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Abstract: In this study, a new generalized fractal–fractional (FF) derivative is proposed. By applying
this definition to some elementary functions, we show its compatibility with the results of the FF
derivative in the Caputo sense with the power law. The main elements of classical differential
calculus are introduced in terms of this new derivative. Thus, we establish and demonstrate the
basic operations with derivatives, chain rule, mean value theorems with their immediate applications
and inverse function’s derivative. We complete the theory of generalized FF calculus by proposing
a notion of integration and presenting two important results of integral calculus: the fundamental
theorem and Barrow’s rule. Finally, we analytically solve interesting FF ordinary differential equations
by applying our proposed definition.

Keywords: fractal–fractional differentiation; fractal–fractional integration; fractal–fractional deriva-
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1. Introduction

The theory of fractional calculus has interested many researchers, as a theoretical
extension of classical mathematical analysis that has also been successfully applied to solve
important problems in different scientific disciplines. In the evolution of the definition
of fractional derivatives, two formulations have been proposed: a non-local approach
and another based on a local conception. The non-local concept of a fractional derivative,
which has played a fundamental role in the development of fractional calculus, includes
well-known definitions such as the Riemann–Liouville (RL) and Caputo (C) derivatives.
The key properties and applications of these definitions are mentioned in [1–3].

Classical fractional derivatives, such as C and RL derivatives, have both advantages
and disadvantages. However, in these definitions of derivatives, the linearity property is
satisfied, and they do not possess certain essential properties of the ordinary derivative. For
instance, the non-zero RL derivative of a constant differs from the behavior of the ordinary
derivative. Furthermore, these definitions lack the fundamental properties of the ordinary
derivative, including product, quotient, and chain rules. However, the C derivative is only
defined for differentiable functions.

The local formulation of non-integer order derivatives arises with the idea of over-
coming the disadvantages associated with non-local fractional derivatives. The definitions
of local fractional derivatives are established based on incremental ratios. A well-known
definition in this category is the conformable derivative, introduced by Khalil et al. [4].
This definition successfully addresses some of the limitations of non-local fractional deriva-
tives. Furthermore, conformable calculus offers a direct approach for obtaining analytical
solutions for various applications of fractional calculus problems. However, according
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to [5], the conformable derivative has a disadvantage, and its results cannot be considered
satisfactory in comparison to the C definition for certain functions. Recently, in [6], a new
generalized derivative of non-integer order, the so-called Abu-Shady–Kaabar derivative,
allows fractional differential equations to be solved analytically in a simple way, whose
results are in exact agreement with those obtained through the RL or C derivative. Further-
more, the study of this new derivative has been extended to important fields of classical
analysis, such as special functions or the fixed-point theorem [7,8].

On the other hand, another notable non-integer local differential operator is the so-
called fractal derivative introduced in [9]. This derivative is established from the fractal
definition, and it has been used to model various scientific phenomena concerning power
law scaling, such as quantum mechanics and turbulence [9,10].

Some recent research studies have proven the internal connection between fractional
calculus and fractal calculus in the context of geometry where the fractal dimension of
the function with a fractional order can be modified via the change in fractional calculus
formulation [11] (see also [12] for more recent research about the connection between them
via the approximation of continuous functions).

In [13], a hybrid approach of differentiation that combines both fractional and fractal
differentiations is introduced. In this new differential operator, various properties (mem-
ory effect, heterogeneity, elastic viscosity, and fractal geometry) of the dynamic system
are considered.

Based on the existing literature and the limitations of non-local fractional derivatives,
our research aims to introduce a new local FF derivative and explore its fundamental
properties. To accomplish this objective, we structured our study into several stages, which
are outlined as follows:

1. The definition of the generalized FF derivative of order α is introduced in this study,
which produces results consistent with the outcomes obtained using the FF derivative
of order α in the C sense with power law, as mentioned in [13].

2. Furthermore, we establish the fundamental elements of generalized FF calculus,
including operations with generalized FF α, γ-differentiable functions, the chain rule,
mean value theorems, and the inverse function theorem.

3. Then, we define the generalized fractal α, γ-integral and present two significant results
of integral calculus, namely the fundamental theorem of calculus and Barrow’s rule,
in this context.

4. Finally, we give some interesting applications of the proposed derivative to FF ordi-
nary differential equations.

5. Our results are original and novel because they provide a simple mathematical tool
that can be applied efficiently in modeling various systems and phenomena, proposed
with fractional order and fractal dimension, in sciences, engineering, economics, and
medicine, where the connection between both fractional calculus and fractal geometry
can play an important role in studying those systems.

2. Preliminaries

The fundamental notions are established, which will be necessary for the development
of our research. Thus, the FF derivative of a function in the C sense with power law is
defined as [13]:

Definition 1. Assume that f (t) is differentiable on interval [ a, ∞) , with a ≥ 0; if f is fractal
differentiable on [ a, ∞) with order γ, then the FF derivative of f of order α in C sense with power
law is written as:

FF
a Dα,γ

t f (t) =
1

Γ(n − α)

∫ t

a
(t − τ)n−α−1 d f (τ)

dτγ
dτ, n − 1 < α, γ ≤ n, n ∈ N, (1)
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where
d f (τ)
dτγ

= lim
t→τ

f (t)− f (τ)
tγ − τγ

. (2)

Remark 1. Note that d f (τ)
dτγ given in Equation (2) is the fractal derivative of order γ, with γ > 0,

introduced in [9,10].

Remark 2. In particular, if a = 0 and n = 1, Equation (1) reduces to the following equation

FF
0 Dα,γ

t f (t) =
1

Γ(1 − α)

∫ t

0
(t − τ)−α d f (τ)

dτγ
dτ. (3)

Remark 3. It is easy to prove that the fractal derivative of a function can be written in terms of the
classical derivative as follows:

d f (τ)
dτγ

=
1
γ

τ1−γ d f (τ)
dτ

. (4)

Now, we establish two interesting results on the FF derivative of order α defined in
Equation (3), which will be useful in the developments that we include in the next section.

Theorem 1. Let 0 < α, γ < 1, and λ > −1. Then, we have:

FF
0 Dα,γ

t (tλ) =
λΓ(λ − γ + 1)

γΓ(λ − α − γ + 2)
tλ−α−γ+1. (5)

Proof. Using the classic definitions of the alpha and beta functions, Equations (3) and (4),
and the change of variables τ = tu, we obtain

FF
0 Dα,γ

t
(
tλ
)
= 1

Γ(1−α)

∫ t
0 (t − τ)−α d(τλ)

dτγ dτ = 1
γΓ(1−α)

∫ t
0 (t − τ)−ατ1−γ d(τλ)

dτ dτ =

λtλ−α−γ+1

γΓ(1−α)

∫ 1
0 uλ−γ(1 − u)−αdu = λ

γΓ(1−α)
β(λ − γ + 1, 1 − α)tλ−α−γ+1 =

λ
βΓ(1−α)

Γ(λ−γ+1)Γ(1−α)
Γ(λ−α−γ+2) tλ−α−γ+1 = λΓ(λ−γ+1)

γΓ(λ−α−γ+2) tλ−α−γ+1.

□

Remark 4. Note that if f (t) = c for every real constant c, then FF
0 Dα,γ

t (c) = 0.

Theorem 2. Let 0 < α, γ < 1. Suppose that a function f (t) analytic at the origin with McLaurin
expansion given by:

f (t) =
∞

∑
k=0

aktk, (6)

for t ∈ [0, r) with r ∈ R+. Then, we have:

FF
0 Dα,γ

t f (t) =
∞

∑
k=0

ak
FF
0 Dα,γ

t

(
tk
)

. (7)

Proof. Using Equation (3) to the function f (t) with the series expansion, we have:

FF
0 Dα,γ

t f (t) = 1
Γ(1−α)

∫ t
0 (t − τ)−α d

dτγ

(
∞
∑

k=0
akτk

)
dτ =

1
Γ(1−α)

∫ t
0 (t − τ)−α 1

γ τ1−γ d
dτ

(
∑∞

k=0 akτk
)

dτ.
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Since the power series converges uniformly on any closed interval [0, ρ] with 0 < ρ < r, we
can integrate term by term in the above equation [14]. Thus,

FF
0 Dα,γ

t f (t) =
∞
∑

k=0
ak

1
Γ(1−α)

∫ t
0 (t − τ)−α 1

γ τ1−γ d(τk)
dτ dτ =

∑∞
k=0 ak

1
Γ(1−α)

∫ t
0 (t − τ)−α d(τk)

dτγ dτ = ∑∞
k=0 ak

FF
0 Dα,γ

t

(
tk
)

.

□

Remark 5. From Theorem 1, Equation (7) can be expressed as:

FF
0 Dα,γ

t f (t) = ∑∞
k=1 ak

kΓ(k − γ + 1)
γΓ(k − α − γ + 2)

tk−α−γ+1. (8)

3. Generalized Fractal–Fractional Derivative and Its Properties

A new local type of FF derivative is discussed in this section based on Definition 1 and
Theorems 1 and 2, established in the previous section. Likewise, we present and prove the
main properties of this proposed derivative.

Definition 2. For function f : [0, ∞ ) → R, the generalized FF (GFF) derivative of order 0 < α ≤ 1,
of f at t > 0 is written as:

GFFDα,γ f (t) = lim
ε→0

f
(
t + εM(α, γ, λ)t2−α−γ

)
− f (t)

ε
, (9)

where M(α, γ, λ) =
Γ(λ−γ+1)

γΓ(λ−α−γ+2) with 0 < γ ≤ 1 and λ > −1.

If f is GFF α, γ-differentiable in some (0, a), a > 0, and lim
t→0+

GFFDα,γ f (t) exists, then it is

expressed as:

GFFDα,γ f (0) = lim
t→0+

GFFDα,γ f (t). (10)

Remark 6. It is interesting to highlight some special cases of Definition 2:

(i) If α = γ = 1, then Equation (9) becomes the classical definition of the derivative.
(ii) If γ = 1, then Equation (9) becomes the definition of Abu-Shady–Kaabar fractional derivative

of order α proposed in [6].
(iii) If α = 1, then Equation (9) becomes the definition of fractal derivative of order γ introduced

in [9,10].

Theorem 3. Let 0 < α, γ ≤ 1, and let f be generalized fractal α, γ-differentiable at a
point t > 0. If, additionally, f is differentiable function, then

GFFDα,γ f (t) = M(α, γ, λ)t2−α−γ d f (t)
dt

, (11)

where M(α, γ, λ) =
Γ(λ−γ+1)

γΓ(λ−α−γ+2) with λ > −1.

Proof. Let h = εM(α, γ, λ)t2−α−γ in Equation (9), and then ε = h
M(α,γ,λ) tα+γ−2. Therefore,

GFFDα,γ f (t) = lim
h→0

f (t+h)− f (t)
h

M(α,γ,λ) tα+γ−2 = M(α, γ, λ)t2−α−γ lim
h→0

f (t+h)− f (t)
h =

M(α, γ, λ)t2−α−γ d f (t)
dt .

□
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Remark 7. Note that if 0 < α ≤ 1, γ = 1, and λ > −1, then Equation (9) can be written as:

GFFDα,γ f (t) = M(α, 1, λ)t1−α d f (t)
dt

= M(α, 1, λ)Tα f (t),

where Tα is the conformable derivative of order α introduced in [4].

Remark 8. Consider a function f (t) = tλ, λ > −1. Using Theorem 3, the following result is
easily obtained,

GFFDα,γ(tλ
)
= M(α, γ, λ)t2−α−γλtλ−1

= λΓ(λ−γ+1)
γΓ(λ−α−γ+2) tλ−α−γ+1.

(12)

Note that the above result is compatible with the result of the FF derivative of order α in the C
sense with power law expressed in Equation (1).

Theorem 4. If a function f : [0, ∞) → R is GFF α, γ -differentiable at t0, 0 < α, γ ≤ 1, λ > −1,
then f is continuous at t0.

Proof. Since

f
(

t0 + εM(α, γ, λ)t2−α−γ
0

)
− f (t0) =

f
(

t0 + εM(α, γ, λ)t2−α−γ
0

)
− f (t0)

ε
ε,

Then,

lim
ε→0

[
f
(

t0 + εM(α, γ, λ)t2−α−γ
0

)
− f (t0)

]
= lim

ε→0

f
(

t0 + εM(α, γ, λ)t2−α−γ
0

)
− f (t0)

ε
.lim
ε→0

ε,

Let h = εM(α, γ, λ)t2−α−γ
0 . Then,

lim
h→0

f (t0 + h)− f (t0) = 0,

which implies that
lim
h→0

f (t0 + h) = f (t0),

Hence, f is continuous at t0. □

Theorem 5. Let 0 < α, γ ≤ 1, λ > −1 and let f , g be GFF α, γ -differentiable at a point t > 0.
Then, we have:

(i) GFFDα,γ(a f + bg)(t) = a GFFDα,γ f (t) + b GFFDα,γg(t), ∀a, b ∈ R.
(ii) GFFDα,γ(µ) = 0,∀ constant functions f (t) = µ.
(iii) GFFDα,γ( f g)(t) = f (t)GFFDα,γg(t) + g(t)GFFDα,γ f (t).

(iv) GFFDα,γ
(

f
g

)
(t) = g(t)GFF Dα,γ f (t)− f (t)GFF Dα,γg(t)

[g(t)]2
.
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Proof. Parts (i) and (ii) are followed directly from the mentioned definition. Let us only
show (iii) since it is important. Now, for fixed t > 0,

GFFDα,γ[ f g](t) = lim
ε→0

f (t+εM(α,γ,λ)t2−α−γ)g(t+εM(α,γ,λ)t2−α−γ)− f (t)g(t)
ε

= lim
ε→0

f (t+εM(α,γ,λ)t2−α−γ)g(t+εM(α,γ,λ)t2−α−γ)− f (t+εM(α,γ,λ)t2−α−γ)g(t)
ε

+ lim
ε→0

f (t+εM(α,γ,λ)t2−α−γ)g(t)− f (t)g(t)
ε

= lim
ε→0

[
f
(
t + εM(α, γ, λ)t2−α−γ

)
· g(t+εM(α,γ,λ)t2−α−γ)−g(t)

ε

]
+ g(t)

· lim
ε→0

f (t+εM(α,γ,λ)t2−α−γ)− f (t)
ε

= lim
ε→0

f
(
t + εM(α, γ, λ)t2−α−γ

)
·GFFDα,γg(t) + g(t)·GFFDα,γ f (t),

Since f is continuous at t, lim
ε→0

f
(
t + εM(α, γ, λ)t2−α−γ

)
= f (t), this completes the proof of

parts (iii) and (iv), which can be proven in a similar way. □

Remark 9. Now, we show that the results obtained by applying this derivative proposed for certain
elementary functions are compatible with the results of the FF derivative of order α in the C sense
with power law as in Equation (1).

(i) Exponential function f (t) = eγt, γ ∈ C.

Using the fact that eγt = ∑∞
k=0

γk

k! tk, we have

GFFDα,γ(eγt) = ∑∞
k=0

γk

k!
GFFDα,γ

(
tk
)

,

From Remark 8, we get:
GFFDα,γ

(
tk
)
= FF

0 Dα,γ
(

tk
)

Finally, the following result is obtained,

GFFDα,γ(eγt) = FF
0 Dα,γ(eγt), (13)

(ii) Sine function f (t) = sinϑt.

Using the fact that sinϑt = 1
2i
(
eiϑt − e−iϑt), we have:

GFFDα,γ(sinϑt) =
1
2i

(
GFFDα,γ

(
eiϑt
)
− GFFDα,γ

(
e−iϑt

))
,

From (13), we obtain:

GFFDα,γ(sinϑt) =
1
2i

(
FF
0 Dα,γ

(
eiϑt
)
− FF

0 Dα,γ
(

e−iϑt
))

= FF
0 Dα,γ

(
1
2i

(
eiϑt − e−iϑt

))
,

Finally, the following result is obtained:

GFFDα,γ(sinϑt) = FF
0 Dα,γ(sinϑt), (14)

(iii) Cosine function f (t) = cosϑt.

Using the fact that cosϑt = 1
2
(
eiϑt + e−iϑt), we have:

GFFDα,γ(cosϑt) =
1
2

(
GFFDα,γ

(
eiϑt
)
+ GFFDα,γ

(
e−iϑt

))
,
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From (13), we obtain:

GFFDα,γ(cosϑt) =
1
2

(
FF
0 Dα,γ

(
eiϑt
)
+ FF

0 Dα,γ
(

e−iϑt
))

= FF
0 Dα,γ

(
1
2

(
eiϑt + e−iϑt

))
,

Finally, the following result is obtained,

GFFDα,γ(cosϑt) = GFFDα,γ(cosϑt). (15)

Now, we establish a fundamental result of classical mathematical analysis, the chain
rule, in the context of FF calculus. Note that this extension is possible due to the local
character of the proposed GFF derivative.

Theorem 6 (Chain Rule). Let 0 < α, γ ≤ 1, λ > −1, g GFF α, γ-differentiable at t > 0 and f is
differentiable at g(t), then

GFFDα,γ( f og)(t) = f ′(g(t))GFFDα,γg(t), (16)

Proof. We show the result via the standard limit approach. If the function g is constant in a
neighbourhood of a > 0, then GFFDα,γ( f og)(t) = 0. If g is not constant in a neighbourhood
of a > 0, we can find a t0 > 0, such that g(t1) ̸= g(t2) for any t1, t2 ∈ (a − t0, a + t0). Now,
since g is continuous at a, for a sufficiently small ϵ, we have:

GFFDα,γ( f og)(t)(a) = lim
ε→0

f (g(a+εM(α,γ,λ)a2−α−γ))− f (g(a))
ε =

lim
ε→0

[
f (g(a+εM(α,γ,λ)a2−α−γ))− f (g(a))

g(a+εM(α,γ,λ)a2−α−γ)−g(a) · g(a+εM(α,γ,λ)a2−α−γ)−g(a)
ε

]
=

lim
ε→0

f (g(a+εM(α,γ,λ)a2−α−γ))− f (g(a))
g(a+εM(α,γ,λ)a2−α−γ)−g(a) ·lim

ε→0

g(a+εM(α,γ,λ)a2−α−γ)−g(a)
ε ,

Taking
ε0 = g

(
a + εM(α, γ, λ)a2−α−γ

)
− g(a).

In the first factor, we have:

lim
ε→0

f
(

g
(
a + εM(α, γ, λ)a2−α−γ

))
− f (g(a))

g(a + εM(α, γ, λ)a2−α−γ)− g(a)
= lim

ε0→0

f (g(a) + ε0)− f (g(a))
ε0

,

And from here

GFFDα,γ( f og)(t)(a) = lim
ε0→0

f (g(a)+ε0)− f (g(a))
ε0

·lim
ε→0

g(a+εM(α,γ,λ)a2−α−γ)−g(a)
ε

= f ′(g(a))GFFDα,γg(a).

The proof is completed. □

Remark 10. From the result above, it is easy to obtain the GFF derivative of order α of the following
elementary functions:

(i) GFFDα,γ
(

γ
(α+γ−1)Γ(α) tα+γ−1

)
= 1,

(ii) GFFDα,γ
(

e
γ

(α+γ−1)Γ(α) tα+γ−1
)
= e

γ
(α+γ−1)Γ(α) tα+γ−1

,

(iii) GFFDα,γ
(

sin
(

γ
(α+γ−1)Γ(α) tα+γ−1

))
= cos

(
γ

(α+γ−1)Γ(α) tα+γ−1
)

,

(iv) GFFDα,γ
(

cos
(

γ
(α+γ−1)Γ(α) tα+γ−1

))
= −sin

(
γ

(α+γ−1)Γ(α) tα+γ−1
)

,
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Remark 11. Using the fact that differentiability implies GFF α, γ-differentiability and assum-
ing g(t) > 0, Equation (16) can be re-written as:

GFFDα,γ( f og)(t) =
1

M(α,γ,λ) g(t)α+γ−2GFFDα,γ f (g(t)) GFFDα,γg(t), (17)

where M(α, γ, λ) =
Γ(λ−γ+1)

γΓ(λ−α−γ+2) with λ > −1.

The extension of the mean value theorems of classical mathematical analysis was
also the subject of our research. Thus, we establish these theorems for GFF differentiable
functions and discuss some interesting consequences.

Theorem 7 (Roll’s theorem for GFF α, γ-differentiable functions). Let a > 0, 0 < α, γ ≤ 1,
λ > −1 and f : [a, b] → R be a given function that satisfies:

(i) f is continuous on [a, b] ,
(ii) f is GFF α, γ-differentiable on (a, b),
(iii) f (a) = f (b).

Then, there exists c ∈ (a, b), such that GFFDα,γ f (c) = 0.

Proof. Since f is continuous on [a, b] and f (a) = f (b), there is c ∈ (a, b), which is a point
of local extrema. With no loss of generality, assume c is a point of local minimum. So

GFFDα,γ f (c) = lim
ε→0+

f
(
t + εM(α, γ, λ)t2−α−γ

)
− f (t)

ε
= lim

ε→0−

f
(
t + εM(α, γ, λ)t2−α−γ

)
− f (t)

ε
,

But, the first limit is non-negative, and the second limit is non-positive. Hence,
GFFDα,γ f (c) = 0. □

Theorem 8 (mean value theorem for GFF α, γ-differentiable functions). Let a > 0,
0 < α, γ ≤ 1, and f : [a, b] → R be a given function that satisfies:

(i) f is continuous on [a, b],
(ii) f is local GFF α, γ-differentiable on (a, b),

Then, there exists c ∈ (a, b), such that GFFDα,γ f (c) = f (b)− f (a)
γ

(α+γ−1)Γ(α) (bα+γ−1−aα+γ−1)
.

Proof. Consider the function,

g(t) = f (t)− f (a)−
(

f (b)− f (a)
γ

(α+γ−1)Γ(α) (b
α+γ−1 − aα+γ−1)

)(
γ

(α + γ − 1)Γ(α)

(
tα+γ−1 − aα+γ−1

))
,

Then

GFFDα,γg(t) = GF/CDα f (t)−
(

f (b)− f (a)
γ

(α+γ−1)Γ(α) (b
α+γ−1 − aα+γ−1)

)
GFFDα,γ

(
γtα+γ−1

(α + γ − 1)Γ(α)

)
,

From Remark 10, we obtain:

GFFDα,γg(t) = GFFDα,γ f (t)− f (b)− f (a)
γ

(α+γ−1)Γ(α) (b
α+γ−1 − aα+γ−1),
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At c ∈ [a, b].

GFFDα,γg(c) = GFFDα,γ f (c)− f (b)− f (a)
γ

(α+γ−1)Γ(α) (b
α+γ−1 − aα+γ−1)

,

And the auxiliary function g(t) satisfies all conditions of Theorem 7. Hence, there exists
c ∈ (a, b), such that GFFDα,γg(c) = 0. Then, we obtain:

GFFDα,γ f (c) =
f (b)− f (a)

γ
(α+γ−1)Γ(α) (b

α+γ−1 − aα+γ−1)
,

□

Theorem 9. Let a > 0, 0 < α, γ ≤ 1, and f : [a, b] → R be a given function that satisfies:

(i) f is continuous on [a, b],
(ii) f is GFF α, γ-differentiable on (a, b),

If GFFPDα,γ f (t) = 0, for all t ∈ (a, b), then, f is constant on [a, b].

Proof. Suppose GFFDα,γ f (t) = 0 for all t ∈ (a, b). Let t1, t2 ∈ [a, b] with t1 < t2. So, the
closed interval [t1, t2] is contained in [a, b], and the open interval (t1, t2) is contained in
(a, b). Hence, f is continuous on [t1, t2] and generalized fractal α, γ-differentiable on (t1, t2).
So, from Theorem 8, there exists c ∈ (t1, t2) with

f ((t2))− f ((t1))
γ

(α+γ−1)Γ(α)

(
(t2)

α+γ−1 − (t1)
α+γ−1

) = GFFDα,γ f (c) = 0,

Therefore, f (t2)− f (t1) = 0 and f (t2) = f (t1). Since t1 and t2 are arbitrary numbers in
[a, b] with t2 > t1, f is constant on [a, b]. □

Corollary 1. Let a > 0, 0 < α, γ ≤ 1, and F, G : [a, b] → R be functions such that
GFFDα,γF(t) = GFFDα,γG(t) for all t ∈ (a, b). Then, there exists a constant C such that

F(t) = G(t) + C,

Proof. By simply applying the above theorem to H(t) = F(t)− G(t), it can be proven
easily. □

Theorem 10. Let a > 0, 0 < α, γ ≤ 1, and f : [a, b] → R be a given function that satisfies:

(i) f is continuous on [a, b],
(ii) f is GFF α, γ-differentiable on (a, b).

Then, we have the following:

1. If GFFPDα,γ f (t) > 0, for all t ∈ (a, b), then f is increasing on [a, b].
2. If GFFPDα,γ f (t) < 0, for all t ∈ (a, b), then f is decreasing on [a, b].

Proof. Similarly, using Theorem 9’s proof, there exists c ∈ (t1, t2) with

f ((t2))− f ((t1))
γ

(α+γ−1)Γ(α)

(
(t2)

α+γ−1 − (t1)
α+γ−1

) = GFFDα,γ f (c),

1. If GFFDα,γ f (t) > 0, then f (t2) > f (t1) for t2 > t1. Therefore, f is strictly increasing
on [a, b], since t1 and t2 are arbitrary numbers of [a, b].
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2. If GFFDα,γ f (t) < 0, then f (t2) < f (t1) for t2 > t1. Therefore, f is strictly decreasing
on [a, b], since t1 and t2 are arbitrary numbers of [a, b]. □

Theorem 11 (racetrack-type principal). Let a > 0, 0 < α, γ ≤ 1, and f , g : [a, b] → R be the
given functions that satisfies:

(i) f and g are continuous on [a, b],
(ii) f and g are GFF α, γ-differentiables on (a, b),
(iii) GFFDα,γ f (t) ≤ GFFDα,γg(t) for all t ∈ (a, b).

Then, we have the following:

1. If f (a) = g(a), then f (t) ≤ g(t), for all t ∈ [a, b].
2. If f (b) = g(b), then f (t) ≥ g(t), for all t ∈ [a, b].

Proof. Consider h(t) = g(t)− f (t). Then, h is continuous on [a, b] and GFF α, γ-differentiable
on (a, b). Also, using the linearity of GFFDα,γ and the fact that GFFDα,γ f (t) ≤ GFFDα,γg(t)
for all t ∈ (a, b), we obtain GFFDα,γh(t) ≥ 0, for all t ∈ (a, b). So, through Theorem 10,
h is increasing (non-decreasing). Hence, for any a ≤ t ≤ b, we have h(a) ≤ h(t). Since
h(a) = g(a) − f (a) = 0 by the assumption, the result follows. Similarly, for part 2 of
Theorem 11, since for any a ≤ t ≤ b, we have h(t) ≤ h(b) and h(b) = f (b)− g(b) = 0, the
result follows. □

Theorem 12 (extended mean value theorem for GFF α, γ-differentiable functions). Let
a > 0, 0 < α, γ ≤ 1, λ > −1 and f , g : [a, b] → R be the given functions that satisfies:

(i) f , g are continuous on [a, b],
(ii) f , g are GFF α, γ-differentiable on (a, b),

Then, there exists c ∈ (a, b), such that
GFF Dα,γ f (c)
GFF Dα,γg(c) =

f (b)− f (a)
g(b)−g(a) .

Proof. Consider the function:

F(t) = f (t)− f (a)−
(

f (b)− f (a)
g(b)− g(a)

)
(g(t)− g(a)),

Then, the function F satisfies the conditions of Theorem 7. Hence, there exists
c ∈ (a, b), such that GFFDα,γF(c) = 0. Using the linearity of the GFF α, γ-derivative and the
fact that GFFDα,γF(c) = 0, with c a constant, the result follows. □

Remark 12. Another interesting result in the context of the proposed GFF calculus is a modified
version of the mean value theorem for GFF α, γ-differentiable functions. Next, we will establish and
prove this result.

Theorem 13 (modified value theorem for generalized fractal α, γ-differentiable functions).
Let a > 0, 0 < α, γ ≤ 1, and f : [a, b] → R be a given function that satisfies:

(i) f is continuous on [a, b],
(ii) f is GFF α, γ-differentiable on (a, b).

Then, there exists c ∈ (a, b), such that

GFFDα,γ f (c)
Γ(2−γ)

γΓ(3−α−γ)
c2−α−γ

=
f (b)− f (a)

b − a
,
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Proof. Consider the function:

g(t) = f (t)− f (a)−
(

f (b)− f (a)
b − a

)
(t − a),

Then, the function g satisfies the conditions of Theorem 7. Hence, there exists c ∈ (a, b), such
that GFFDα,γg(c) = 0. Therefore,

GFFDα,γg(c) = GFFDα,γ f (c)−
(

f (b)− f (a)
b − a

)
Γ(2 − γ)

γΓ(3 − α − γ)
c2−α−γ = 0,

Hence,
GFFDα,γ f (c)
Γ(2−γ)

γΓ(3−α−γ)
c2−α−γ

=
f (b)− f (a)

b − a
,

□

Remark 13. From the above theorem, we can easily establish similar consequences as those obtained
in Theorem 8 (see Theorems 9–11 and Corollary 1).

Definition 3. Let I ⊂ (0, ∞) an open interval, 0 < α, γ ≤ 1, and f : I → R , we will say that f
is of class Cα,γ on the interval I, which we write as f ∈ Cα,γ(I, R), if f is GFF α, γ-differentiable
on I and GFF α, γ-derivative is continuous on I.

Theorem 14. Let I ⊂ (0, ∞) an open interval, 0 < α, γ ≤ 1, and f : I → R be a function of
class Cα,γ on the interval I. Suppose f (a) = b for some a ∈ I, and GFFDα,γ f (a) ̸= 0. Then,
there is an open neighborhood U of a in which f admits an inverse function f−1 of class Cα,γ on
the open neighborhood V = f (U) of b, and its GFF α, γ-derivative is:

GFFDα,γ f−1(y) =
(

Γ(2−γ)
γΓ(3−α−γ)

)2 tα+γ−2yα+γ−2

GFF Dα,γ f (t) ,

∀y ∈ V, t = f−1(y).
(18)

Proof. Since f (t) is continuous in the open interval I, it is a known fact that there ex-
ists an open neighborhood U of a in which GFFDα,γ f (t) has a constant sign (the sign of
GFFDα,γ f (a)). From Remark 13, it follows f that is strictly monotonic on U (increasing if
GFFDα,γ f (a) > 0, decreasing if GFFDα,γ f (a) < 0). Therefore, f is continuous and strictly
monotonic on U, so there is the inverse function of the one-to-one function f : U → V ,
with V = f (U). This inverse f−1 : V → U is of class Cα,γ and strictly monotonic (in
the same sense that f is) on V. Equation (18) can be easily obtained from the identity
f
(

f−1(y)
)
= y for all y ∈ V, in which the GFF α, γ-derivative (with respect to y) is

calculated, applying the chain rule as follows:

γΓ(3 − α − γ)

Γ(2 − γ)
tα+γ−2·GFFDα,γ f−1(y)GFFDα,γ f (t) =

Γ(2 − γ)

γΓ(3 − α − γ)
y2−α−γ , ∀y ∈ V, t = f−1(y),

□

Finally, we present the following definition for the GFF α, γ-integral of a function f
starting at a ≥ 0:

Definition 4. GFF Ia
α,γ( f )(t) = 1

M(α,γ,λ)

∫ t
a

f (x)
x2−α−γ ·dx, where this integral is basically the usual

Riemann improper integral, M(α, γ, λ) =
Γ(λ−γ+1)

γΓ(λ−α−γ+2) , 0 < α, γ ≤ 1, and λ > −1.

From the definition above, we can establish two important results:
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Theorem 15. GFFDα,γGFF Ia
α,γ( f )(t) = f (t), for t ≥ a, where f is any continuous function in the

domain of GFF Ia
α,γ.

Proof. Since f is continuous, then GFF Ia
α,γ( f )(t) is differentiable. Hence,

GFFDα,γGFF Ia
α,γ( f )(t) = M(α, γ, λ)t2−α−γ d

dt

(
GFF Ia

α,γ( f )(t)
)

= M(α, γ, λ)t2−α−γ d
dt

(
1

M(α,γ,λ)

∫ t
a

f (x)
x2−α−γ

)
= t2−α−γ f (t)

t2−α−γ = f (t),

□

Theorem 16. Let a > 0, 0 < α, γ ≤ 1, λ > −1, and f be a continuous real-valued function
on interval [a, b]. Let G any real-valued function with the property GFFDα,γG(t) = f (t) for
all t ∈ [a, b]. Then

GFF Ia
α,γ( f )(b) = G(b)− G(a), (19)

Proof. First, let F be a function on [a, b] defined as F(t) = GFF Ia
α,γ( f )(t), which can be

called GFF α, γ-integral function of f .

By using Theorem 15, GFFDα,γF(t) = f (t) for all t ∈ [a, b].
Since F and G have the same GFF α, γ-derivative, then by corollary 1, there exists a real
constant C, such that G(t) = F(t) + C for all t ∈ [a, b].
Finally, G(b)− G(a) is computed as follows:

G(b)− G(a) = (F(b) + C)− (F(a) + C)
= 1

M(α,γ,λ)

(∫ b
a

f (t)
t2−α−γ ·dt −

∫ a
a

f (t)
t2−α−γ ·dt

)
= 1

M(α,γ,λ)

∫ b
a

f (t)
t2−α−γ ·dt.

□

4. Applications

In this section, we will solve several interesting FF ordinary differential equations in
the sense of the proposed GFF derivative.

Example 1. Consider the initial value problem involving a GFF ordinary differential equation of
order α = 1

2 , γ = 1
3 as follows:

GFFD
1
2 , 1

3 y(t) = e−5t, y(0) = 0, (20)

To find the solution to the differential equation in Equation (20), we use the fact that e−5t =
∞
∑

k=0
(−1)k 5k

k! tk and apply Equation (11) to obtain:

3Γ
(
λ + 2

3
)

Γ
(
λ + 7

6
) t

7
6

dy(t)
dt

=
∞

∑
k=0

(−1)k 5k

k!
tk,

If we rearrange the above equation and integrate on both sides, it follows:

y(t) =
Γ
(
λ + 7

6
)

3Γ
(
λ + 2

3
) ∞

∑
k=0

(−1)k 5k

k!

∫
tk− 7

6 dt =
∞

∑
k=0

(−1)k Γ
(
λ + 7

6
)

3Γ
(
λ + 2

3
) 5k

k!
tk− 1

6

k − 1
6
+ C,
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By taking λ = k − 1
6 , we have:

y(t) =
∞

∑
k=0

(−1)k Γ(k + 1)

3Γ
(

k + 1
2

) 5k

k!
tk− 1

6

k − 1
6
+ C =

∞

∑
k=0

(−1)k 5k

3
(

k − 1
6

)
Γ
(

k + 1
2

) tk− 1
6 + C.

Finally, using the initial condition y(0) = 0, we obtain:

y(t) =
∞

∑
k=0

(−1)k 5k

3
(

k − 1
6

)
Γ
(

k + 1
2

) tk− 1
6 .

Note that this solution is consistent with the solution to the corresponding FF (in the sense of C)
Initial Value Problem (IVP).

Example 2. Consider the IVP involving a GFF ordinary differential equation of order α = 1
3 ,

γ = 1
4 as follows:

GFFD
1
3 , 1

4 y(t) = t2sinh(4t), y(0) = 0, (21)

To find the solution to the differential equation in Equation (21), we use the fact that sinh(4t) =

∑∞
k=0

42k+1

(2k+1)! t
2k+1 and apply Equation (11) to obtain:

4Γ
(
λ + 3

4
)

Γ
(

λ + 17
12

) t
17
12

dy(t)
dt

=
∞

∑
k=0

42k+1

(2k + 1)!
t2k+3,

If we rearrange the above equation and integrate on both sides, it follows:

y(t) =
Γ
(

λ + 17
12

)
4Γ
(
λ + 3

4
) ∞

∑
k=0

42k+1

(2k + 1)!

∫
t2k+ 19

12 dt =
∞

∑
k=0

Γ
(

λ + 17
12

)
4Γ
(
λ + 3

4
) 42k+1

(2k + 1)!
t2k+ 31

12

2k + 31
12

+ C,

By taking λ = 2k + 31
12 , we have:

y(t) =
∞

∑
k=0

Γ(2k + 4)42k+1

4
(

2k + 31
12

)
(2k + 1)!Γ

(
2k + 10

3

) t2k+ 31
12 + C,

Finally, using the initial condition y(0) = 0, we obtain:

y(t) =
∞

∑
k=0

Γ(2k + 4)42k+1

4
(

2k + 31
12

)
(2k + 1)!Γ

(
2k + 10

3

) t2k+ 31
12 .

Note that this solution is consistent with the solution to the corresponding FF (in the sense of
C) IVP.

Remark 14. In the following example, we will solve a generalized linear fractal–fractional differential
equation, but, also, we will define this type of differential equation and prove a result in which its
general solution is established.

Definition 5. The generalized linear FF differential equation of order α, γ is defined as

GFFDα,γy(t) + p(t)y(t) = q(t), (22)

where 0 < α, γ ≤ 1, λ > −1, and p, q are real-valued continuous functions on an interval
I ⊂ [0, ∞].
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Theorem 17. The general solution of the GFF differential Equation (22) is expressed by:

y(t) = e−
GFFP Iα,γ(p)(t)

[
GFFP Iα,γ

(
q(t)e

GFFP Iα,γ(p)(t)
)
+ C

]
, (23)

where C is a real constant.

Proof. Using Theorem 3, Equation (22) can be expressed as:

y′(t) + γΓ(λ − α − γ + 2)
Γ(λ − γ + 1)

p(t)
t2−α−γ

y(t) =
γΓ(λ − α − γ + 2)

Γ(λ − γ + 1)
q(t)

t2−α−γ
, (24)

Since the above equation is a classical first-order linear differential equation, its general
solution is written as:

y(t) = e−
γΓ(λ−α−γ+2)

Γ(λ−γ+1)

∫ p(t)
t2−α−γ dt

[
γΓ(λ − α − γ + 2)

Γ(λ − γ + 1)

∫
e

γΓ(λ−α−γ+2)
Γ(λ−γ+1)

∫ p(t)
t2−α−γ dt q(t)

t2−α−γ
dt + C

]
, (25)

where C is a real constant. Finally, using Definition 5 and substituting into Equation (25),
our result follows directly. □

Now, we can solve an example that involves a generalized linear FF differential
equation of order α, γ using the proposed method.

Example 3. Consider the generalized linear FF differential equation of order α = 1
2 , γ = 1

3
as follows:

GFFD
1
2 , 1

3 (y)(t) + y(t) = t3 +
9Γ
(
λ + 2

3
)

Γ
(
λ + 7

6
) t

19
6 , y(0) = 0. (26)

Taking in Equation (26) α = 1
2 , γ = 1

3 , p(t) = 1, and q(t) = t3 +
9Γ(λ+ 2

3 )
Γ(λ+ 7

6 )
t

19
6 , we have:

y(t) = e
−

Γ(λ+ 7
6 )

3Γ(λ+ 2
3 )

∫
t−

7
6 dt
 Γ

(
λ + 7

6
)

3Γ
(
λ + 2

3
)∫ (t

11
6 +

9Γ
(
λ + 2

3
)

Γ
(
λ + 7

6
) t2

)
e

Γ(λ+ 7
6 )

3Γ(λ+ 2
3 )

∫
t−

7
6 dt

dt + C

,

where C is a real constant.

If in the above equation we calculate the integrals and simplify, we easily obtain:

y(t) = e
2Γ(λ+ 7

6 )

Γ(λ+ 2
3 )

t−
1
6

t3e
−

2Γ(λ+ 7
6 )

Γ(λ+ 2
3 )

t−
1
6

+ C

 = t3 + Ce
2Γ(λ+ 7

6 )

Γ(λ+ 2
3 )

t−
1
6

,

Finally, the initial condition y(0) = 0 implies that C = 0. Hence, y(t) = t3.

We finish this section by discussing another interesting differential equation in the
sense of the GFF derivative, specifically, the generalized Bernoulli FF differential equation.
As in the classic case, we propose to solve this equation by reducing it to a generalized
linear FF differential equation. Thus, consider the generalized Bernoulli FF differential
equation of non-integer order α, given by

GFFDα,γ(y)(t) + p(t)y(t) = q(t)y(t)n, (27)

where 0 < α, γ ≤ 1, λ > −1, n ̸= 0, 1, and p, q are real-valued continuous functions on an
interval I ⊂ [0, ∞].

Using Theorem 3, Equation (27) can be written as:
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y′(t) + γΓ(λ − α − γ + 2)
Γ(λ − γ + 1)

p(t)
t2−α−γ

y(t) =
γΓ(λ − α − γ + 2)

Γ(λ − γ + 1)
q(t)

t2−α−γ
y(t)n.

The above equation, through the change of variable z = y1−n, can be reduced to the
following linear ordinary differential equation:

z′(t) + (1 − n)
γΓ(λ − α − γ + 2)

Γ(λ − γ + 1)
p(t)

t2−α−γ
z(t) = (1 − n)

γΓ(λ − α − γ + 2)
Γ(λ − γ + 1)

q(t)
t2−α−γ

,

According to Theorem 15, the general solution of Equation (27) is given by:

y(t) =
(

e−(1−n)GFF Iα,γ p(t)
[

GFF Iα,γ

(
(1 − n)q(t)e(1−n)GFF Iα,γ p(t)

)
+C
]) 1

1−n , (28)

In the following example, we apply this proposed method to solve a generalized
Bernoulli FF differential equation.

Example 4. Consider the generalized Bernoulli FF differential equation of order α = 1
3 , γ = 1

4
as follows:

GFFD
1
3 , 1

4 y(t) +
4Γ
(
λ + 5

4
)

Γ
(

λ + 17
12

) t
17
12 y(t) = t

5
3 e−2ty(t)−1. (29)

Taking in Equation (29) α = 1
3 , γ = 1

4 , n = −1, p(t) =
4Γ(λ+ 5

4 )
Γ(λ+ 17

12 )
t

17
12 , and q(t) = t

5
3 e−2t,

we have:

y(t) =

e
−

Γ(λ+ 17
12 )

2Γ(λ+ 5
4 )

∫ 4Γ(λ+ 5
4 )

Γ(λ+ 17
12 )

dt
Γ
(

λ + 17
12

)
4Γ
(
λ + 5

4
) ∫ 2t

1
4 e−2te

Γ(λ+ 17
12 )

2Γ(λ+ 5
4 )

∫ 4Γ(λ+ 5
4 )

Γ(λ+ 17
12 )

dt
dt + C


1
2

,

where C is a real constant.

If in the above equation we calculate the integrals and simplify, it follows directly:

y(t) =

e−2t

2
5

Γ
(

λ + 17
12

)
4Γ
(
λ + 5

4
) t

5
4 + C


1
2

.

5. Conclusions

This study introduces the concept of the GFF derivative of order α, which produces
consistent results with the FF derivative of a function in the C sense with the power law
when applied to elementary functions. The fundamental elements of GFF calculus, includ-
ing operations with GFF α, γ-differentiable functions, chain rule, mean value theorems, and
inverse function theorem, are established. Additionally, the generalized fractal α, γ-integral
is defined, and two significant results of integral calculus, namely the fundamental theorem
of calculus and Barrow’s rule, are presented within this framework. We analytically solved
interesting examples of FF ordinary differential equations with the help of the proposed
definition of the GFF derivative, obtaining solutions that agree exactly with the results
of the FF derivative of a function in the C sense with the power law. Our results allow
us to conclude that this derivative, being of a local type, provides a simple tool to obtain
analytical solutions to many natural science and engineering problems that present a fractal
effect and that involve ordinary differential equations of non-integer order.
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