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Abstract: Neurodegenerative diseases such as Alzheimer’s (AD) are associated with the propagation
and aggregation of toxic proteins. In the case of AD, it was Alzheimer himself who showed the
importance of both amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles (NFTs) in
what he called the “disease of forgetfulness”. The amyloid beta forms extracellular aggregates
and plaques, whereas tau proteins are intracellular proteins that stabilize axons by cross-linking
microtubules that can form largely messy tangles. On the other hand, astrocytes and microglial
cells constantly clear these plaques and NFTs from the brain. Astrocytes transport nutrients from
the blood to neurons. Activated astrocytes produce monocyte chemoattractant protein-1 (MCP-1),
which attracts anti-inflammatory macrophages and clears Aβ. At the same time, the microglia cells
are poorly phagocytic for Aβ compared to proinflammatory and anti-inflammatory macrophages.
In addition to such distinctive neuropathological features of AD as amyloid beta and tau proteins,
neuroinflammation has to be brought into the picture as well. Taking advantage of a coupled
mathematical modelling framework, we formulate a network model, accounting for the coupling
between neurons and astroglia and integrating all three main neuropathological features with the
brain connectome data. We provide details on the coupled dynamics involving cytokines, astrocytes,
and microglia. Further, we apply the tumour necrosis factor alpha (TNF-α) inhibitor and anti-Aβ

drug and analyze their influence on the brain cells, suggesting conditions under which the drug can
prevent cell damage. The important role of astrocytes and TNF-α inhibitors in AD pathophysiology
is emphasized, along with potentially promising pathways for developing new AD therapies.

Keywords: astrocytes; neural–glial coupled dynamics; Alzheimer’s disease; multiple scales; data
assimilation; data-driven dynamic environments; biologic TNF-α inhibitors; neuroinflammation; AD
drug development; biomarkers

1. Introduction

Alzheimer’s disease (AD) is one of the most common late-life dementias, with colossal
social and economic impacts. The study by the Institute for Health Metrics and Evaluation
published this year in [1] predicts 153 million people will be living with Alzheimer’s disease
by 2050. While there are various medical products that help manage the symptoms of AD,
as of today, there is only one drug officially approved by the FDA that was designed to
treat a possible cause of this form of dementia, rather than the symptoms. Yet, the cost
and controversy are limiting the use of this drug, known as aducanuman and marketed
as aduhelm. Much of this controversy is related to whether or not the build-up of a
protein called amyloid β in the brain can be used as a biomarker. According to the AD
“amyloid cascade hypothesis”, this build-up causes neurodegeneration, but the link between
clearance of amyloid β from the brain and deceleration of memory loss and cognitive decline
requires further clarification. With over 99% of drugs developed for AD having failed in
clinical trials, in addition to more traditional targets related to Aβ and tau proteins, there
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is an increasing interest in the potential of TNF-α inhibition to prevent AD and improve
cognitive function [2].

With underlying interconnections between the processes and factors mentioned above,
computational experiments, based on mathematical modelling and computer simulations,
can effectively supplement in vivo and in vitro research. In this paper, we present a
multiscale model for the onset and evolution of AD that accounts for the diffusion and ag-
glomeration of amyloid beta (Aβ) peptide (amyloid cascade hypothesis) and the spreading
of the disease through neuron-to-neuron transmission (prionoid hypothesis). Indeed, to
cover such diverse facets of AD in a single model, different spatial and temporal scales
must be taken into account: microscopic spatial scales to describe the role of the neurons,
macroscopic spatial and short temporal (minutes, hours) scales for the description of rel-
evant diffusion processes in the brain, and large temporal scales (years, decades) for the
description of the global development of AD. The way in which we combine distinct scales
in a single model with brain connectome data assimilation forms the core and major novelty
of the paper. Following closely the biomedical literature on AD, we briefly describe the pro-
cesses that we shall include in our model. In the neurons and their interconnections, several
microscopic phenomena take place. We know that Aβ monomers are present in healthy
individuals, and therefore, they are unlikely to be toxic. Furthermore, the τ monomer is
non-toxic [3]. On the other hand, Aβ oligomers are highly toxic, playing an important
role in the process of cerebral damage, as postulated by the already mentioned amyloid
cascade hypothesis.

In the analysis of neurodegenerative diseases, AD in particular, it is important to
account for the coupling between neuronal and glial dynamics. Furthermore, given the
importance of astrocytes (collectively known as astroglia) in amyloid production [4], several
coupled models have been recently developed in this direction, describing Alzheimer’s
Aβ accumulation based on calcium-dependent exosome release from astrocytes [5]. It
represents a shift from a more traditional view, considering astrocytes as non-excitable
brain cells, to a deeper investigation of reactive functions of astrocytes (e.g., increasing the
calcium concentration level in response to neurotransmitters and neuromodulators) and
their synaptic communication with neurons and other brain cells via what is sometimes
labelled as astrocytic networks. Hence, with the ready availability of the data from the
brain connectome, derived from various AD mouse models and obtained with the help
of transcriptomics and other technologies [6], it is enlightening to go beyond single astro-
cyte’s consideration and to develop network models allowing such data assimilation (see,
e.g., [7–10] and references therein). This idea is pursued further in this paper.

By now, it is well known that the neuronal and astroglial networks of the brain are
innately interwoven, with astrocytes carrying out a multitude of functions in various brain
processes, including homoeostasis and neurogenesis, with both positive and negative
effects reported [11]. In particular, they are critical in defining the normal operation of the
nervous system, but they could also actively contribute to the pathogenesis of AD and
other neurodegenerative disorders [8]. As observed in experiments on astroglial atrophy at
earlier stages of such neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and
various forms of dementia, they play a major role in them, leading to disruptions in synaptic
connectivity, disbalance in neurotransmitter homoeostasis, and neuronal death through
increased excitotoxicity [12,13]. They maintain their importance in the progression of these
diseases at the later stages as well, in particular through their activation and contribution
to the neuroinflammatory component of grey matter in pathological neurodegeneration.
Given the significance of the contribution of neuroinflammation to Alzheimer’s disease
(AD) progression [14], our better understanding and ultimately controlling of these coupled
neuronal–astroglial networks become increasingly important, opening the door to develop-
ing future therapies. For this to happen, increasing attention is being paid to a relationship
between the astrocytes’ effects in the brain and such fundamental processes as synaptic
transmission, cognition, and myelination [11]. At the same time, conclusive experimental
studies of the role of astrocytes remain extremely challenging, given that the multiple func-
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tionalities of these cells are dependent on numerous (and sometimes contradictory) factors
during the disease progression. Researchers have shown that both microglia and astrocytes
are very heterogeneous in their functions in the diseased brain [15–17]. Indeed, on the one
hand, they can contribute to the clearance of Aβ and limit the growing inflammation in the
brain, while, on the other hand, they may neglect their metabolic role and release neurotox-
ins, contributing in this way to AD neurodegenerative processes. This leads to a situation
where mathematical and computational models developed in a data-driven environment
may very efficiently complement the progress made in the experimental domain.

While we briefly touch on other aspects, in this paper, our focus is mainly on the role
of astrocytes in Alzheimer’s disease via their dynamic interactions with agglomerations
of Aβ peptides. Not only AD is typified by such agglomerations, along with activated
glial cells, but also because Aβ plaques trigger intracellular NFT formation, neuronal cell
death, neuroinflammation, and gliosis, whereas reactive astrocytes in AD, surrounding
these plaques, may additionally contribute to the overall amyloid burden in the brain by
secreting Aβ [4]. Indeed, today, we know that a reactive character of astrocytes in AD is
usually expressed by intermediate filament proteins and cellular hypertrophy, as well as
that these star-shaped glial cells can regulate synaptic communication and modulate brain
network functions [7].

The rest of the paper is organised as follows. We develop a network mathematical
model for brain connectome data assimilation in Section 2. With the help of brain connec-
tome data, in Section 3, we provide details on two groups of computational experiments
elucidating the role of cytokines and astrocytes in AD and giving further details on AD
TNF-α inhibitor drugs, quantifying their influence on the reduction of neuronal damage.
All numerical results, reported in this section, were obtained with our new network model.
Several possible extensions of this work are discussed in Section 4, with concluding remarks
given in Section 5.

2. AD Network Model for Brain Connectome Data Assimilation

In this section, we develop a network model based on the consideration originally
presented in [18], where a PDE model on AD was discussed. Before going to the full
network model in the brain connectome, we first define the diffusion and chemoattraction
terms in a network [19,20]. Suppose the network graph G has V number of nodes and
E number of edges. For j, k = 1, 2, 3, . . . , V, the elements of the adjacency matrix Wl

corresponding to the graph G are

W l
jk =

njk

l2
jk

, (1)

where njk is the mean fiber number and l2
jk is the mean length squared between the nodes j

and k. We define a matrix Ll with entries

Ll
jk = (Dl

jj −W l
jk), j, k = 1, 2, 3, . . . , V, (2)

where Dl
jj = ∑V

k=1 W l
jk. Therefore, at each node j, we take the contribution of the diffusion

term for a dummy variable denoted below as u in the following form

(∆u)j = −
V

∑
k=1

Ll
jkuk. (3)

Similarly, at each node j, we find the chemoattraction term as

(∇ · (v∇u))j =

( V

∑
k=1

Lc
jkvk

)( V

∑
k=1

Lc
jkuk

)
− vj

V

∑
k=1

Ll
jkuk, (4)

where Lc
jk = (Dc

jj −Wc
jk) with Wc

jk = njk/ljk and Dc
jj = ∑V

k=1 Wc
jk.
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Now, at the node j in the brain connectome, we are ready to define a network model
for Alzheimer’s disease incorporating the astrocytes’ dynamics [18]. We use j as the node
index in each of the upcoming equations. Suppose Nj is the density of the living neurons
and N0 is the reference density of the neurons in brain cells. Inside the neurons, amyloid
beta Ai

β is constitutively produced from APP at a rate λi
β and degraded at a rate dAi

β
. In the

early stage of disease progression, Ai
β is overproduced by reactive oxygen species (ROS)

factor R. Therefore, the dynamics of Ai
β is given by

dAi
βj

dt
=

(
λi

β(1 + R)− dAi
β
Ai

βj

) Nj

N0
. (5)

The density of extracellular amyloid beta peptides (Ao
β), depends on different factors,

such as neuronal death, microglias, astrocytes, etc. The equation for Ao
β is given by

dAo
βj

dt
=Ai

βj

∣∣∣∣dNj

dt

∣∣∣∣+ λN
Nj

N0
+ λA

Aj

A0

−
(

dAo
β M̂(M̂1j + θM̂2j) + dAo

β M(M1j + θM2j)

) Ao
βj

Ao
βj + KAo

β

,
(6)

where A0 is the reference astrocyte cell density and KAo
β

is a Michaelis–Menten coeffi-
cient [21]. The first term on the right-hand side of (6) is the contribution due to neuronal
death. The second and third terms of (6) are the growths released from amyloid precur-
sor protein (APP) [22] and astrocytes [23], respectively. The last multiplying factor is the
clearance of Ao

β by peripheral macrophages M̂1 and M̂2 and the activated microglias M1

and M2. Here, 0 ≤ θ < 1 as M̂1 and M1 are more effective in clearing the extracellular Aβ
compared to M̂2 and M2. APP on live neurons shed Aβ peptides in both the intracellular
and extracellular space [18]. We assumed that most of the Ao

β is produced from dead
neurons, so the production from the live neurons is neglected.

The second most critical factor in AD is the tau protein. Suppose that the tau protein
is constitutively produced, and the degradation rates are λτ0 and dτ , respectively. Due to
the abnormal concentrations of Aβ, i.e., when the production of Ai

β exceeds a threshold,

say Ai
βc, glycogen synthase kinase-type 3 (GSK-3) becomes activated, and it mediates the

hyperphosphorylation of tau proteins. Suppose dτ is the degradation rate of tau proteins
due to ROSs. Then, the rate of change of tau protein is given by

dτj

dt
=

(
λτ0 + λτ R− dττj

) Nj

N0
. (7)

Inside the neurons, NFTs form from the hyperphosphorylation of tau proteins and are
released into the extracellular space after the death of the neurons [24–27]. The equations
for NFTs inside the neurons and the extracellular space are given by

dFij

dt
=

(
λFτj − dFi Fij

) Nj

N0
, (8)

dFoj

dt
= Fij

∣∣∣∣dNj

dt

∣∣∣∣− dFo Foj, (9)

respectively.
Due to NFTs’ formation in the brain cell, microtubules are depolymerised and de-

structed, leading to neuron death [24–27]. Not only NFTs, proinflammatory and anti-
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inflammatory cytokines are also responsible for neuronal death in the brain. Including
these factors in the dynamics for N, we obtain

dNj

dt
= −dNF

Fij

Fij + KFi

Nj − dNT
Tαj

Tαj + KTα

1
1 + γI10jKI10

Nj, (10)

where Tα and I10 denote the proinflammatory and anti-inflammatory cytokines,
respectively.

Astrocytes are primarily activated by the proinflammatory cytokines Tα [28], but they
are also activated by the extracellular amyloid beta Ao

β [23]. Therefore, the equation for
astrocytes is given by

dAj

dt
= λAAo

β
Ao

βj + λATα
Tαj − dA Aj. (11)

Microglias and peripheral macrophages clear the NFTs in the extracellular space and
keep neurons healthy. Therefore, the dynamics of neuronal death is given by

dNdj

dt
=dNF

Fij

Fij + KFi

Nj + dNT
Tαj

Tαj + KTα

1
1 + γI10jKI10

Nj

− dNd M(M1j + M2j)
Ndj

Ndj + KNd

− dNd M̂(M̂1j + M̂2j)
Ndj

Ndj + KNd

.
(12)

Amyloid beta oligomers are soluble, and they diffuse in the brain tissue [29–31].
Incorporating the diffusion of the oligomers in the network model along with its production
(from Ao

β) and degradation, we obtain

dAoj

dt
= −DAo

V

∑
k=1

Ll
jk Aok + λAo Ao

βj − dAo Aoj, (13)

where DAo is the diffusion coefficient.
In the AD-affected brain, dying neurons produce nonhistone chromatin-associated

protein (HMGB-1), and it diffuses in the brain cells [32,33]. The reaction–diffusion equation
for the PDE-based model of [18] is simplified into the ODE in the network as follows:

dHj

dt
= −DH

V

∑
k=1

Ll
jk Hk + λH Ndj − dH Hj. (14)

Microglias travel in the brain cell [34]. Activated microglias are chemoattracted to the
cytokines’ high mobility group box 1 (HMGB-1). Furthermore, microglias are activated by
the extracellular NFTs and soluble oligomers. The M1 and M2 phenotypes are characterised
by the proinflammatory and anti-inflammatory signals from Tα and I10, respectively. These
two types of microglias satisfy the following equations

dM1j

dt
=M1j

V

∑
k=1

Ll
jk Hk −

( V

∑
k=1

Lc
jk M1k

)( V

∑
k=1

Lc
jk Hk

)
− λM1Tβ

Tβj

Tβj + KTβ

M1j

− dM1 M1j + M0
G

(
λMF

Foj

Foj + KFo

+ λMA
Aoj

Aoj + KAo

)
βε1

βε1 + ε2
,

(15)

dM2j

dt
=M2j

V

∑
k=1

Ll
jk Hk −

( V

∑
k=1

Lc
jk M2k

)( V

∑
k=1

Lc
jk Hk

)
+ λM1Tβ

Tβj

Tβj + KTβ

M1j

− dM2 M2j + M0
G

(
λMF

Foj

Foj + KFo

+ λMA
Aoj

Aoj + KAo

)
ε2

βε1 + ε2
,

(16)
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where ε1 = Tαj/(Tαj + KTα), ε2 = I10j/(I10j + KI10). The parameter β is the ratio of
the proinflammatory and anti-inflammatory environment, and it determines the relative
strengths of Tα and I10. Here, the ratios βε1/(βε1 + ε2) and ε2/(βε1 + ε2) in the right-hand
sides measure the activated microglias becoming M1 and M2 macrophages, respectively.

Depending on the relative concentrations of Tα and I10, the incoming macrophages are
divided into two phenotypes M̂1 and M̂2 [35]. Furthermore, the phenotype of macrophages
M̂1 change to the macrophages M̂2 under the signal Tβ. Therefore, the peripheral macrophages
satisfy the following equations:

dM̂1j

dt
= M̂1j

V

∑
k=1

Ll
jk Aok −

( V

∑
k=1

Lc
jk M̂1k

)( V

∑
k=1

Lc
jk Aok

)
− λM̂1Tβ

Tβj

Tβj + KTβ

M̂1j

− dM̂1
M̂1j + α(Pj)(M0 − M̂j)

βε1

βε1 + ε2
,

(17)

dM̂2j

dt
= M̂2j

V

∑
k=1

Ll
jk Aok −

( V

∑
k=1

Lc
jk M̂2k

)( V

∑
k=1

Lc
jk Aok

)
+ λM̂1Tβ

Tβj

Tβj + KTβ

M̂1j

− dM̂2
M̂2j + α(Pj)(M0 − M̂j)

ε2

βε1 + ε2
,

(18)

where M̂j = M̂1j + M̂2j and α(Pj) = αPj/(Pj + KP).
Tα is produced by proinflammatory macrophages M1 and M̂1. Tβ and I10 are produced

by M2 and M̂2. Therefore, the equations for Tα, Tβ and I10 are in the form

dTαj

dt
=− DTα

V

∑
k=1

Ll
jkTαk + λTα M1 M1j + λTα M̂1

M̂1j − dTα Tαj, (19)

dTβj

dt
=− DTβ

V

∑
k=1

Ll
jkTβk + λTβ M M2j + λTβ M̂ M̂2j − dTβ

Tβj, (20)

dI10j

dt
=− DI10

V

∑
k=1

Ll
jk I10k + λI10 M M2j + λI10 M̂ M̂2j − dI10 I10j. (21)

Activated astrocytes and microglias produce monocyte chemoattractant protein-1
(MCP-1) [36,37], and it is assumed to be of the M2 phenotype. Hence,

dPj

dt
= −DP

V

∑
k=1

Ll
jkPk + λPA Aj + λPM2 M2j − dPPj. (22)

We have used the same estimated parameter values developed by Hao and Fried-
man [18] for the network model (5)–(22). Further details are provided in Tables 1 and 2
with λAAo

β
= 1.793 and λATα

= 1.54. We have assumed that these parameter values are
uniform for all the nodes in the brain connectome.

Table 1. Parameter values.

Parameter Value Parameter Value Parameter Value

dAi
β

9.51 dAi
β

9.51 KM1 0.03

dFi 2.77× 10−3 dFo 2.77× 10−4 KM2 0.017

dτ 0.277 dN 1.9× 10−4 KM̂1
0.04

dNF 3.4× 10−4 dNT 1.7× 10−4 KM̂2
0.007

dNd M 0.06 dNd M̂ 0.02 KFi 3.36× 10−10

dA 1.2× 10−3 dAo 0.951 KFo 2.58× 10−11
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Table 1. Cont.

Parameter Value Parameter Value Parameter Value

dM1 0.015 dM2 0.015 KM 0.47

dM̂1
0.015 dM̂2

0.015 KI10 2.5× 10−6

dH 58.71 dI10 16.64 KTβ
2.5× 10−7

dTα
55.45 dTβ

333 KTα
4× 10−5

dP 1.73 A0 0.14 KM̂ 0.47

R0 6 M0 0.05 KAo 10−7

M0
G 0.47 N0 0.14 KP 6× 10−9

KAo
β

7× 10−3 KNd 10−3

Table 2. Parameter values.

Parameter Value Parameter Value Parameter Value

DAo 4.32× 10−2 DH 8.11× 10−2 DP 2× 10−1

DTα
6.55× 10−2 DTβ

6.55× 10−2 DI10 6.04× 10−2

λi
β 9.51× 10−6 λN 8× 10−9 λA 8× 10−10

λτ0 8.1× 10−11 λτ 1.35× 10−11 λF 1.662× 10−3

λPA 6.6× 10−8 λPM2 1.32× 10−7 λAo 5× 10−2

λH 3× 10−5 λMF 2× 10−2 λMA 2.3× 10−3

λM1Tβ
6× 10−3 λM̂1tβ

6× 10−4 λTβ M 1.5× 10−2

λTβ M̂ 1.5× 10−2 λTα M1 3× 10−2 λTα M̂1
3× 10−2

λI10 M2 6.67× 10−3 λI10 M̂2
6.67× 10−3 θ 0.9

α 5 β 10 γ 1

3. Numerical Results Based on the Network Model

In this section, we report two groups of computational experiments, focusing on (a) the
role of cytokines and astrocytes and (b) the importance of TNF-α inhibitors in reducing neu-
ronal damage in AD. We considered a high-resolution brain connectome structure consisting
of V = 1015 vertices and E = 70,892 edges; the data source is available for the patients’
connectome data at https://braingraph.org (accessed on 20 April 2022) [38]. The network
model developed in Section 2 was implemented by using the C programming language and
Matlab. We simulated the network model (5)–(22) for each node j = 1, 2, . . . , V with uniform
initial conditions for all the nodes [18,39]: Ai

β = 10−6, Ao
β = 10−8, τ = 1.37× 10−10, Fi =

3.36× 10−10, Fo = 3.36× 10−11, N = 0.14, A = 0.14, M1 = M2 = 0.02, M̂1 = M̂2 = Nd =
0, H = 1.3× 10−11, Tβ = 10−6, Tα = 2× 10−5, I10 = 10−5, P = 5× 10−9. Table 3 lists all the
variables used in the model, and the units of all these variables are given in g/mL. We used
the value of R as

R =

{
R0t/100 0 ≤ t ≤ 100,

R0 t > 100.

https://braingraph.org
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Table 3. The variables of the model and their functions.

Variable Function Variable Function

Ai
β Amyloid beta inside neurons Ao

β Amyloid beta outside neurons

τ
hyperphosphorylated tau pro-
tein Fi

Neurofibrillary tangle inside
neurons

Fo
Neurofibrillary tangle outside
neurons N Live neurons

A Astrocytes Nd Dead neurons

Ao Amyloid beta oligomer H High mobility group box 1

M1 Proinflammatory microglias M2 Anti-inflammatory microglias

M̂1
Peripheral proinflammatory
macrophages M̂2

Peripheral anti-inflammatory
macrophages

Tα Tumour necrosis factor alpha Tβ
Transforming growth factor
beta

I10 Interleukin 10 P Monocyte chemoattractant
protein-1

3.1. Computational Experiments on the Role of Cytokines and Astrocytes in AD

After integrating the brain connectome data, we computed all the components in-
volved in Equations (1)–(4). We plot the average densities of twelve variables for the
network model in Figure 1. These variables have an influence on the model, but we mainly
focused on the astrocyte and microglia variables and the other variables directly associated
with these two. Extracellular Aβ and the pro-inflammatory cytokines Tα play a crucial role
in the growth of astrocytes in the brain (see Equation (11)).

Figure 1. Average concentration of the variables with respect to time.
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The density change in the astrocytes or the microglia causes a change in the MCP-1’s
density, following from Equation (22). Figure 2 shows the density change in astrocytes and
MCP-1 by changing the growth parameters in astrocytes, while the other concentrations do
not change as such. As additional factors have been taken into account, here we obtained a
different result as compared to [18]. As time progresses, the densities of extracellular Aβ,
Aβ-oligomers, astrocytes, and MCP-1 decrease.

Figure 2. Average solutions of the six variables associated with astrocytes and microglias. We take all
the parameter values from Tables 1 and 2. Blue curve: λAAo

β
= 1.793 and λATα

= 1.4; black curve:
λAAo

β
= 1.793 and λATα

= 1.7; magenta curve: λAAo
β
= 1.65 and λATα

= 1.54.

3.2. Computational Experiments on AD Drugs

Next, our attention is drawn to soluble inflammatory cytokines. It is well known
that soluble cytokine receptors regulate inflammatory and immune events by functioning
as antagonists of cytokine signalling. Among various biologic medical products that, by
interfering with tumour necrosis factor (TNF), are used to treat autoimmune diseases,
caused by an overactive immune response, etanercept (marketed as enbrel) is quite popular.
In its essence, it is an amalgamation protein, produced by recombinant DNA, that fuses
the TNF receptor to the constant end of the immunoglobulin G1 antibody. Etanercept acts
as a TNF-α inhibitor, where TNF-α is considered to be the key regulator of the inflamma-
tory/immune response in many organ systems. We used the amount of etanercept as a
parameter in a series of computational experiments that will be discussed here.

Before going to the numerical results involving etanercept, we provide our motivation
for focusing on TNF-α and further insight into its leading role in AD pathophysiology.
First, we recall that three distinctive neuropathological features of AD are: (a) extracel-
lular deposits of Aβ peptides assembled in plaques, (b) intraneuronal accumulation of
hyperphosphorylated tau proteins forming tangles, and (c) chronic inflammation [40].
While (a) and (b) we addressed earlier, here, we note that as far as (c) is concerned, the
pro-inflammatory cytokine TNF-α plays a critical role. Moreover, with existing evidence,
indicating that TNF-α signalling frequently makes pathologies related to (a) and (b) worse,
a growing interest is seen in modulating this signalling and developing anti-TNF-α AD
therapies, allowing improved cognitive performance. Compared to other approaches in
developing AD treatments [41], TNF-α inhibitors have been consistently rated favourably.
While the full range of pathogenetic mechanisms underlying neuronal death and dysfunc-
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tion in AD remain unclear, most recent analyses convincingly imply that TNF-mediated
neuroinflammation is linked to AD neuronal necroptosis [42]. Furthermore, given the
pathophysiological importance of the entire TNF-TNFR1/2 system, more and more atten-
tion is currently paid to its other components as well, in particular to tumour necrosis factor
receptor 2 (TNFR2) of the cytokines, which promotes neuronal survival downstream. While
both TNFR1 and TNFR2 can induce pro-inflammatory activities, it is TNFR2 that can also
elicit strong anti-inflammatory activities and has protective effects. Recent studies (e.g., [43])
indicate that the TNF pathway can contribute to resilience in AD. The latter concept is
important in understanding heterogeneity in cognitive and behavioural phenotypes of AD,
which requires involvement not only of Aβ and tau proteins, but other molecular factors as
well. This leads, among other things, to the investigation of genetic variants of the TNFR2
pathway as a marker of resilience and the TNFR2 pathway itself as a target for developing
new AD therapies [43].

As we already mentioned earlier, debates over AD drugs continue today, with the
first drug able to remove amyloid approved only in 2021 (it is also the first new AD drug
approved since 2003). The controversy around this new drug, aducanumab, is effectively
centred on AD biomarkers and whether the extent of amyloid plaques can be considered
as one of them because some scientists believe that they are more like a side-effect of the
disease process. In the meantime, this controversy has generated a burst of new research
activities and the development of another drug, known as donanemab, which is currently
in late-stage clinical trials. Considered to be an important advance in amyloid pathology,
it is expected to be able to treat early symptoms of AD. In the meantime, scientists are
in agreement that new treatments, drugs, and therapies are urgently needed [44], and
mathematical modelling and computational experiments will be playing an increasingly
important role in these new developments.

In what follows, we account for the fact that many clinical trials of drugs aimed at
preventing or clearing the Aβ and tau protein pathology have failed to demonstrate efficacy
and that one of the possible treatments could be based on TNF-α inhibitors (suggested
also in [18]). For the treatment, we first ran the model for what corresponds to 300 days
in order to ensure that AD has been diagnosed, and then, we applied continuous treat-
ment by the drug from Day 300 until the end of 10 years. In this case, we can replace
Equation (19) with

dTαj

dt
= −DTα

V

∑
k=1

Ll
jkTαk + λTα M1 M1j + λTα M̂1

M̂1j − dTα Tαj − f Tαj, (23)

where f is proportional to the amount of etanercept. We simulated this equation with the
full network model for the brain connectome and plotted the result in Figure 3. For this
set of computations, we took f = 10dTα along with λAAo

β
= 1.793 and λATα

= 1.4. After
applying the drug, we observed reduced neuronal damage in the brain (see the middle-top
sub-figure in Figure 3).

The drug aducanumab is considered to be one of the most effective in clearing Aβ. In
this case, we replaced Equation (6) with

dAo
βj

dt
=Ai

βj

∣∣∣∣dNj

dt

∣∣∣∣+ λN
Nj

N0
+ λA

Aj

A0

−
(

dAo
β M̂(M̂1j + θM̂2j) + dAo

β M(M1j + θM2j)(1 + g)
) Ao

βj

Ao
βj + KAo

β

,
(24)

where g is proportional to the amount of the dosing level of the drug aducanumab. We
simulated the entire network model (5)–(22) with (24) with g = 10, λAAo

β
= 1.793, and

λATα
= 1.54. Figure 4 depicts the effect of the drug in Aβ aggregation in the advancement

of time. It has a pronounced effect only on the extracellular Aβ concentrations, not on
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neuronal death. However, the TNF-α inhibitors have a strong effect of reducing neuronal
death. These results agree with those obtained in [18].

Figure 3. Average solutions of the six variables associated with astrocytes and microglias. We take
all the parameter values from Tables 1 and 2 with λAAo

β
= 1.793 and λATα

= 1.4. Magenta and blue
curve curves correspond to the absence and presence of TNF-α inhibitor, respectively.

Figure 4. Average solutions of the six variables associated with astrocytes and microglias. We take all
the parameter values from Tables 1 and 2 with λAAo

β
= 1.793 and λATα

= 1.54. Magenta and blue
curve curves correspond to the absence and presence of anti-Aβ drug, respectively.
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4. Discussion and Future Directions

There are several recently developed models, dealing with astrocytes, that consider
averaged characteristics such as the collective exosomal release rate in astrocytes. Such
models have an advantage of their generalisations to account for temperature effects, which
is an important consideration, given the recent discovery of an intrinsic connection between
the temperature dependence of exosome release and Aβ neurotoxicity [5]. Among other
things, such models can describe the synapse and astrocyte couplings and allow replicating
typical calcium oscillations in astrocytes under the influence of Aβ. Therefore, it would be
instructive to extend the network model proposed here to account for thermal effects.

Tau proteins play a more prominent role than the amyloid hypothesis suggests. The
τPs are usually considered as secondary agents in the disease even though: (i) other
τP-related diseases (tauopathies), such as frontotemporal lobar degeneration, are mostly
dominated by tau spreading; (ii) brain atrophy in AD is directly correlated with large
concentrations of NFT; (iii) the τP distribution determines disease staging, and lowering τP
levels prevent neuronal loss; (iv) τP reduces neural activity and is the main factor associated
with cognitive decline. This motivates another possible extension of the developed model
by combining the tau protein dynamics more precisely [19,45], rather than considering
only a linear contribution of the tau protein. In addition, the dynamics of the variables in
different regions in the brain connectome would give a better understanding of the disease
progression [45]. Following this recent study, we note that although we chose here uniform
parameter values all over the brain connectome, this can be extended to different parameter
values in respective regions according to the clinical data.

Regarding the route connected with TNF inhibitors, in addition to the possible ex-
tensions already mentioned in the previous section, we will also mention that one of the
existing difficulties lies with the fact that classical biologic TNF-α inhibitor macromolecules
cannot cross the blood–brain barrier [46,47]. This requires the development of blood–
brain-barrier-penetrating TNF-α inhibitors, and from a modelling point of view, further
extensions of the models developed here may be needed to qualitatively estimate this factor.

5. Conclusions

We constructed a network model to study neurodegenerative disorders in the brain
connectome, focusing on Alzheimer’s disease. The developed model can capture the
concentrations of the variables in different regions of the brain connectome, which could
not be identified by earlier-developed simple PDE-based models. All three distinctive
neuropathological features of AD, including amyloid beta and tau proteins, as well as
neuroinflammation were considered in the network model for brain connectome data
assimilation. Special attention was given to the role of cytokines and astrocytes, as well
as to the influence of anti-Aβ and TNF-α inhibitor drugs in AD pathophysiology. We
showed that etanercept has good efficacy in most of the aspects, including neuronal death,
while aducanumab has a good efficacy only in reducing the aggregation of extracellular
amyloid beta. Among other applications, one may choose the developed methodology
to address the diffusion and chemoattraction challenges by evaluating the corresponding
term’s contributions in the network model. Finally, potentially promising pathways for
developing new AD therapies were also discussed.
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