduction equation is the hyperbolic differential equation.
The issue with infinite transmission rates has now been eliminated [3–7].

The nanobeam’s vibration is the most critical of micro/nanobeam resonators. Sharma
and Grover investigated the transverse vibrations of thin beam resonators with isotropic,
homogenous, and thermoelastic voids [8]. Sun and Saka formulated the thermoelastic
damping vibrations of circular plate resonators using out-of-plane microplates [9]. They
included a component in their thermoelastic damping formula that is not included in
Lifshitz and Roukes’s formula and is based on Poisson’s ratio [10].

Numerous researchers have examined the vibrational and thermal transmission mech-
anisms of nanobeams [11–15]. The vibration of a gold nanobeam subjected to a thermal
shock has been studied by Al-Lehaibi and Youssef [12]. By applying the characteristics of
the Green functions, Kidawa investigated the impact of internal and exterior damping of
nanobeam vibration due to a heat source moving at a constant speed [14]. The vibrations
of a simply supported rectangular nanobeam exposed to a certain thermal shock spread
throughout its length have been investigated by Boley [13].

Manolis and Beskos investigated nanobeam systems’ mediated vibration. They uti-
lized a computer technique to study the thermoelastic dynamic reaction of the nanobeam
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structure to thermomechanical stress [15]. Al-Huniti et al. have studied the thermal re-
sponse that caused movement and pressures on the heated rod due to a fast-moving laser
beam, as well as the dynamic actions of the heated rod from using Laplace equations [11].

Youssef tested, using two different temperatures, the concept of universal two-
temperature thermoelasticity. He developed principles of dynamic and conductive tem-
peratures, where the difference between them is related to the material’s heat supply [16].

The first paradigm was examined by Magin and Royston using a version of a fractional
strain sequence that describes the materials’ nature and is based on the definition of the
fraction’s calculus. If the derivative order is zero, we use the Hookean solid state to
obtain the Newtonian stream. Elastic and viscoelastic components were in the range of
zero to one [17]. Tissue cartilage practice demonstrates a diverse architecture ranging
from independent collagen to twisted macromolecular fiber families and a network of
connective living tissue cells. The greatest challenge for bioengineering is estimating the
macro-mechanical properties of cartilage using a multi-scale model based on the current
concept [17]. A new theorem of generalized thermoelasticity based on the definition of
fractional-order strain was established by Youssef and used for the first known problem in
thermoelasticity [18].

Thus, this work introduces thermal analysis for a thermoelastic, isotropic, and homoge-
nous nanobeam within the theory of fractional-order strain in the context of the generalized
two-temperature thermoelasticity model with one relaxation time theory. The numerical
results for a thermoelastic rectangular nanobeam of silicon nitride were validated in the
case of ramp-type heating and simple support.

2. Basic Equations

In the Cartesian coordinate system, we consider an isotropic, regular, thermally
conducting, and thermoelastic beam. Initially, at a reference temperature T0 and rest, it is
undeformed. The equivalent differential values were developed based on the principle of
fractional stress order in the sense of the standard two-temperature thermoelasticity and
non-Fourier thermal control law. The displacement vector is defined as U = (u, v, w), and
Td denotes the absolute dynamical temperature, while TC denotes the absolute conductive
temperature. Moreover, no external body forces or heat sources have been assumed. Thus,
the governing equations are given by [19]:

The motion equations take the form:

σij,j = ρ
..
Ui i, j = 1, 2, 3 (1)

The constitutive equations of stress–strain based on fractional-order strain take the
forms [18,20,21]:

σij =
(

1 + τβDβ
t

)(
2µeij + λekkδij

)
− γ

(
1 + τβDβ

t

)
θδij i, j = 1, 2, 3 (2)

The two-temperature heat conduction equations take the forms [18]:

Kϕ,ii = ρCυ

(
∂

∂t
+ τ0

∂2

∂t2

)
θ + γT0

(
1+τβDβ

t

)( ∂

∂t
+ τ0

∂2

∂t2

)
eijδij i, j = 1, 2, 3 (3)

and
θ = ϕ− aϕ,ii i = 1, 2, 3 (4)

The strains (strains) are in the form:

2eij =
(
Ui,j + Uj,i

)
i, j = 1, 2, 3 (5)

where ϕ = Tc − T0 is the heat conduction increment, θ = Td − T0 defines the dynamical
temperature increment, a ≥ 0 is called the two-temperature parameter, i, j = x, y, z,
γ = (3λ + 2µ)αT , αT is the linear thermal expansion coefficient, ρ denotes the density, λ, µ



Math. Comput. Appl. 2021, 26, 78 3 of 15

are Lamè’s parameters, δij is the Kronecker delta symbol, τ0 defines the thermal relaxation
time, τ denotes the mechanical relaxation time parameter, and Cυ is the specific heat at a
constant strain.

The fractional derivative concerning the time Dβ
t is defined as [16,18]:

Dβ
t f (t) =


1

Γ(1−β)

t∫
0

f ′(ξ)
(t−ξ)β dξ 0 ≤ β < 1

∂ f (t)
∂t β = 1

 (6)

3. Problem Formulation

We assume a thin thermoelastic nanobeam with small flexural deflections and the
length ` where (0 ≤ x ≤ `), width b where (−b/2 ≤ y ≤ b/2), and thickness h where
(−h/2 ≤ z ≤ h/2).

We will assume that the end of the nanobeam x = 0 is loaded by a known thermal
function, and it is simply supported, while the second end of the nanobeam x = ` is simply
supported with zero temperature increment.

The longitudinal, width, and thickness directions of the beam are defined along x, y,
and z-axes, respectively; see Figure 1 [22]. For an undeformed and equilibrium case, the
nanobeam is unstressed, without any mechanical damping, and the absolute temperature
is T0 at any point [6].
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Figure 1. Rectangular thermoelastic nanobeam.

The well-known Euler–Bernoulli equation is used in this study. Thus, while bending,
any plane cross-section perpendicular to the beam’s axis stays perpendicular to the neutral
surface and plane [21,23].

Thus, the components of the displacement are in the form

U(x, z, t) =
(
−z

∂w(x, t)
∂x

, 0, w(x, t)
)

(7)

The cross-section elastic moment is [21,22,24]:

M = I(λ + 2µ)
(

1+τβDβ
t

)∂2w
∂x2 + γ

(
1+τβDβ

t

)
MT (8)

The equation of motion takes the forms [21,23–25]:

∂2M
∂x2 + ρA

∂2w
∂t2 = 0 (9)
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Moreover, MT defines the thermal moment of the nanobeam around the x-axis and is
given by [21–24,26]:

MT(x, t) = b
h/2∫
−h/2

zT(x, z, t)dz (10)

where I = bh3

12 is defined as the cross-section moment of inertia around the x-axis.
Thus, the lateral deflection governing equation may be written in the following

form [19–21,23–27]:

I(λ + 2µ)
(

1+τβDβ
t

)∂4w
∂x4 + ρA

∂2w
∂t2 + γ

(
1+τβDβ

t

)∂2MT

∂x2 = 0 (11)

where w = w(x, t) defines the lateral deflection and A = hb denotes the cross-sectional
area.

The heat-conduction equations based on the two-temperature model in Equations (3)
and (4) take the forms [20,26,27]:

∂2 ϕ

∂x2 +
∂2 ϕ

∂z2 =
ρCυ

K

(
∂

∂t
+ τ0

∂2

∂t2

)
θ +

γT0

K

(
1+τβDβ

t

)( ∂

∂t
+ τ0

∂2

∂t2

)
e, (12)

and

θ = ϕ− a
(

∂2 ϕ

∂x2 +
∂2 ϕ

∂z2

)
(13)

The stress equation takes the form

σxx =
(

1 + τβDβ
t

)
(λ + 2µ)e− γ

(
1 + τβDβ

t

)
θ (14)

where
e =

∂u
∂x

+
∂v
∂y

+
∂w
∂z

(15)

which gives, from (7), that:

e = −z
∂2w
∂x2 (16)

Because the beam has no heat transfer through its top and bottom surfaces, we have

∂

∂z
θ

(
x,
±h
2

, t
)
=

∂

∂z
ϕ

(
x,
±h
2

, t
)
= 0 (17)

For a thin nanobeam, we consider the temperature changes based on a “sin(pz)”
function along the thickness direction, then [20]:

θ(x, z, t) = ϑ1(x, t) sin(pz) (18)

and
ϕ(x, z, t) = ϑ2(x, t) sin(pz) (19)

where p = π/h.
Thus, from Equations (10), (11), and (18), we obtain:

(λ + 2µ)
(

1+τβDβ
t

)
∂4w(x,t)

∂x4 + 12ρ

h2
∂2w(x,t)

∂t2 +

12γ
h3

(
1 + τβDβ

t

)
∂2ϑ1(x,t)

∂x2

h/2∫
−h/2

z sin(pz)dz = 0
(20)
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From Equations (12), (13), (18), and (19), we obtain:(
∂2ϑ2
∂x2 − p2ϑ2

)
sin(pz) = ρCυ

K

(
∂
∂t + τ0

∂2

∂t2

)
ϑ1 sin(pz)−

γT0
K

(
1+τβDβ

t

)(
∂
∂t + τ0

∂2

∂t2

)
z ∂2w

∂x2

(21)

and

ϑ1 =
(

1 + ap2
)

ϑ2 − a
∂2ϑ2

∂x2 (22)

Hence, Equation (20) gives:

(λ + 2µ)
(

1+τβDβ
t

)∂4w
∂x4 +

12ρ

h2
∂2w
∂t2 +

12γ

h3

(
1+τβDβ

t

)∂2ϑ1

∂x2

h/2∫
−h/2

z sin(pz)dz = 0 (23)

By executing the integrations in the equation above, Equation (23) takes the form:

(λ + 2µ)
(

1+τβDβ
t

)∂4w
∂x4 +

12ρ

h2
∂2w
∂t2 +

24γ

hπ2

(
1+τβDβ

t

)∂2ϑ1

∂x2 = 0 (24)

In Equation (21), we multiply z by both sides and complete the integration for z with
the boundaries (−h/2) and (h/2); hence, we obtain:

∂2ϑ2

∂x2 − p2ϑ2 =
ρCυ

K

(
∂

∂t
+ τ0

∂2

∂t2

)
ϑ1 −

γT0hπ2

24K

(
1+τβDβ

t

)( ∂

∂t
+ τ0

∂2

∂t2

)
∂2w
∂x2 (25)

For simplicity, dimensionless variables will be used as follows [19]:

(`′, h′, x′, w′) = εc0(`, h, x, w), (τ′0, t′,) = εc2
0(τ0, t), σ′ = σ

λ+2µ , ϑ′1 = ϑ1
T0

,

ϑ′2 = ϑ2
T0

, a′ = ε2c2
0a, ε =

ρc2
0

K , c2
0 = λ+2µ

ρ , τ′ =
(
εc2

0
)β

τ
(26)

Then, we have(
1+τβDβ

t

)∂4w
∂x4 + ε1

∂2w
∂t2 + ε2

(
1+τβDβ

t

)∂2ϑ1

∂x2 = 0 (27)

∂2ϑ2

∂x2 − ε3ϑ2 =

(
∂

∂t
+ τ0

∂2

∂t2

)
ϑ1 − ε4

(
1+τβDβ

t

)( ∂

∂t
+ τ0

∂2

∂t2

)
∂2w
∂x2 (28)

and
σxx =

(
1 + τβDβ

t

)
e− ε5θ (29)

where ε1 = 12
h2 , ε2 = 24γT0

hπ2(λ+2µ)
, ε3 = p2, ε4 = γhπ2

24Kε , ε5
γT0

(λ+2µ)
.

(We have dropped the prime for convenience.)

4. Problem Formulation in the Laplace Transform Domain

For Equations (27)–(29), the Laplace transform is applied, which is defined as follows:

f (x, s) =
∞∫

0

e−st f (x, t)dt (30)

where the inversion of the Laplace transform may be calculated numerically by the follow-
ing iteration:

f (x, t) = L−1
[

f (x, s)
]
≈ eκt

2t
f (x, κ) +

eκt

t
Re

N

∑
n=1

(−1)n f
(

x,
κt + inπ

t

)
(31)
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where “Re” denotes the real part, while “i” defines the imaginary unit number. Numerous
numerical tests have been conducted to determine if the value of “κ” may satisfy the
relation κt ≈ 4.7 [28].

Applying the Laplace transform on the Riemann–Liouville fractional derivative is
given by [29]:

L
{

Dβ
t f (t)

}
=

{
sβ f (s) 0 ≤ β < 1
s f (s) β = 1

}
, (32)

where the initial conditions which have been used are given by:

ϑ1(x, 0) = ϑ2(x, 0) = w(x, 0) =
∂ϑ1(x, t)

∂t

∣∣∣∣
t=0

=
∂ϑ2(x, t)

∂t

∣∣∣∣
t=0

=
∂w(x, t)

∂t

∣∣∣∣
t=0

= 0 (33)

Hence, the following system of ordinary differential equations has been obtained:

d4 w
d x4 + ε6w + ε2

d2ϑ1

d x2 = 0 (34)

d2ϑ2

d x2 − ε3ϑ2 = ε7ϑ1 − ε8
d2w
dx2 (35)

ϑ1 =
(

1 + ap2
)

ϑ2 − a
d2ϑ2

dx2 (36)

and
σxx =

(
1+τsβ

)
e− ε5

(
1+τsβ

)
θ (37)

Moreover, we have

e = −z
d2w
dx2 (38)

where ε6 = ε1s2

(1+τsβ)
, ε7 =

(
s + τ0s2), ε8 = ε4

(
1+τsβ

)(
s + τ0s2).

Hence, we have:
d4 w
d x4 + ε6w + α1

d2ϑ2

d x2 − aε2
d4ϑ2

dx4 = 0 (39)

α2
d2w
dx2 +

d2ϑ2

dx2 − α3ϑ2 = 0 (40)

where α1 = ε2
(
1 + ap2), α2 = ε8

(1+aε7)
, α3 =

ε3+ε7(1+ap2)
(1+aε7)

.
The above system of equations gives the following characteristic equations:(

d6

dx6 − L
d4

dx4 + M
d2

dx2 − N
){

ϑ2, w
}
= 0 (41)

where L = α3 − aα2ε2, M = ε6 − α1α2, N = α3ε6.
The general solutions of Equation (41)—where the second end of nanobeam x = ` is

simply supported with zero temperature increment—will take the forms:

ϑ2(x, s) =
3

∑
i=1

Aisinh(ki(`− x)) (42)

and

w(x, s) =
3

∑
i=1

Aiwisinh(ki(`− x)) (43)
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where Ai and wi are some parameters to be determined and ±k1, ±k2 and ± k3 denote the
solutions of the following characteristic equation:

k6 − Lk4 + Mk2 − N = 0 (44)

To obtain wi, we will substitute from Equations (42) and (43) into Equation (40); hence,
we have

wi =
α3 − k2

i
α2k2

i
(45)

Then, we obtain

w(x, s) =
3

∑
i=1

α3 − k2
i

α2k2
i

Aisinh(ki(`− x)) (46)

To obtain A1, A2, and A3, certain boundary conditions are used; thus, we assume the
end of the nanobeam x = 0 is loaded by the thermal function g(t) and is simply supported.

Hence, we have:

w(0, t) =
∂2w(0, t)

∂x2 = 0, ϑ2(0, t) = ϑ0g(t) (47)

where ϑ0 is constant.
Applying the Laplace transform gives:

w(0, s) =
∂2w(0, s)

∂x2 = 0 (48)

and
ϑ2(0, s) = ϑ0g(s) (49)

Hence, the following system of linear equations was obtained:

3

∑
i=1

Aisinh(ki`) = ϑ0g(s) (50)

3

∑
i=1

α3 − k2
i

α2k2
i

Aisinh(ki`) = 0 (51)

and
3

∑
i=1

α3 − k2
i

α2
Aisinh(ki`) = 0 (52)

After solving the above system, then, we obtain A1 =
ϑ0g(s)k2

1(k2
2−α3)(k2

3−α3)
α3(k2

1−k2
2)(k2

1−k2
3)sinh(k1`)

, A2 =

ϑ0g(s)k2
2(k2

1−α3)(k2
3−α3)

α3(k2
2−k2

1)(k2
2−k2

3)sinh(k2`)
, A3 =

ϑ0g(s)k2
3(k2

2−α3)(k2
1−α3)

α3(k2
3−k2

1)(k2
3−k2

2)sinh(k3`)
.

Then, the solutions in the Laplace transform domain are as follows:

ϕ(x, z, s) =
ϑ0g(s) sin(pz)

α3


(k2

2−α3)(k2
3−α3)k2

1

(k2
1−k2

2)(k2
1−k2

3)sinh(k1`)
sinh(k1(`− x))+

(k2
1−α3)(k2

3−α3)k2
2

(k2
2−k2

1)(k2
2−k2

3)sinh(k2`)
sinh(k2(`− x))+

(k2
2−α3)(k2

1−α3)k2
3

(k2
3−k2

1)(k2
3−k2

2)sinh(k3`)
sinh(k3(`− x))

 (53)
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The lateral deflection is:

w(x, s) = ϑ0g(s)(aα3ε2 − α1)


sinh(k1(`−x))

(k2
1−k2

2)(k2
1−k2

3)sinh(k1`)
+

sinh(k2(`−x))
(k2

2−k2
1)(k2

2−k2
3)sinh(k2`)

+

sinh(k3(`−x))
(k2

3−k2
1)(k2

3−k2
2)sinh(k3`)

 (54)

and the strain from Equation (38) takes the form:

e(x, z, s) = −zϑ0g(s)(aα3ε2 − α1)


k2

1sinh(k1(`−x))
(k2

1−k2
2)(k2

1−k2
3)sinh(k1`)

+

k2
2sinh(k2(`−x))

(k2
2−k2

1)(k2
2−k2

3)sinh(k2`)
+

k2
3sinh(k3(`−x))

(k2
3−k2

1)(k2
3−k2

2)sinh(k3`)

 (55)

5. The Function of the Strain Energy Density

The strain energy density function, which is generated on the beam, is given by [1,30,31]:

v(x, z, t) =
1
2

3

∑
i,j=1

eijσij =
1
2

e(x, z, t)σxx(x, z, t) (56)

Thus, we obtain

v(x, z, t) =
1
2

[
L−1(e(x, z, s))

][
L−1(σxx(x, z, s))

]
(57)

where L−1[•] defines the Laplace transform inversion.
The thermal loading has a ramp-type heat as follows:

g(t) =
{ t

t0
0 < t < t0

1 t ≥ t0

}
(58)

where t0 is the ramp-type heat time parameter.
Hence, we have

g(s) =
1− e−st0

s2t0
(59)

6. Numerical Results and Discussion

For computational findings, silicon nitride was used as a thermoelastic material, and
the values of the physical constants are given by [19,25,27]:

αT = 2.71 (10)−6 K−1, k = 43.5 W/(m K), T0 = 293 K, ρ = 3200 kg/m3, Cυ =
630 J/(kg K), λ0 = 217× 109 N/m2, µ0 = 108× 109 N/m2, τ0 = 4.32× 10−13 s.

The aspect ratios of the nanobeam are fixed as `/h = 5 and b = h/4, and the range of
the nanobeam length ` is (1− 100)× 10−12 m.

The value of the original time t (sec) is of the order of 10−12, while the initial values of
the thermal relaxation time τ0(sec) and mechanical relaxation time τ(sec) are of the order
of 10−14.

After using the dimensionless variables of the nanobeam, the figures are prepared;
thus, we have ` = 1.0, θ0 = 1.0, τ0 = 0.01, t = 1.0, and we consider z = h/4.

Figure 2 represents the conductive temperature increment, dynamical temperature
increment, lateral deflection, strain, stress, and strain energy density function distributions
for various values of the parameter of the fractional-order strain β = (0.0, 0.5, 1.0) when
t0 = 1.0 in the context of the two-temperature model (a = 0.1), respectively. The value
β = 0.0 includes τ = 0.0, the traditional material in the context of classical strain, while the
values β = (0.5, 1.0) represent the non-classical strain based on fractional-order theory.
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Figure 2a,b shows that the effect of the fractional-order strain parameter β causes
a minor effect on the thermal waves, such as a dynamical and conductive temperature
increment. The initial value of the conductive temperature is higher than the initial value
of the dynamical temperature due to the impact of the two-temperature parameter.

Figure 2c shows that the fractional-order strain parameter has a significant influence
on the lateral deflection function. When the fractional-order strain parameter is increased,
the absolute value of the lateral deflection function decreases. For the lateral-deflection
function, the absolute values of the maximum points are in the following order:

|wmax(β = 0.0)| > |wmax(β = 0.5)| > |wmax(β = 1.0)| (60)

Figure 2d shows that the fractional-order strain parameter has a major impact on the
strain function. Increases in the fractional-order strain parameter result in a drop in the
absolute value of the strain function.
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The absolute values of the strain function’s maximum points are in the following order:

|emax(β = 0.0)| > |emax(β = 0.5)| > |emax(β = 1.0)| (61)

Figure 2e shows that the fractional-order strain parameter has a major effect on the
stress function. An increase in the fractional-order strain parameter causes a decrease in
the absolute value of the stress function. The absolute value of the start points of the stress
function takes the following order:

|σmax(β = 0.0)| > |σmax(β = 0.5)| > |σmax(β = 1.0)| (62)

Figure 2f shows that the fractional-order strain parameter has a substantial influence
on the strain energy density function. An increase in the fractional-order strain parameter
causes a decrease in the strain energy density function. The values of the maximum points
of the strain energy density function are in the order as follows:

vmax(β = 0.0) > vmax(β = 0.5) > vmax(β = 1.0) (63)

Figure 3 represents the conductive temperature increment; dynamical temperature
increment; lateral deflection; and strain, stress, and strain energy density function distri-
butions in the context of the two-temperature model when a = 0.1 and β = 1.0, for three
values of the ramp-type heat parameter t0 = (0.5, 1.0, 2.0). The value t0 = 0.5 represents
t > t0, the value t0 = 1.0 represents t = t0, and the value t0 = 2.0 represents t < t0. The
ramp-type heat parameter has been shown to have a substantial influence on all of the
functions investigated. Increases in the ramp-type heat parameter result in decreases in the
dynamical temperature increment, conductive temperature increment, lateral deflection,
and strain, stress, and strain energy density function.

Figure 4 represents the conductive temperature, dynamical temperature, lateral de-
flection, and strain, stress, and strain energy density function distributions in the context
of the two-temperature model when t0 = 1.0 and β = 1.0 for various values of the two-
temperature parameter a = (0.0, 0.1, 0.5). The value a = 0.0 represents the one-temperature
thermoelasticity theory (L–S), while the values a = (0.1, 0.5) represent the two-temperature
thermoelasticity theory (Youssef). Except for the conductive-temperature-increase function,
the two-temperature parameter has a substantial influence on the dynamical temperature
increment, conductive temperature increment, lateral deflection, and strain, stress, and
strain energy density function. The internal data in Figure 4 demonstrate that as the two-
temperature parameter increases, the conductive temperature increment, lateral deflection,
and strain, stress, and strain energy density functions all drop.
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Figure 5 represents the conductive and dynamical temperature, lateral deflection,
and strain, stress, and strain energy density function distributions for three different
values of the beam’s thickness z = (h/5, h/4, h/3) when β = 1.0, t0 = 1.0, and a = 0.5,
respectively. The thickness of the beam has a substantial effect on the conductive and
dynamical temperatures, as well as the strain, stress, and strain energy density function
distributions, but it has no impact on the lateral deflection, which is unaffected by the
variable z. The values of the conductive and dynamical temperatures, absolute values of
the strain, absolute values of the stress, and strain energy density function all rise as the
thickness of the beam increases.
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To validate the current results, we can compare the current results with the results
of Youssef and El-Bary [21]. We can see that the distributions of the studied functions in
Figures 2–8 in [21] have the same behaviors as the figures in the current work.

7. Conclusions

Under fractional-order strain and two-temperature considerations, a simply sup-
ported, thermoelastic, isotropic, and homogeneous nanobeam has been thermally loaded
using ramp heating.
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The fractional-order strain parameter, two-temperature parameter, ramp-type heat
parameter, and thickness of the nanobeam all have a substantial influence on the thermal
and mechanical waves; however, the effects of the fractional-order strain parameter are
only very limited for the thermal waves.

The ramp-type heat parameter may be utilized to control the thermomechanical waves’
propagation and the energy passing through the nanobeam resonator.

According to the current results and the results in similar papers, we can declare
that the fractional-order strain has no major effects on heat conduction or thermal waves
in general.

Funding: This research received no external funding.
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