
Citation: Riveros-Rojas, G.J.;

Cespedes-Sanchez, P.P.; Pinto-Roa,

D.P.; Legal-Ayala, H. Energy-and-

Blocking-Aware Routing and Device

Assignment in Software-Defined

Networking—A MILP and Genetic

Algorithm Approach. Math. Comput.

Appl. 2024, 29, 18. https://doi.org/

10.3390/mca29020018

Academic Editor: Leonardo Trujillo

Received: 15 December 2023

Revised: 23 January 2024

Accepted: 28 February 2024

Published: 4 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical

and Computational

Applications

Article

Energy-and-Blocking-Aware Routing and Device Assignment
in Software-Defined Networking—A MILP and Genetic
Algorithm Approach
Gerardo J. Riveros-Rojas, Pedro P. Cespedes-Sanchez *, Diego P. Pinto-Roa and Horacio Legal-Ayala

Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 2111, Paraguay;
griveros@pol.una.py (G.J.R.-R.); dpinto@pol.una.py (D.P.P.-R.); hlegal@pol.una.py (H.L.-A.)
* Correspondence: pcespede@pol.una.py

Abstract: Internet energy consumption has increased rapidly, and energy conservation has become a
significant issue that requires focused research efforts. The most promising solution is to identify
the minimum power subsets within the network and shut down unnecessary network devices and
links to satisfy traffic loads. Due to their distributed network control, implementing a centralized
and coordinated strategy in traditional networks is challenging. Software-Defined Networking
(SDN) is an emerging technology with dynamic, manageable, cost-effective, and adaptable solutions.
SDN decouples network control and forwarding functions, allowing network control to be directly
programmable, centralizing control with a global network view to manage power states. Nevertheless,
it is crucial to develop efficient algorithms that leverage the centralized control of SDN to achieve
maximum energy savings and consider peak traffic times. Traffic demand usually cannot be satisfied,
even when all network devices are active. This work jointly addresses the routing of traffic flows
and the assignment of SDN devices to these flows, called the Routing and Device Assignment (RDA)
problem. It simultaneously seeks to minimize the network’s energy consumption and blocked traffic
flows. For this approach, we develop an exact solution based on Mixed-Integer Linear Programming
(MILP) as well as a metaheuristic based on a Genetic Algorithm (GA) that seeks to optimize both
criteria by routing flows efficiently and suspending devices not used by the flows. Conducted
simulations on traffic environment scenarios show up to 34% savings in overall energy consumption
for the MILP and 33% savings achieved by the GA. These values are better than those obtained using
competitive state-of-the-art strategies.

Keywords: energy saving; genetic algorithm; routing; mixed integer linear programming; software-
defined networking

1. Introduction

Recently, the Internet has become an essential tool for human activities. With the
Internet of Things (IoT) and Internet of Everything (IoE), the growth in communication
technology is closely tied to energy consumption. The current demand for energy in
communication technologies represents 8% of the total energy consumption. Studies
anticipate that this percentage will continue to increase to 21% by 2030 [1,2]. Another
forecast predicts that this figure will reach 51%, according to an updated global survey [3].
Figure 1 depicts the trend of the growth rate over the years. Consequently, this growth will
demand higher operational expenditure (OPEX) due to increased energy expenditures.

Traditional energy-saving research has traditionally focused on battery-operated de-
vices. However, the fixed infrastructure and data center networks, which include routers,
switches, transponders, repeaters, and other network devices, still require effective cen-
tralized power management solutions [4]. This limitation compels us to explore energy
conservation strategies aimed at reducing OPEX costs. Given the redundancy of paths
and the underutilization of links in certain traffic scenarios, GreenT has proposed putting

Math. Comput. Appl. 2024, 29, 18. https://doi.org/10.3390/mca29020018 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca29020018
https://doi.org/10.3390/mca29020018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0003-2479-9876
https://orcid.org/0000-0002-1790-2559
https://doi.org/10.3390/mca29020018
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca29020018?type=check_update&version=1

Math. Comput. Appl. 2024, 29, 18 2 of 27

some devices and links to sleep [5]. If data demand increases, dummy packets are sent to
activate these devices or links to turn them on again before transmitting data [6]. Network
interface cards can transition at the physical layer transitions in just ten milliseconds, while
line cards may require more time [7].

Figure 1. Energy use of communication technologies relative to global energy consumption [3].

The Software-Defined Networking (SDN) concept decouples the control plane from
the data plane, wherein a logically centralized controller manages multiple devices [8].
Due to this separation, the controller maintains an overview of the system’s status and can
provide instructions to devices that support SDN to operate optimally. Specifically, the
controller can implement energy-saving functions.

The SDN architecture consists of several layers [9], as illustrated in Figure 2. SDN
applications reside at the top layer, enabling users or network administrators to interact
with the network. This layer incorporates algorithms for decision making and energy
conservation. Moving down, the next layer is the control layer, responsible for managing and
controlling the network. Below that, we have the data layer, which handles the forwarding
of application data based on the flow rules calculated in the control plane. The OpenFlow
protocol facilitates communication between the data plane and the control plane [10].
Finally, at the base of the architecture, there is the infrastructure where servers host SDN-
based data centers.

Math. Comput. Appl. 2024, 29, 18 3 of 27

Figure 2. Software-Defined Networking architecture [11].

The control layer or management layer in SDN consists of one or more controller
processes, as shown in Figure 3. Controller processes collaborate to provide the network
monitoring and control functionalities [12]. The management layer exposes a network
management interface (the so-called “Northbound API”) for management (or user) ap-
plication processes to manage the network [8]. At the bottom are the network devices,
including switches or routers. There is a process (switch process) running on each network
device, and this process hides the internal details of the physical device but exposes a
network device interface (the so-called “Southbound API”) [8]. The network device in-
terface provides a standardized way to access the switch processes that operate on the
switches. The switch process is responsible for low-level operations on switches such as
adding/removing packet flow entries and the configuration of ports and queues [12].

Figure 3. An overview of the SDN management layer [12].

Math. Comput. Appl. 2024, 29, 18 4 of 27

1.1. The Problem

Various layers and strategies are employed to address energy-saving aspects within
SDN. These strategies encompass enhancements in hardware design, network planning,
network operations, component placement, dynamic activation and deactivation of net-
work elements, and resource allocation [11,13]. The allocation of network resources is
contingent on meeting demands, and, in certain cases, fulfilling a demand may necessitate
the activation of all available network resources [14]. The efficient location and utiliza-
tion of resources rely on algorithmic approaches. Nonetheless, a significant portion of
these challenges remains to be addressed, with many underlying problems classified as
Nondeterministic Polynomial Time Complete (NP-C) [15,16]. Metaheuristics have demon-
strated their viability as a suitable alternative for approximating optimal solutions within
reasonable computation times [17].

This problem can be addressed through heuristic techniques or optimization tech-
niques [11,18]. Heuristic techniques are efficient for the scenarios for which they were
designed. However, this limitation can be overcome by using machine learning-based
techniques, albeit at the expense of high computational cost during the training phase [19].
Nevertheless, when the traffic pattern for which the machine was trained changes, its
performance may significantly degrade, leading to a new retraining phase. Clearly, if the
analyzed traffic pattern changes frequently, the application of machine-learning-based
techniques may become impractical. On the other hand, optimization-based techniques can
also be applied to Routing and Device Assignment (RDA). In this regard, we observe both
exact and metaheuristic techniques. These techniques are efficient when the traffic load
is low or moderate, providing optimal solutions. When the network traffic load is high,
metaheuristic techniques show promise by delivering solutions close to optimal within
short computation times. Due to the aforementioned reasons, in this work, we develop
optimization-based techniques, both exact and metaheuristic, emphasizing their strengths
in considering multiple criteria and constraints.

The RDA problem involves the optimization of multiple criteria, such as minimizing
energy consumption and maximizing traffic efficiency. Mixed Integer Linear Programming
(MILP) and Genetic Algorithms (GAs) are known for their ability to handle Multiobjective
Optimization Problems (MOPs) [20], making them suitable for addressing our challenge.

Furthermore, our research focuses on the allocation of SDN devices to traffic flows
and route optimization. This entails searching for solutions within an extremely large and
complex solution space. GAs are inherently parallelizable and can effectively explore this
solution space in pursuit of optimal or near-optimal solutions.

1.2. Key Contributions

The main contributions of this paper are summarized as follows:

• Formulation of the RDA problem seeking to maximize energy savings and the number
of installed flows using all energy-saving factors reported in the literature. Section 2
explains these factors in detail.

• Design of a Mixed-Integer Linear Programming (MILP) solution for the proposed
RDA problem.

• Design of a Genetic Algorithm (GA) for the proposed RDA problem.
• Analysis of the Controller Placement (CP) problem to maximize energy savings.
• Study the performance of the proposed methods and the state of the art in the face

of static, semidynamic, incremental, and dynamic traffic environment scenarios to
enable divisible flows.

According to our knowledge, this approach has yet to be proposed in the literature.
The rest of the work is organized as follows: Section 2 cites works related to energy

saving. Section 3 presents the proposed strategy for optimal use of devices, and Section 4
shows the proposed MILP model. Section 5 introduces the proposed metaheuristics based
on GA, and Section 6 explains the experimental tests. Finally, Section 7 summarizes the
final conclusions and some future works.

Math. Comput. Appl. 2024, 29, 18 5 of 27

2. Related Works

The simulation of GreenTE in [5] demonstrated that the energy-saving ratio decreases
as the traffic load increases at the link level. In a normally operating network with a
maximum link utilization (MLU) below 40%, there is a more substantial energy-saving
potential compared with overloading some links.

Schaap et al. [21] estimated the power consumption of the switch based on the NEC
PF5240 OpenFlow model, which has a maximum power consumption of 264 Watts (W) [22].
The concept behind this approach is to compile statistics on power consumption within the
network using the sFlow-RT protocol [23]. The sFlow agents transmit traffic data and energy
consumption statistics to the controller for measuring the network’s total energy consump-
tion. Furthermore, Wang et al. [24] confirmed that the power consumption percentages for
a 100G integrated chassis, line card, and port are 56.3%, 43.6%, and 0.1%, respectively.

In their work [25], Priyadarsini et al. introduced a heuristic algorithm for efficient
route selection with minimal energy consumption, based on the ERAS Framework (Efficient
Routing Algorithm Selection).

As noted earlier, an alternative approach to energy conservation involves placing idle
devices into sleep mode and adjusting routing to minimize link utilization. Depending on
the traffic scenario, devices without ongoing traffic can be either powered off or put into
a suspension state. In the case of static or semidynamic traffic, devices can be powered
off, while in dynamic traffic scenarios, devices must remain in a suspended state (rather
than powered off). According to Heller et al. [26], this state entails slightly higher energy
consumption but significantly shorter activation times.

Furthermore, other related works focus on achieving energy savings by placing idle
devices on standby and constraining link usage. For example, Awad et al. [27] pro-
pose minimizing energy consumption in the links while considering link speed and flow
conservation. Their work introduces an integer linear programming model for optimal
results and an approximate solution based on a heuristic algorithm. In a different study,
Wang et al. [24] examined the energy consumption of chassis, line cards, and link uti-
lization, although they did not address the energy consumption of links themselves. In a
subsequent publication [14], Wang et al. presented an energy-saving model for hybrid SDN
that considers the shutdown of switches and SDN links to accommodate varying traffic
loads, recognizing that traditional switches operate independently and present difficulties
when put into sleep mode.

In addition, Fernandez-Fernandez et al. [28] introduce an approach focused on mini-
mizing active links, taking into account the controller’s location in terms of energy efficiency.
In a different study, Xu et al. [29] present an energy efficiency algorithm for data center net-
works, considering aspects like link utilization and network equipment, including chassis
and ports.

Xie et al. [30] introduced E3MC, a mechanism aimed at enhancing the energy efficiency
of DCN through elastic multicontroller SDN. In E3MC, energy optimizations are realized
for both the forwarding and control planes by leveraging SDN’s fine-grained routing and
dynamic control mapping.

Table 1 provides a summary of the previously mentioned studies, along with the
energy-saving factors in SDN that each model takes into account. It is worth noting
that none of the cited studies simultaneously consider all the energy-saving factors. This
underscores the necessity for an approach that encompasses all these aspects.

As a result, this research proposes a model to minimize energy consumption consid-
ering all the above characteristics and obtain values for more significant energy savings.
The last row of Table 1 indicates the factors considered for energy saving for the solution
proposed in this work. Note that several studies have addressed the CP problem [31–37].
However, only some of them consider energy savings as a location criterion [28,38,39].

Math. Comput. Appl. 2024, 29, 18 6 of 27

Table 1. Reported energy saving types.

Ref. Link Usage Chassis Line Card Port Controller
Placement

Blocking
Aware

[28] - - - Yes Yes -

[24] Yes Yes Yes - - -

[25] - Yes - Yes - -

[27] Yes - - - - -

[14] - Yes - Yes - Yes

[29] Yes Yes - - - -

[40] - Yes - Yes - Yes

[30] Yes Yes - Yes - -

Proposed Schema Yes Yes Yes Yes Yes Yes

The CP problem is a central topic in SDN [41] and can be categorized as either multi-
controller or single-controller. In the case of a multicontroller, the approaches partition an
SDN into sub-SDN segments and determine the controller’s location for each subnet [42,43].

The multicontroller approach is employed in large networks to address the issues
related to single points of failure and potential delays in switches and controllers. In
situations where a single controller oversees all the nodes in the network, we have a
straightforward case.

In particular, efficiency studies have shown that in the majority of cases, a single
controller is sufficient for the entire network, even without meeting the fault tolerance
requirements [41,42,44].

The studies mentioned [41,42,44,45] did not take into account the impact of energy
consumption. The CP problem has been tackled by considering both energy-saving and
non-energy-saving aspects in previous studies [42–44,46–54].

In the context of energy-saving scenarios, there are two possibilities: a controller with
an attached switch and a dedicated controller within the node. In the latter case, the data
plane is unable to route traffic through the controller’s node.

Table 2 displays the provided classification. It is important to note that only a limited
number of studies take energy consumption into account. The majority of these studies
consider other criteria, such as average delay [38], the average distance of nodes to the
controller latency [52,55], or the tolerance to link failures [47].

Table 2. CP configurations.

Multicontroller Single-Controller

Energy Efficient
Data traffic in Node Controller [38,39] No previous works

Controller alone No previous works [28]

Non Energy Efficient
Data traffic in Node Controller [45,48,52,54,55] [41,42]

Controller alone [43,46,47,49–51,53] [44]

This study deals with the problem of determining the optimal location for a single
controller to achieve maximum energy savings, with the constraint that data traffic should
not traverse the node where the controller is located. This will prevent additional traffic
load on the controllers, and performance degradations in the data plane due to saturation
will not affect connections with the controller [18].

Math. Comput. Appl. 2024, 29, 18 7 of 27

The model presented in this paper determines the routes based on the controller’s
placement within the network. Consequently, we conducted an analysis of controller
allocation, aiming to identify the optimal node for Controller Placement to maximize
energy savings. We conducted tests for energy consumption at all potential controller
locations and compared the results with prior work that takes energy savings into account.

3. Optimal Device Usage Strategy

This work considers a network with SDN switches and a single SDN controller. The
SDN controller is responsible for managing the routing table, the flow table, and the control
of network power consumption. Data forwarding within SDN switches is carried out
in accordance with their respective routing tables, which have been computed by the
SDN controller.

The SDN controller gathers network information from its comprehensive perspective.
Additionally, SDN switches conduct traffic measurements and relay the results to the
controller [56]. This global network oversight and management enable us to achieve
system-wide optimization, consistently surpassing local optimizations in terms of energy
efficiency [24,57].

This work will also emphasize energy-saving measures for SDN switches, aiming to
attain global optimization. An SDN switch comprises an integrated chassis, line cards, and
ports, as illustrated in Figure 4.

Figure 4. SDN switch components [3].

The integrated chassis and line cards are the primary contributors to energy consump-
tion, but it is also crucial to take into account port consumption and the utilization rate
of the links. For instance, if a link operates at a service rate lower than 50% of its data
traffic capacity, it can be configured for operation with a minimum consumption of 30% at
nominal levels, as described in [24].

4. MILP Model Formulation

This section introduces the mathematical model based on MILP for the RDA problem,
as described in Equations (1)–(15). When we refer to switches, controllers, and nodes, we
are specifically referring to SDN switches, SDN controllers, and SDN nodes, respectively.
The symbols utilized in this formulation are presented in Table 3.

Table 3. Symbols used in the formulation.

Symbol Description

Network Parameters
V Set of network nodes
E Set of network links
G Directed graph representing the network, G = (V, E)
Vs Set of switches, Vs ⊂ V
Ct Controller, Ct ∈ V −Vs,
K Set of K flows in the network
R Set ofR-shortest-paths available for each flow

Math. Comput. Appl. 2024, 29, 18 8 of 27

Table 3. Cont.

Symbol Description

Indexes
u Switch Node, u ∈ Vs
vu v-th line card of u Node
pvu p-th port transmitter of v-th line card of the u Node
qvu q-th receiver port of the v-th line card of the u Node
(pvu, qv′u′) Connection between transmitter-receiver ports on the physical link

(u, u′) ∈ Es
km m-th request flow, i.e., km = (im, jm, rm) where im, jm, and rm indicates source,

destination and bandwidth, respectively
Constants

a(u) Chassis Power consumption,
A The total Chassis Power consumption,

A = ∑∀u a(u)
b(vu) Line Card Power consumption
B The total Line Card Power consumption,

B = ∑∀u ∑∀vu
b(vu)

c(pvu, qv′u′) Active Link Power consumption
C The total Active Link Power consumption,

C = ∑∀(pvu ,qv′u′)
c(pvu, qv′u′)

c′(pvu, qv′u′) Extra Link Power consumption when link utilization is greater than 50%
C′ The total Active Link Power consumption,

C′ = ∑∀(pvu ,qv′u′)
c′(pvu, qv′u′)

W(pvu, qv′u′) Link Capacity
Variables

x(u) 1, if chassis is active, 0, otherwise.
y(vu) 1, if line card is active, 0, otherwise.
z(pvu, qv′u′) 1, if the link is active, 0, otherwise.
z′(pvu, qv′u′) 1, if the link is active and with utilization greater than 50%, 0, otherwise.
zm(pvu, qv′u′) 1, if the link is assigned to flow km, 0, otherwise.
hm 1, if the km flow is attended, 0 if the km is blocked.
fm(pvu, qv′u′) Bandwidth of the flow km passing through the link (pvu, qv′u′).

RDA-MILP Model

Objective Function: The RDA-MILP problem aims to determine a solution that mini-
mizes blocked flows and energy consumption, using a weighted sum approach. A solution
comprises a multipath from source to destination nodes and the allocation of devices for
each flow. Device assignment involves enabling a chassis, line cards, links, or links with
utilization exceeding 50% of capacity. In the literature, the term “activating chassis” is used
to denote the powering up of the hardware components within the equipment [24]. The
following expression defines the proposed objective function.

Minimize f = λ1 · f1 + λ2 · f2 (1)

where the following can be stated:

• f1 = ∑km∈K(1− hm)/K is the rate of the blocked flows.
• f2 = α + β + γ + γ′ is the energy consumption.
• α = 1

A ∑∀u a(u) · x(u); α is the rate of energy consumption by the chassis.
• β = 1

B ∑∀u ∑∀vu b(vu) · y(vu); β is the rate of consumption by the line cards.
• γ = 1

C ∑∀(pvu ,qv′u′)
c(pvu, qv′u′) · z(pvu, qv′u′); γ is the rate of consumption of the ac-

tive links.
• γ′ = 1

C′ ∑∀(pvu ,qv′u′)
c′(pvu, qv′u′) · z′(pvu, qv′u′); γ′ represents the extra power consump-

tion of links that use over 50% of its capacity.
• λ1 and λ2 = (1− λ1) are the weightings in the objectives functions.

Math. Comput. Appl. 2024, 29, 18 9 of 27

The above values are normalized. Note that c(pvu, qv′u′) + c′(pvu, qv′u′) is the “total
power consumption” of a link when it has used over 50% of its capacity.

Capacity constraint: The total flow along each link (pvu, qv′u′) must not exceed its
capacity W when activated. On the other hand, when the link is not active, no flow can be
assigned to it. K is the number of flows km generated in the network, while z(pvu, qv′u′) is a
binary decision variable indicating whether a link is active.

K
∑

m=1
fm(pvu, qv′u′) ≤ z(pvu, qv′u′) ·W(pvu, qv′u′); ∀(pvu, qv′u′) (2)

Flow conservation: The incoming flow at an intermediate node equals the outgoing
flow. Only the incoming and outgoing flow is allowed at the source node and destination
node. The above conditions apply if a flow km is attended in the system. Note that when
the flow is unattended, there are no incoming or outgoing flows at any node. hm is a binary
variable indicating whether the flow km is attended (hm = 1) or not (hm = 0). There are rm
bandwidths of outgoing flow at the source im and rm bandwidths of incoming flow at its
destination jm. While in the intermediate nodes, FS - FD is zero.

FS− FD =


rm · hm; if u = im

−rm · hm; if u = jm
0; otherwise

; ∀u, ∀m (3)

where the following can be stated:

• FS = ∑∀pv′u′
fm(pv′u′ , qvu) is the outgoing flow from the node u to the nodes u′.

• FD = ∑∀qv′′u′′
fm(pvu, qv′′u′′) is the flow arriving at the node u from the nodes u′′.

Split routing constraints: The assigned links to a flow km must fulfill the following
conditions: the number of incoming and outgoing links assigned to a flow km at an inter-
mediate node are equal and R links outgoing and incoming from the source node and
destination node, respectively. A link cannot be assigned to the flow if it is powered off
(z = 0). Note that only at the source node can a flow be split intoR subflows, and only at
the destination node can it be joined. Each route transports a proportion of the traffic flow.

LS− LD =


R · hm; if u = im

−R · hm; if u = jm
0; otherwise

; ∀u, ∀m (4)

zm(pv′u′ , qvu) ≤ z(pv′u′ , qvu); ∀(pv′u′ , qvu), ∀km (5)

fm(pv′u′ , qvu) ≤ zm(pv′u′ , qvu) · rm; ∀(pv′u′ , qvu), ∀km (6)

where the following can stated:

• LS = ∑∀pv′u′
zm(pv′u′ , qvu) is the number of outbound links from node u to the nodes

u′ assigned to flow km.
• LD = ∑∀qv′′u′′

zm(pvu, qv′′u′′) is the number of inbound links to node u from the nodes
u′′ assigned to flow km.

Energy saving constraints: When the chassis of a node u is in suspension mode
(x(u) = 0), all the line cards vu connected are also put into suspension mode (y(vu) = 0).

y(vu) ≤ x(u); ∀u, ∀vu (7)

Similarly, if all line cards are inactive, the chassis is suspended.

x(u) ≤ ∑
vu∈u

y(vu); ∀u (8)

Math. Comput. Appl. 2024, 29, 18 10 of 27

All the links that use that line card’s ports are suspended when a line card is inactive.

z(pvu, qv′u′) ≤ y(vu); ∀vu, ∀(pvu, qv′u′) (9)

If all the connected links are not being used, their ports are idle, and the line card can
be put in sleep mode.

y(vu) ≤ ∑
∀(pvu ,qv′u′)

z(pvu, qv′u′); ∀vu, ∀u (10)

Port usage constraint: A port cannot be assigned to more than one link.

∑
∀qv′u′∈u′

z(pvu, qv′u′) ≤ 1; ∀pvu (11)

∑
∀pvu∈u

z(pvu, qv′u′) ≤ 1; ∀qv′u′ (12)

Link usage constraint: If a link is active and its use is over 50%, there will be an additional
cost of energy consumption.

z′(pvu, qv′u′) ≤ z(pvu, qv′u′); ∀(pvu, qv′u′) (13)

z′(pvu, qv′u′) ≥ F− 0.5; ∀(pvu, qv′u′) (14)

where F = 1
W(pvu ,qv′u′)

∑Km=1 fm(pvu, qv′u′).
No routing constraints: This restriction requires that links to the ct controller cannot be

used to route data plane communications [28], as indicated here:

z(pvu, Ct) = 0, ∀u, ∀vu, ∀pvu (15)

5. Genetic Algorithm

This section introduces a metaheuristic implementation utilizing Genetic Algorithms (GAs).
The proposed implementation focuses on the permutation, routing table, and con-

figuration of SDN devices to achieve energy savings within the SDN framework while
satisfying the flow demands. GAs are global search and optimization techniques inspired
by natural genetic and evolutionary selection processes, as described in [58].

GAs simulate this process using coding and specialized operators, maintaining a
population of individuals, where each individual represents a candidate solution known as
a chromosome. A chromosome is a collection of genes that usually encode binary values.
However, some successful implementations utilize nonbinary encoding [59]. Given the
problem’s structure under investigation, we employ nonbinary permutation coding for
chromosomes in this paper.

Each individual is evaluated and classified according to the fitness quality function.
This function plays a fundamental role in GAs because it provides information about each
individual’s performance and, therefore, the possibility of evolving and generating new
similar solutions. The first step is to initialize the population with random operators. Then,
the evolution from one generation to the next to create a new population involves three
steps: evaluation of each individual’s fitness, selection of parents, and reproduction of new
individuals by recombining the parents.

This process simulates evolution iteratively until it meets the termination criteria
explained in Section 5.9, at which point it returns the best individual found.

5.1. RDA-GA

For the GA implementation in the RDA problem, SDN is represented as a graph with
N nodes, which expands to model the connections between ports. Figure 5 illustrates
this diagram.

Math. Comput. Appl. 2024, 29, 18 11 of 27

Figure 5. Expanded diagram of network components.

Algorithm 1 presents the proposed algorithm, named RDA-GA. The optimization
metric in this algorithm includes the total energy consumption of the chassis, line cards,
ports, utilization of links, and the count of blocked flows. The primary objective is to find a
solution that simultaneously minimizes the global energy consumption cost of the SDN
while maximizing the number of unblocked flows.

Algorithm 1 RDA-GA
Require: Network Parameters, Evolutionary Parameters, Flow List K, and State Matrix

SM
Ensure: Best solution

1: g← 1
2: Initialize_population(Pg)
3: Evaluate_population(Pg)
4: while stop criterion is not met do
5: P’← Select_parents(Pg)
6: N← Crossover(P’)
7: N’← Mutation(N)
8: S← Select_the_best_individual(Pg)
9: Pg+1 ← Unite_populations(N’,S)

10: Evaluate_population(Pg+1)
11: g← g + 1
12: end while
13: S← Select_the_best_individual(Pg)
14: return Best Solution S

The RDA-GA takes as input the network and evolutionary parameters. Network
parameters include a set of nodes, a set of links, and the controller’s location. Evolution-
ary parameters encompass the population size, tournament size, mutation probability,
crossover rate, stop criterion, flow list K, and the State Matrix SM. The route table is an
R-Shortest Path for each flow, as described in [60].

5.2. Chromosome Representation

The RDA-GA chromosome is an integer vector of K elements that encodes the se-
quence of km requests. The individual population is a set of |P| chromosomes in this context,
i.e., P = {P1, P2, . . . , P|P|}.

Math. Comput. Appl. 2024, 29, 18 12 of 27

The θ-th gene (Pθϑ) of the ϑ-th chromosome encodes an address to the flow table km.
For example, in Figure 6, we can see that P11 = 3 indicates the third request to be met
to the third flow of table k3, while P13 = 4 corresponds to the fourth flow k4 of the table.
Note that the encoding corresponds to a permutation. RDA-GA explores a solution in the
permutation space. In this context, if there are K flows (θ = 1, . . . ,K), there are possible
solutions in total K!

Figure 6. Chromosome structure.

5.3. Initial Population

As shown in line 2 of Algorithm 1, the first step is initializing the population Pg for the
first generation g = 1. The indexes of the flow requests or genes are randomly initialized to
form a permutation.

5.4. Evaluation

After initializing or evolving a population, RDA-GA evaluates the candidate solutions
in lines 3 and 10 of Algorithm 1 by calling the function Evaluate_population. Algo-
rithm 2 performs the evaluation process. It receives a population, an R-Shortest Path
table, a network topology, and a controller’s location as input data. Each individual is
then independently evaluated on line 2 of Algorithm 2 by Evaluate_individual. The
evaluation of each individual consists of two parts according to Algorithm 3. In the first
part, the routing and assignment are performed and stored in a State Matrix (Algorithm 3,
line 3). The RDA algorithm calculates the routes and assignments solution, as explained in
Sections 5.4.1 and 5.4.2. The second part obtains the SDN’s power consumption according
to the active devices (Algorithm 3, lines 10 to 14). Section 5.4.3 explains this process.

If a flow has no routing or available resources, its state is marked as blocked on lines 3
to 5. Consequently, an individual’s quality is determined by the number of blocked requests
and the energy consumption generated by unblocked requests on line 16.

Algorithm 2 Evaluate Population
Require: Network Parameters and Population P
Ensure: Evaluated Population P

1: for i ∈ {1, 2, . . . , |P|} do
2: fitness← Evaluate_individual(Pi)
3: Update_Fitness(Pi, fitness)
4: end for
5: return P

Math. Comput. Appl. 2024, 29, 18 13 of 27

Algorithm 3 Evaluate Individual
Require: Network Parameters, Individual I, and Actual States Matrix SM
Ensure: Fitness f;

1: SMn ← SM ▷ New States Matrix
2: for Gen ∈ I do
3: (SM∗n, blocking)← RDA(Gen, SMn)
4: if blocking == true then
5: f̂1 ← f̂1 + 1
6: else
7: SMn ← SM∗n ▷ Update States Matrix
8: end if
9: end for

10: α← Chasis_Consumption(SMn)
11: β← LineCards_Consumption(SMn)
12: γ← Ports_Consumption(SMn)
13: γ′ ← Link_over_50_Consumption(SMn)
14: f2 = α/A + β/B + γ/C + γ′/C′

15: f1 ← f̂1/K
16: return f = λ1 · f1 + λ2 · f2

5.4.1. Routing

Algorithm 4 shows the calculation of an RDA solution. Note that the routing is based
on multipath, which implies that each flow can be routed independently by the R routes,
subject to the total flow being served. In line 2, the flow is assigned to the paths. The
candidate paths are rearranged according to their current usage. If another flow previously
used a route, it is preferable to use it. The above maximizes the reuse of already activated
devices and thus achieves energy savings. The first route is taken in that new order
of routes, and the highest possible flow percentage ϕ1 ≤ 100% is assigned. Then, the
following route is loaded with the maximum flow rate possible ϕ2 ≤ 100%− ϕ1, and so
on in the following routes. Note that the condition ϕ1 + ϕ2 + . . . + ϕR = 100% must be
met to be considered a successful routing. If it is successful, the port assignment is made
according to the availability of the network and proceeds to update the State Matrix on the
corresponding paths, as seen in line 4.

If a flow cannot be satisfied due to network capacity saturation, it is stated by the
blocking variable on line 6. The advantage of multipath routing is to minimize the bottleneck;
however, it introduces packet misalignment at the destination, which is resolved by the
TCP/IP protocol [61].

Algorithm 4 RDA
Require: Network Parameters, Flow List K, and State Matrix SM
Ensure: Multipath Routing, Port Assignment, and Updated State Matrix

1: blocking← 0
2: multipath← Flow_Assignment(SM)
3: if multipath ̸= NULL then
4: SMupdated ← Port_Assignment(multipath,SM)
5: else
6: blocking← 1
7: end if
8: return SMupdated, multipath

5.4.2. Device Assignment

After the flow assignment in the candidate routes, the assignment of devices is con-
ducted. The First-Fit strategy assigns devices to the K subflows. For a subflow, we look for
the port with the lowest possible index with enough bandwidth to satisfy the requested

Math. Comput. Appl. 2024, 29, 18 14 of 27

subflow ϕi. The corresponding port is assigned if the condition is met, and the remaining
capacity status in the State Matrix is updated. Setting ports to flows is performed on lines 3
and 4 of Algorithm 4.

5.4.3. Energy Consumption Calculation

The evaluation function of a chromosome determines the quality of the individual.
The number of blocked flows and energy consumption in this work determines quality. The
latter is evaluated after routing all flows and assigning the corresponding active devices
ordered by the chromosome. The objective function (f) to be minimized is the weighted
sum of the number of installed flows (f1) and the network energy consumption (f2), both
normalized. The network energy consumption is a sum of the energy consumption of
chassis (α), line cards (β), links (γ), and links with use greater than 50% (γ′), and they are
all normalized.

Note that the functions are normalized by the values of A, B, C, and C′, representing
the total consumption power of the chassis, line cards, links, and links with use over 50%,
respectively. The K represents the total number of flows in the network.

5.5. Selection Operator

Algorithm 1 shows us that the evolutionary cycle begins with the selection of parents
on line 5. This study uses the tournament selection method [62] to produce new individuals
for the next generation. This operator performs the following steps:

• The size of the tournament Tq is chosen.
• A random permutation is made on the population P.
• The first parent is chosen from the first Tq members.
• The second parent is chosen from the second Tq members.
• Both parents are stored in the mating pool P′.

The selection process is carried out until the size of P′ equals that of the population P.

5.6. Crossover Operator

The crossover method is applied on line 6 of Algorithm 1 for each pair of P′ individuals.
Because a chromosome is an index of flow requests, an orderly crossing is necessary to
produce a valid chromosome, and the partial map crossover (PMX) [63] is used. This
method selects a subset of the permutation vector of the first parent and adds it to the
descent. Next, missing locations are added in the order of the second parent until the
permutation vector of the descent does not have any remaining empty values, as shown in
Figure 7. The new individual is added to the set N, which is carried out until the size of N
equals K − 1.

Figure 7. PMX-based crossover of two parents.

5.7. Mutation Operator

The mutation operator avoids GA converging to a local optimum by introducing new
genetic information to the evolved population. The mutation procedure is applied after the
crossover to each individual in step 7 of Algorithm 1.

Math. Comput. Appl. 2024, 29, 18 15 of 27

The coin is tossed with each individual’s probability of probm. If the probability
indicates no mutation, the individual is copied directly to the set N′; otherwise, the operator
mutates the individual, and it is added to the set N′.

The mutation method must mix genes and never add or remove a gene; otherwise,
an invalid solution would be generated. The type of mutation method used is exchange
mutation [64]. With exchange mutation, two chromosome locations are randomly selected,
and their positions are exchanged.

5.8. New Evolved Population

The generated solutions by the crossing and mutation operations are added to the new
population Pg+1, the best individual of the population Pg. This step is observed in lines
8 and 9 of Algorithm 1. In this context, our implementation is elitist [59]. The algorithm
performs the next evolutionary step until the stop condition is reached.

5.9. Stop Criterion

This implementation runs while the best individual is not updated in the last ∆ iterations.

6. Experimental Tests
6.1. Computational Environment

RDA-MILP is implemented on IBM ILOG CPLEX Optimization Studio Version 12.6
and the metaheuristic algorithm on Java 8. A computer equipped with Intel Core I5 at
1.6 GHz and 16 GB of RAM performs the simulation.

6.2. Experimentation Configurations

The energy saving is calculated on the number of chassis, line cards, and suspended
links, as well as the total number of these elements in the network. The simulations were
performed using real networks and traffic demands compiled from SNDlib [65]. Specifically,
Abilene and Atlanta [65] topologies were used (Figure 8). The first has 12 nodes and
15 links, the second has 15 nodes and 22 links, and the third has 28 nodes and 41 links.
The weightings in the objectives functions λ1 and λ2 = (1− λ1) for the experiments were
λ1 = 0.9 for both RDA-MILP and RDA-GA.

(a) Abilene (b) Atlanta

Figure 8. SNDlib topologies [65].

To implement the RDA-GA, we consider R-Shortest Paths, precalculated with the
value R = 10. For the RDA-GA executions, the values shown in Table 4 were used as
evolutionary parameters based on [66].

Math. Comput. Appl. 2024, 29, 18 16 of 27

Table 4. RDA-GA evolutionary parameters.

Parameter Symbol Value

Population size |P| 100

Tournament size Tq 10

Mutation probability probm 10%

Crossover rate probcr 100%

Stop criterion ∆
The best individual

does not vary in 5 last
iterations

Number of independent runs η 30

Weight in objectives functions λ1 = (1− λ2) 0.9

Since RDA-GA is a stochastic algorithm, each execution performed can present differ-
ent results. Consequently, we ran RDA-GA several independent times for each scenario
studied. The number of performances per scenario is the number of independent runs
parameter in Table 4.

The final results of RDA-GA are the best values obtained in all scenario executions.
In other words, for a scenario with 30 independent runs conducted, the best value of all
results is chosen. Given the stochastic nature of the Genetic Algorithm, these algorithms
do not guarantee convergence to the global optimum in a single iteration; in this case, it is
necessary to have different runs with different starting points in the population.

Then, given a scenario consisting of one topology and some routes and flows, one proceeds
to the following:

1. Locate the controller.
2. Calculate a RDA-MILP solution.
3. Calculate thirty RDA-GA solutions by independent runs.
4. Select the individual with the best fitness and the least number of blockages from the

previous thirty solutions.
5. Perform the solution analysis.

Based on these general steps, the following experimental results are presented.

6.3. Numerical Simulations
6.3.1. Experimental Schema

In this section, the simulations are explained, and the results are analyzed. This study
consists of four parts. In the first part, (a) a controller allocation analysis is performed, in
the second, (b) a performance analysis of RDA-MILP and RDA-GA is compared with other
state-of-the-art works under static traffic scenarios, in the third part, (c) a performance
analysis of RDA-MILP and RDA-GA in incremental traffic scenarios with and without
rerouting is conducted, and finally, (d) a performance analysis under the dynamic traffic of
RDA-GA and compared with the RDA-SP-FF routing strategy based on Shortest Path (SP)
routing and First Fit (FF) device assignment is carried out.

6.3.2. Controller Placement

We evaluated the controller’s location in the topologies mentioned in Section 6.3.1.
We consider all possible controller locations for each topology to determine which reduces
consumption. Tables 5 and 6 show the results obtained at different locations of the controller
considering RDA-MILP.

The traffic demands used in this study correspond to the following instances: Abilene
D-B-M-N-C-A-N-N and Atlanta D-B-M-N-C-A-N-N [65]. Tables 5 and 6 show the energy
consumption for each node and network load level: low, medium, and high. For the low-

Math. Comput. Appl. 2024, 29, 18 17 of 27

demand column, the first ten flows were used. For the medium-demand, the first twenty
flows were considered. Moreover, for the high-demand, the first 30 flows were considered.
The system is saturated for the higher network load number or does not present variations,
so the tables and figures are not presented.

Table 5. Power consumption in Watts (W) for controller locations in Abilene topology.

Name Node v Low Load Medium Load High Load

ATLAM5 1 1872 W 2088 W 2297 W

ATLAng 2 2282 W 2498 W 2496 W

CHINng 3 2073 W 2289 W 2285 W

DNVRng 4 2076 W 2293 W 2355 W

HSTNng 5 2079 W 2294 W 2350 W

IPLSng 6 2280 W 2353 W 2471 W

KSCYng 7 2075 W 2357 W 2413 W

LOSAng 8 1869 W 2289 W 2290 W

NYCMng 9 2075 W 2289 W 2290 W

SNVAng 10 2074 W 2291 W 2290 W

STTLng 11 2079 W 2293 W 2349 W

WASHng 12 2282 W 2291 W 2404 W

Table 6. Power consumption in Watts (W) for controller locations in Atlanta topology.

Name Node v Low Load Medium Load High Load

N1 1 2490 W 2904 W 2908 W

N2 2 2484 W 2899 W 2900 W

N3 3 2485 W 2906 W 2913 W

N4 4 2278 W 2906 W 2909 W

N5 5 2485 W 2907 W 2967 W

N6 6 2487 W 2968 W 3032 W

N7 7 2485 W 2906 W 2912 W

N8 8 2485 W 2904 W 2910 W

N9 9 2485 W 2906 W 2968 W

N10 10 2485 W 2906 W 2909 W

N11 11 2278 W 2907 W 2967 W

N12 12 2485 W 2906 W 2997 W

N13 13 2485 W 2907 W 2968 W

N14 14 2485 W 2907 W 2967 W

N15 15 2485 W 2906 W 2908 W

We present the results obtained by applying the controller location algorithm proposed
in [28]. As can be seen, it returns to several location alternatives. Then, we take the node
that has the average lowest delay. Regarding Abilene, the controller node selection had
a 10% improvement impact, and for Atlanta, the correct placement of the controller node

Math. Comput. Appl. 2024, 29, 18 18 of 27

showed a 2% difference compared with other possible locations. Table 7 shows the nodes
considered as the controller for the next simulation.

Table 7. Nodes selected as controller.

Controller Location Abilene Atlanta

Selected 1 4

Heuristics [28] 1 4, 11, 12, 15

6.3.3. Performance Analysis with Static Traffic

RDA-MILP and RDA-GA were evaluated considering ten sets of 10, 20, . . . , 100 flows (K)
in each topology and were taken from [65,67]. The selected instances were Atlanta D-B-M-N-C-
A-N-N and Abilene D-B-M-N-C-A-N-N. These topologies correspond to real communication
networks [65,67]. The flows were taken in consecutive order, as found in the library. We
also made a comparison with other state-of-the-art works: Wang-Jiang [24], Wang-Jin [14],
Fernandez-Ochoa [28], and Xu-Dai [29]. For each set of flows and topology, the RDA-MILP is
applied considering the controller’s location in Table 7. Nodes four and one were selected as
controllers for Atlanta and Abilene, respectively.

Figure 9 shows the values for Energy Consumption, Percentage Energy Savings,
Execution Time in seconds, and Traffic Allocated. RDA-MILP presents better performance
in energy consumption obtained, and more significant energy savings are obtained than
other state-of-the-art approaches but with a high execution time. As the number of flows
increases, the time grows faster. RDA-GA presents good performance, with the difference
being that the execution time is less than other approaches and, consequently, more scalable
as the number of flows increases.

Figure 10 shows the values of Energy Consumption, Percentage Energy Savings,
Execution Time in seconds, and Traffic Allocated for the Abilene topology. The simulation
presents blocking due to the saturation of elements in the network because this network is
smaller than the preview one.

We can see that the models can only calculate a solution for loads of up to 50 flows as
the network goes into saturation mode. However, RDA-MILP can handle blocking flows,
and RDA-GA performs similarly to RDA-MILP in this scenario.

(a) Energy Consumption (b) Energy Saving

Figure 9. Cont.

Math. Comput. Appl. 2024, 29, 18 19 of 27

(c) Execution Time (d) Demands Allocated

Figure 9. Atlanta topology comparison with static traffic [65].

(a) Energy Consumption (b) Energy Saving

(c) Execution Time (d) Demands Allocated

Figure 10. Abilene topology comparison with static traffic [65].

Math. Comput. Appl. 2024, 29, 18 20 of 27

6.3.4. Performance Analysis with Incremental Traffic with and without Re-Routing

In this scenario, the simulation focuses on incremental semidynamic traffic. The
traffic arrives at the network every certain period and remains until the stop criterion.
The network is loaded with traffic in a monotonous and increasing way. The objective
is to analyze the impact of considering the model developed with an optimal rerouting
approach instead of a suboptimal one without r-erouting the already installed flows. Tests
were performed using RDA-MILP and RDA-GA.

Similar to the simulation of the previous section, ten sets of traffic load were considered
K with sizes of K = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} flows in each topology for time
units t = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, respectively.

The corresponding set of flows Kt−1 ⊂ Kt, where Kt−1 < Kt for t > 1, wherein each
period t arrives ten new flows that are added to the network. In the rerouting approach, at
each time t, a new solution must be recalculated for the set Kt, while in the no-rerouting
approach, only the ten new demands will be considered in the routing calculation, i.e.,
Kt–Kt−1. The paths corresponding to the previous requests Kt−1 are not modified.

Analyzing Figure 11 for the Atlanta topology, we can observe that RDA-MILP and
RDA-GA perform better with the re-routing approach regarding energy consumption than
the nonrouting method. However, the improvement in energy savings is unsubstantial
in the nonrouting approach considering the computation times. As the number of traffic
demands increases, the time increases considerably. For instance, for 100 demands, the
RDA-MILP without rerouting takes only 16 s, while the RDA-MILP with rerouting takes
18.936 s. On the other hand, the RDA-GA without rerouting takes 10 s, whereas the
RDA-GA with re-routing takes 133 s.

In Figure 12, for the Abilene topology, we also observe, as expected, that the re-routing
approach presents an improvement in the energy savings obtained as opposed to the
no-re-routing approach. However, RDA-MILP and RDA-GA continued to run, resulting in
higher flow loads.

Depending on the traffic load and network capacity, it is necessary to consider a no-re-
routing optimization approach, as it is scalable with a solution whose quality is close to
that obtained using the optimal re-routing approach. Another critical aspect of a re-routing
approach is that there are no interruptions in the flow installed in the network, which is
much better in terms of quality of service from the user’s viewpoint. Additionally, the
computational time of the calculation is significantly less as the network load increases.
As the quantity of traffic demands increases, there is a considerable rise in the required
time. For instance, with 100 demands, the RDA-MILP without re-routing takes only 40 s,
whereas the RDA-MILP with re-routing takes 18,995 s. On the other hand, the RDA-GA
without re-routing requires 9 s, while the RDA-GA with re-routing takes 92 s.

(a) Energy consumption (b) Energy Saving

Figure 11. Cont.

Math. Comput. Appl. 2024, 29, 18 21 of 27

(c) Execution Time (d) Demands Allocated

Figure 11. Comparison of incremental traffic without re-routing in Atlanta topology for RDA-MILP
and RDA-GA.

(a) Energy consumption (b) Energy Saving

(c) Execution Time (d) Demands Allocated

Figure 12. Comparison of incremental traffic without re-routing in Abilene topology for RDA-MILP
and RDA-GA.

Math. Comput. Appl. 2024, 29, 18 22 of 27

6.4. Performance Analysis with Dynamic Traffic

For the dynamic case, there is a variation: the traffic load is expressed in Erlangs
units [68], and a uniform distribution [69] is used for the flow arrival rate. The following
assumptions were considered for dynamic scenario testing:

1. Total duration of the experiment Ns = 1000 time units.
2. Average duration of each session u = 10 time units.
3. Traffic load with a variation of 10 Erlangs from 10 to 1000 Erlangs.

4. Session arrival rate per time unit Q = Erlangs
u

5. Number of independent tests per traffic load η = 30.
6. Scheme without rerouting.

Algorithm 5 details the steps taken to perform dynamic tests. The results of the RDA-
GA versus RDA-SP-FF heuristic based on the Shortest Path routing (SP) and the First Fit
(FF) device assignment are compared.

In line 1, the counter i increases to Ns, indicating the average values to be calculated
and graphed. Line 2 calculates the traffic load in terms of Erlang. In line 3, the arrival
rate is calculated, whose value is the quotient between Erlang traffic load and the average
session duration u. In the cycle of lines 4 to 7, the new traffic requirements km are calculated
randomly, and the solution for these requirements is also computed. Line 6 shows the
blockages and energy consumption for the requirement km. In this line, the routing and
resource allocation calculations are performed using RDA-GA or RDA-SP-FF. In the case of
RDA-GA, it is executed 30 times, and the value of the best result is taken. Simultaneously,
RDA-SP-FF is only necessary for execution, given that it is a deterministic algorithm. Lines 8
and 9 show the corresponding traffic load’s average energy consumption and blockages.
Finally, line 11 returns the experiment’s average consumption and blocking vector.

Algorithm 5 Dynamic traffic simulation
Require: Average duration of each session u, session arrival rate per unit of time Q, number

of independent tests per traffic load η, net G = (V, E), flows List K, controller location
Ct, population size, stop criteria, mutation probability and table of T Shortest Paths

Ensure: Average Consumption, Average Blockage
1: for i = 1 to Ns do
2: Erlang = i · 100
3: Q = Erlangs/u
4: for j = 1 to η do
5: K = Get_flow_requirements (Q,G)
6: [Blockagesj;EnergyConsumptionj] = RDA-GA(K,G,Ct,T) or RDA-SP-FF(K,G,Ct)
7: end for
8: AverageConsumptioni = ∑

η
j=1 EnergyConsumptionj/η

9: AverageConsumptioni = ∑
η
j=1 Blockagesj/η

10: end for
11: return AverageConsumption, AverageBlockage.

Figure 13 shows the average energy consumption and the number of blockages for the
Atlanta topology. As the traffic load increases, energy consumption increases but stabilizes
at a maximum value in both algorithms. This fact happens because the network goes into
saturation. Simultaneously, we observed that RDA-GA has lower energy consumption
than RDA-SP-FF. The performance of RDA-SP-FF is similar to RDA-GA in terms of energy
consumption. However, this happens at the expense of a high blocking rate obtained
from RDA-SP-FF, as shown in Figure 13b. Note that RDA-GA has a much smaller number
of blockages.

Math. Comput. Appl. 2024, 29, 18 23 of 27

(a) Energy consumption (b) Blockage Rate

Figure 13. Dynamic traffic comparison in Atlanta topology.

The result is similar to the previous one for the Abilene topology, both in energy
consumption and blockage rate. As the Abilene topology is smaller than Atlanta, we
observe that the energy-saving achieved by RDA-GA is more significant than the RDA-
SP-FF. In general terms, in both topologies, the blocking rate of RDA-GA is much lower
than RDA-SP-FF. For example, when we have 1000 Erlang, the percentage of blocking with
RDA-SP-FF is 92% versus 8% with RDA-GA, as shown in Figure 14b.

(a) Energy consumption (b) Blockage Rate

Figure 14. Comparison of dynamic traffic in Abilene topology.

6.5. Trade-Off Analysis Between Attendance Flows and Energy Consumption

Given the results in previous experiments, a question arises about the relationship
between these optimization criteria. An experiment was performed to answer it under
static traffic using the network topology Abilene with traffic loads of 60, 70, 80, 90, and
100 flows (K). The RDA solutions were calculated with the proposed RDA-MILP in three
configurations: λ1 = 0.1, 0.5, and 0.9. When λ1 decreased, the energy saving mattered
more than the number of blocked flows in the objective function (1). Figure 15 presents
these results for the different traffic loads where the horizontal axis corresponds to the

Math. Comput. Appl. 2024, 29, 18 24 of 27

flow blocking rate and the vertical axis the normalized energy savings. As seen in the
figure, each curve shows a set of trade-off solutions as a function of energy saving and
blocking rate: the higher the energy saving, the higher the blocking rate. In addition,
the Pearson correlation between these criteria amounts to around 94%. These results are
consistent across all traffic loads, so the RDA problem can be addressed in a multiobjective
optimization context.

Figure 15. Trade-off between blockage rate vs energy saving.

7. Conclusions and Future Work

In this paper, we address the problem of optimizing Software-Defined Networking
(SDN) power consumption, considering two issues: the Controller Placement (CP) problem
and the Routing and Device Assignment (RDA) problem. For CP, a study was conducted
that highlights the benefits of considering the placement of the controller node. In RDA,
considering all the devices of the SDN switch proved advantageous for achieving more
significant energy savings, we proposed a Mixed-Integer Linear Programming (MILP)
model and Genetic Algorithm (GA) strategy.

Four experiments were performed. The first experiment determined that the con-
troller’s placement had a significant impact depending on the controller’s location. In this
regard, there was a 10% improvement in energy savings for Abilene and 2% for Atlanta.

The RDA-MILP solution model achieves significant energy savings in the second
experiment compared with the state-of-the-art predecessors’ proposals from Wang-Jiang,
Wang-Jin, Fernandez-Ochoa, and Xu-Dai.

The third experiment examined the significance of re-routing. The results indicate that
the energy savings achieved through a re-routing approach are insignificant compared with
those without re-routing. However, the computational time for calculations with re-routing
increases dramatically with traffic load, while computation times remain constant without
the re-routing approach. Based on the experiments with 100 demands, the RDA-MILP
without re-routing takes only 16 and 40 s, whereas the RDA-MILP with re-routing takes
18,936 and 18,995 s for Abilene and Atlanta, respectively. On the other hand, the RDA-GA
without re-routing requires 9 and 10 s, while the RDA-GA with re-routing takes 92 and
133 s for Atlanta and Abilene, respectively.

In the fourth simulation on dynamic traffic, we observed that energy consumption
reaches a maximum value when the load increases. This consumption is due to all devices
being active in the system. Simultaneously, RDA-GA achieves a considerably lower block-
ing rate than heuristics based on the Shortest Path and the First Fit. The number of blocks
is more significant for smaller network topologies.

Math. Comput. Appl. 2024, 29, 18 25 of 27

As a future work, the authors propose extending the problem by considering other
aspects, such as analyzing the performance of the proposed algorithms based on the traffic
pattern, quality of service, and studying the efficiency of other metaheuristics and machine
learning techniques.

Author Contributions: Conceptualization, methodology, and software, P.P.C.-S. and G.J.R.-R.; val-
idation, P.P.C.-S., D.P.P.-R. and H.L.-A.; investigation, P.P.C.-S. and G.J.R.-R.; writing—review and
editing, P.P.C.-S., G.J.R.-R. and D.P.P.-R.; supervision, H.L.-A. and D.P.P.-R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Council of Sciences and Technology of Paraguay,
with project 14-POS-007 and the Facultad Politécnica, Universidad Nacional de Asunción.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, K.; Gao, H.; Xu, X.; Jiang, J.; Yue, D. An energy-efficient reliable data transmission scheme for complex environmental

monitoring in underwater acoustic sensor networks. IEEE Sens. J. 2015, 16, 4051–4062. [CrossRef]
2. Said, S.B.H.; Petrescu, A. Energy-Efficient Routing in SDN-Based Access Networks. In Greening Video Distribution Networks;

Springer: Berlin/Heidelberg, Germany, 2018; pp. 159–175.
3. Andrae, A.; Edler, T. On global electricity usage of communication technology: Trends to 2030. Challenges 2015, 6, 117–157.

[CrossRef]
4. Tuysuz, M.F.; Ankarali, Z.K.; Gözüpek, D. A survey on energy efficiency in software defined networks. Comput. Netw. 2017,

113, 188–204. [CrossRef]
5. Zhang, M.; Yi, C.; Liu, B.; Zhang, B. GreenTE: Power-aware traffic engineering. In Proceedings of the 18th IEEE International

Conference on Network Protocols, Kyoto, Japan, 5–8 October 2010; pp. 21–30.
6. Nedevschi, S.; Popa, L.; Iannaccone, G.; Ratnasamy, S.; Wetherall, D. Reducing Network Energy Consumption via Sleeping and

Rate-Adaptation. In Proceedings of the NSDI’08: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, San Francisco, CA, USA, 16–18 April 2008; Volume 8, pp. 323–336.

7. Hays, R.; Wertheimer, A.; Mann, E. Active/Idle Toggling with Low-Power Idle. 2008. Available online: https://www.ieee802.org/3/
az/public/jan08/hays_01_0108.pdf (accessed on 15 December 2023)

8. Software-Defined Networking (SDN) Definition. 2019. Available online: https://www.opennetworking.org/sdn-definition
(accessed on 14 December 2023).

9. Akyildiz, I.F.; Lee, A.; Wang, P.; Luo, M.; Chou, W. A roadmap for traffic engineering in SDN-OpenFlow networks. Comput. Netw.
2014, 71, 1–30. [CrossRef]

10. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

11. Assefa, B.G.; Özkasap, Ö. A survey of energy efficiency in SDN: Software-based methods and optimization models. J. Netw.
Comput. Appl. 2019, 137, 127–143. [CrossRef]

12. Wang, Y.; Matta, I. Sdn management layer: Design requirements and future direction. In Proceedings of the 2014 IEEE 22nd
International Conference on Network Protocols, Raleigh, NC, USA, 21–24 October 2014; pp. 555–562.

13. Vieira, A.B.; Paraizo, W.N.; Chaves, L.J.; Correia, L.H.; Silva, E.F. An SDN-based energy-aware traffic management mechanism.
Ann. Telecommun. 2022, 77, 139–150. [CrossRef]

14. Wang, H.; Li, Y.; Jin, D.; Hui, P.; Wu, J. Saving energy in partially deployed software defined networks. IEEE Trans. Comput. 2015,
65, 1578–1592. [CrossRef]

15. Pardalos, P.M.; Vavasis, S.A. Open questions in complexity theory for numerical optimization. Math. Program. 1992, 57, 337–339.
[CrossRef]

16. Tipantuña Tenelema, C.J. Contributions to Energy-Aware Demand-Response Systems Using SDN and NFV for fog Computing.
Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2022.

17. Giroire, F.; Mazauric, D.; Moulierac, J.; Onfroy, B. Minimizing routing energy consumption: From theoretical to practical results.
In Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber,
Physical and Social Computing, Hangzhou, China, 18–20 December 2010; pp. 252–259.

18. Fernández Fernández, A. Energy-Aware Routing Techniques for Software-Defined Networks. Ph.D. Thesis, Universitat Politècnica
de Catalunya, Barcelona, Spain, 2018.

19. Amin, R.; Rojas, E.; Aqdus, A.; Ramzan, S.; Casillas-Perez, D.; Arco, J.M. A survey on machine learning techniques for routing
optimization in SDN. IEEE Access 2021, 9, 104582–104611. [CrossRef]

http://doi.org/10.1109/JSEN.2015.2428712
http://dx.doi.org/10.3390/challe6010117
http://dx.doi.org/10.1016/j.comnet.2016.12.012
https://www.ieee802.org/3/az/public/jan08/hays_01_0108.pdf
https://www.ieee802.org/3/az/public/jan08/hays_01_0108.pdf
https://www.opennetworking.org/sdn-definition
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1016/j.jnca.2019.04.001
http://dx.doi.org/10.1007/s12243-021-00863-x
http://dx.doi.org/10.1109/TC.2015.2451662
http://dx.doi.org/10.1007/BF01581088
http://dx.doi.org/10.1109/ACCESS.2021.3099092

Math. Comput. Appl. 2024, 29, 18 26 of 27

20. Fernández-Fernández, A.; Cervelló-Pastor, C.; Ochoa-Aday, L. A multi-objective routing strategy for QoS and energy awareness
in software-defined networks. IEEE Commun. Lett. 2017, 21, 2416–2419. [CrossRef]

21. Schaap, M.; Intelligentie, B.O.K.; Grosso, P.; Moghaddam, F.A. Saving Energy in OpenFlow Computer Networks; Faculty of Science,
Universisty of Amsterdam: Amsterdam, The Netherlands, 2015.

22. NEC. NEC ProgrammableFlow-UNIVERGEPF5240; NEC: Tokyo, Japan, 2012.
23. Afaq, M.; Rehman, S.; Song, W.C. Large flows detection, marking, and mitigation based on sFlow standard in SDN. J. Korea

Multimed. Soc. 2015, 18, 189–198. [CrossRef]
24. Wang, R.; Jiang, Z.; Gao, S.; Yang, W.; Xia, Y.; Zhu, M. Energy-aware routing algorithms in software-defined networks. In

Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney,
Australia, 19 June 2014; pp. 1–6.

25. Priyadarsini, M.; Bera, P.; Rahman, M.A. A new approach for energy efficiency in software defined network. In Proceedings of
the 2018 Fifth International Conference on Software Defined Systems (SDS), Barcelona, Spain, 23–26 April 2018; pp. 67–73.

26. Heller, B.; Seetharaman, S.; Mahadevan, P.; Yiakoumis, Y.; Sharma, P.; Banerjee, S.; McKeown, N. Elastictree: Saving energy
in data center networks. In Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation
(NSDI’10), San Jose, CA, USA, 28–30 April 2010; Volume 10, pp. 249–264.

27. Awad, M.K.; Rafique, Y.; M’Hallah, R.A. Energy-aware routing for software-defined networks with discrete link rates: A benders
decomposition-based heuristic approach. Sustain. Comput. Inform. Syst. 2017, 13, 31–41. [CrossRef]

28. Fernández-Fernández, A.; Cervelló-Pastor, C.; Ochoa-Aday, L. Improved energy-aware routing algorithm in software-defined
networks. In Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks (LCN), Dubai, United Arab Emirates,
7–10 November 2016; pp. 196–199.

29. Xu, G.; Dai, B.; Huang, B.; Yang, J. Bandwidth-aware energy efficient routing with sdn in data center networks. In Proceedings of
the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems,
New York, NY, USA, 24–26 August 2015; pp. 766–771.

30. Xie, K.; Huang, X.; Hao, S.; Ma, M.; Zhang, P.; Hu, D. MC: Improving Energy Efficiency via Elastic Multi-Controller SDN in Data
Center Networks. IEEE Access 2016, 4, 6780–6791. [CrossRef]

31. Das, T.; Sridharan, V.; Gurusamy, M. A Survey on Controller Placement in SDN. IEEE Commun. Surv. Tutor. 2020, 22, 472–503.
[CrossRef]

32. Kgogo, T.; Isong, B.; Lugayizi, F.; Abu-Mahfouz, A.M. A Survey of Resource Allocation and Controller Placement Problem
in SDN-SDWSN. In Proceedings of the 2021 3rd International Multidisciplinary Information Technology and Engineering
Conference (IMITEC), Los Alamitos, CA, USA, 23–25 November 2021; pp. 1–8. [CrossRef]

33. Mbodila, M.; Isong, B.; Gasela, N. A Review of SDN-Based Controller Placement Problem. In Proceedings of the 2020 2nd
International Multidisciplinary Information Technology and Engineering Conference (IMITEC), Kimberley, South Africa, 25–27
November 2020; pp. 1–7. [CrossRef]

34. Kumari, A.; Sairam, A.S. A survey of controller placement problem in software defined networks. arXiv 2019, arXiv:1905.04649.
35. Wang, G.; Zhao, Y.; Huang, J.; Wang, W. The controller placement problem in software defined networking: A survey. IEEE Netw.

2017, 31, 21–27. [CrossRef]
36. Lu, J.; Zhang, Z.; Hu, T.; Yi, P.; Lan, J. A survey of controller placement problem in software-defined networking. IEEE Access

2019, 7, 24290–24307. [CrossRef]
37. Shirmarz, A.; Ghaffari, A. Taxonomy of controller placement problem (CPP) optimization in Software Defined Network (SDN): A

survey. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10473–10498. [CrossRef]
38. Hu, Y.; Luo, T.; Beaulieu, N.C.; Deng, C. The energy-aware controller placement problem in software defined networks. IEEE

Commun. Lett. 2016, 21, 741–744. [CrossRef]
39. Ruiz-Rivera, A.; Chin, K.W.; Soh, S. GreCo: An energy aware controller association algorithm for software defined networks.

IEEE Commun. Lett. 2015, 19, 541–544. [CrossRef]
40. Bolla, R.; Bruschi, R.; Davoli, F.; Lombardo, C. Fine-grained energy-efficient consolidation in SDN networks and devices. IEEE

Trans. Netw. Serv. Manag. 2015, 12, 132–145. [CrossRef]
41. Heller, B.; Sherwood, R.; McKeown, N. The controller placement problem. In Proceedings of the First Workshop on Hot Topics in

Software Defined Networks, Helsinki, Finland, 13 August 2012; ACM: New York, NY, USA, 2012; pp. 7–12.
42. Jimenez, Y.; Cervello-Pastor, C.; García, A.J. On the controller placement for designing a distributed SDN control layer. In

Proceedings of the 2014 IFIP Networking Conference, Trondheim, Norway, 2–4 June 2014; pp. 1–9.
43. Bari, M.F.; Roy, A.R.; Chowdhury, S.R.; Zhang, Q.; Zhani, M.F.; Ahmed, R.; Boutaba, R. Dynamic Controller Provisioning in

Software Defined Networks. In Proceedings of the CNSM, Zurich, Switzerland, 14–18 October 2013; pp. 18–25.
44. Sood, K.; Xiang, Y. The controller placement problem or the controller selection problem? J. Commun. Inf. Netw. 2017, 2, 1–9.

[CrossRef]
45. Sahoo, K.S.; Sahoo, B. CAMD: A switch migration based load balancing framework for software defined networks. IET Netw.

2019, 8, 264–271. [CrossRef]
46. Xiao, P.; Qu, W.; Qi, H.; Li, Z.; Xu, Y. The SDN controller placement problem for WAN. In Proceedings of the 2014 IEEE/CIC

International Conference on Communications in China (ICCC), Shanghai, China, 13–15 October 2014; pp. 220–224.

http://dx.doi.org/10.1109/LCOMM.2017.2741944
http://dx.doi.org/10.9717/kmms.2015.18.2.189
http://dx.doi.org/10.1016/j.suscom.2016.11.003
http://dx.doi.org/10.1109/ACCESS.2016.2617871
http://dx.doi.org/10.1109/COMST.2019.2935453
http://dx.doi.org/10.1109/IMITEC52926.2021.9714659
http://dx.doi.org/10.1109/IMITEC50163.2020.9334130
http://dx.doi.org/10.1109/MNET.2017.1600182
http://dx.doi.org/10.1109/ACCESS.2019.2893283
http://dx.doi.org/10.1007/s12652-020-02754-w
http://dx.doi.org/10.1109/LCOMM.2016.2645558
http://dx.doi.org/10.1109/LCOMM.2015.2394457
http://dx.doi.org/10.1109/TNSM.2015.2431074
http://dx.doi.org/10.1007/s41650-017-0030-x
http://dx.doi.org/10.1049/iet-net.2018.5166

Math. Comput. Appl. 2024, 29, 18 27 of 27

47. Lange, S.; Gebert, S.; Zinner, T.; Tran-Gia, P.; Hock, D.; Jarschel, M.; Hoffmann, M. Heuristic approaches to the controller
placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manag. 2015, 12, 4–17. [CrossRef]

48. Ksentini, A.; Bagaa, M.; Taleb, T.; Balasingham, I. On using bargaining game for optimal placement of SDN controllers. In
Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6.

49. Ksentini, A.; Bagaa, M.; Taleb, T. On using SDN in 5G: The controller placement problem. In Proceedings of the 2016 IEEE Global
Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6.

50. Rath, H.K.; Revoori, V.; Nadaf, S.M.; Simha, A. Optimal controller placement in Software Defined Networks (SDN) using a
non-zero-sum game. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, Sydney, Australia, 19 June 2014; pp. 1–6.

51. Sallahi, A.; St-Hilaire, M. Optimal model for the controller placement problem in software defined networks. IEEE Commun. Lett.
2014, 19, 30–33. [CrossRef]

52. Hock, D.; Hartmann, M.; Gebert, S.; Jarschel, M.; Zinner, T.; Tran-Gia, P. Pareto-optimal resilient controller placement in SDN-based
core networks. In Proceedings of the 2013 25th International Teletraffic Congress (ITC), Shanghai, China, 10–12 September 2013;
pp. 1–9.

53. Hu, Y.; Wendong, W.; Gong, X.; Que, X.; Shiduan, C. Reliability-aware controller placement for software-defined networks. In
Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Zhangjiajie, China,
10–12 August 2019; pp. 672–675.

54. Müller, L.F.; Oliveira, R.R.; Luizelli, M.C.; Gaspary, L.P.; Barcellos, M.P. Survivor: An enhanced controller placement strategy
for improving SDN survivability. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA,
8–12 December 2014; pp. 1909–1915.

55. Sahoo, K.S.; Sarkar, A.; Mishra, S.K.; Sahoo, B.; Puthal, D.; Obaidat, M.S.; Sadun, B. Metaheuristic solutions for solving controller
placement problem in SDN-based WAN architecture. In Proceedings of the ICETE 2017-Proceedings of the 14th International
Joint Conference on e-Business and Telecommunications, Madrid, Spain, 24–26 July 2017.

56. Zuo, Q.; Chen, M.; Ding, K.; Xu, B. On generality of the data plane and scalability of the control plane in software-defined
networking. China Commun. 2014, 11, 55–64. [CrossRef]

57. Rankothge, W.; Le, F.; Russo, A.; Lobo, J. Experimental results on the use of genetic algorithms for scaling virtualized network
functions. In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN), San Francisco, CA, USA, 18–21 November 2015; pp. 47–53.

58. Nagib, G.; Ali, W.G. Network routing protocol using genetic algorithms. Int. J. Electr. Comput. Sci. IJECS-IJENS 2010, 10, 40–44.
59. Baker, B.M.; Ayechew, M. A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 2003, 30, 787–800. [CrossRef]
60. Yen, J.Y. Finding the k shortest loopless paths in a network. Manag. Sci. 1971, 17, 712–716. [CrossRef]
61. Hunt, C. TCP/IP Network Administration; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2002; Volume 2.
62. Valencia, P.E. Optimización mediante algoritmos genéticos. An. Inst. Ing. Chile 1997, 109, 83–92.
63. Goldberg, D.E.; Lingle, R. Alleles, Loci, and the Traveling Salesman Problem. In Proceedings of the International Conference on

Genetic Algorithms and Their Applications; Lawrence Erlbaum: Hillsdale, NJ, USA, 1985; Volume 154, pp. 154–159.
64. Moratilla, A.; Fernández, E.; Sánchez, J.J.; Vicario, B. Selección óptima de operadores para el tratamiento de problemas VRP con

Algorítmos Genéticos. In Proceedings of the Cuarta Conferencia Iberoamericana de Complejidad, Informática y Cibernética:
CICIC, Orlando, FL, USA, 4–7 March 2014.

65. Orlowski, S.; Wessäly, R.; Pióro, M.; Tomaszewski, A. SNDlib 1.0—Survivable network design library. Netw. Int. J. 2010,
55, 276–286. [CrossRef]

66. Ortiz, Y.M.; Pinto-Roa, D.P. Routing and Spectrum Allocation in Elastic Optical Networks Based on Multi-Objective Genetic Algorithm.
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. Available online: https://proceedings.sbmac.
org.br/sbmac/article/view/1871 (accessed on 15 December 2023).

67. Knight, S.; Nguyen, H.X.; Falkner, N.; Bowden, R.; Roughan, M. The internet topology zoo. IEEE J. Sel. Areas Commun. 2011,
29, 1765–1775. [CrossRef]

68. Parkinson, R. Traffic Engineering Techniques in Telecommunications; Infotel Systems Corp.: Richmond, VA, USA, 2002. Available
online: http://tarrani.net/mike/docs/TrafficEngineering.pdf (accessed on 14 December 2023).

69. Chou, Y.L.; Armer, V.A. Análisis Estadístico; Technical Report; Interamericana: Buenos Aires, Argentina, 1977.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNSM.2015.2402432
http://dx.doi.org/10.1109/LCOMM.2014.2371014
http://dx.doi.org/10.1109/CC.2014.6821737
http://dx.doi.org/10.1016/S0305-0548(02)00051-5
http://dx.doi.org/10.1287/mnsc.17.11.712
http://dx.doi.org/10.1002/net.20371
https://proceedings.sbmac.org.br/sbmac/article/view/1871
https://proceedings.sbmac.org.br/sbmac/article/view/1871
http://dx.doi.org/10.1109/JSAC.2011.111002
http://tarrani.net/mike/docs/TrafficEngineering.pdf

	Introduction
	The Problem
	Key Contributions

	Related Works
	Optimal Device Usage Strategy
	MILP Model Formulation
	Genetic Algorithm
	RDA-GA
	Chromosome Representation
	Initial Population
	Evaluation
	Routing
	Device Assignment
	Energy Consumption Calculation

	Selection Operator
	Crossover Operator
	Mutation Operator
	New Evolved Population
	Stop Criterion

	Experimental Tests
	Computational Environment
	Experimentation Configurations
	Numerical Simulations
	Experimental Schema
	Controller Placement
	Performance Analysis with Static Traffic
	Performance Analysis with Incremental Traffic with and without Re-Routing

	Performance Analysis with Dynamic Traffic
	Trade-Off Analysis Between Attendance Flows and Energy Consumption

	Conclusions and Future Work
	References

