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Abstract: Photobiomodulation (PBM) has been clinically used for the prevention and treatment of oral
mucositis (OM). The effect of red and near-infrared wavelengths on OM repair is still misunderstood.
The aim of this study was to compare the clinical effect and tissue changes caused by 660 nm and
780 nm exposure in an experimental model of OM. Rats were submitted to gamma irradiation for
induction of OM lesions and treated with 660 nm or 780 nm lasers with the same dosimetry parameters
(30 mW, 7.5 J/cm2, 10 s, spot size = 0.04 mm, irradiation every two days). Clinical assessment of
OM severity and histopathological analyses was performed after 8, 14, and 20 days of the ionizing
radiation. OM severity was reduced in the PBM groups, especially when the red laser was used. The
histopathological pattern was similar between the PBM groups, showing advanced re-epithelization
and more pronounced angiogenesis and collagen deposition compared to the control. The 660 nm
group showed a greater collagen matrix area than the 780 nm group at 14 days. In conclusion, PBM
at 660 nm and 780 nm improved the repair of ionizing radiation-induced OM. Both wavelengths
activated the angiogenesis and collagen deposition, but these tissue effects were more pronounced
when 660 nm was used.

Keywords: laser photobiomodulation; radiotherapy; oral mucositis

1. Introduction

Oral mucositis (OM) is one of the main complications of nonsurgical treatments
against head and neck cancer, and is derived from chemotherapy, ionizing radiation, or
a combination of these two therapeutic modalities [1]. Radiotherapy-induced OM is a
consequence of direct damage to the DNA strands present in the cells of the oral epithelium,
evolving to the generation of oxygen free radicals, activation of nuclear factors, such as
NF-kB, and consequent tissue degradation processes [2–4].

OM shows different clinical stages, ranging from mild erythema to severe ulcerations.
The epithelial discontinuity leaves the patient more vulnerable to opportunistic infections
and to severe pain, which may limit the function of the oral cavity. The risk for systemic
dissemination of these infections and the nutrition disturbances caused by OM may increase
hospital costs [5,6].

Although there is not yet a universal protocol for the clinical management of this con-
dition, the current available therapies involve mainly local and systemic anti-inflammatory
and analgesic drugs, oral hygiene protocols, and photobiomodulation (PBM) [7]. PBM
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shows efficacy in the clinical management of OM, either in cases caused by chemother-
apy [8,9] or radiotherapy [10,11], or in cases where OM was caused by the use of combi-
nation of these two treatment modalities [12]. PBM is currently considered the standard
treatment for OM lesions, especially because it does not cause the systemic toxicity that
pharmacological treatment can generate [1,13,14].

In general, the clinical protocols for oral mucosa repair preconize the intraoral use of
red lasers (630 nm or 660 nm) under an energy density up to 6 J/cm2 [11,14]. PBM with
near-infrared lasers (780 nm, 815–830 nm) has also demonstrated good outcomes for OM
prevention [15], combined or not with red lasers [16,17], although the number of clinical
studies is lower than those focused on red lasers. In addition, the literature is heterogeneous
with regard to PBM parameters, such as beam diameter, energy and power densities, and
irradiation mode (scan or spot) [1,13,14].

In this study, we decided to compare the clinical effect and tissue changes caused
by 660 nm and 780 nm exposure in an experimental model of OM induced by ionizing
radiation. For this, the same laser protocols were used to infer the direct role of each
wavelength on the different phases of oral mucosa repair. The premise was to understand
the differences between the two wavelengths in terms of clinical outcomes and microscopic
changes in oral mucosa to contribute to the establishment of more accurate PBM protocols.

2. Materials and Methods

The study was previously approved by the IPEN Animal Facility, IPEN Ethics Committee-
CNEN/SP (94/11/CEUA-IPEN/SP).The research was carried out at the Biophotonics Labora-
tory from the IPEN/USP Lasers and Applications Center.

2.1. Oral Mucositis Model and Experimental Groups

Fifty-four male Wistar rats, with approximately 350 g body mass, were used for the
experimental groups. The animals were kept in cages (up to 30 animals in each) and
maintained under 12 h light/dark cycles. Water and pelleted commercial feed (Nuvilab®,
Nuvital, Brazil) were offered ad libitum.

Prior to the start of the rat experiment, a dosimetry of a Cobalt-60 (60Co) panoramic
source localized in the Radiation Technology Center (CTR-IPEN/SP) was performed to
obtain the dose rate and to establish the lead shielding conformation. An online FSH-260
silicon photodiode dosimeter, associated with an electronic outside the radiation chamber,
was positioned at the source. The air dose rate was used for dosimeter calibration, and
then the distance from the source and the lead thickness required for radiation shielding
were tested.

The ionizing radiation dosimetry required to induce OM in rats was obtained from
previously published studies [18,19] with minor adaptations. A lead thickness of 10 cm
was the best shielding for the body of animals, positioned 20 cm from the source. At this
distance, a dose rate of 0.60 Gy/min was obtained, with an initial exposure time of 33 min
and total dose of 20 Gy delivered to the tissue. Three blocks of lead, 5 cm thick, were
used to protect the trunk and lower limbs of the animal, aiming to expose only the head
region to the radiation. During radiation exposure, the animals were anesthetized with
intraperitoneal injection of ketamine (75 mg/kg) and xylazine (10 mg/kg). They were then
distributed radially to the ionizing radiation source with a focal length of 20 cm.

After ionizing radiation, the animals were randomly divided into three groups: for
the control, animals without PBM (n = 16); for the 660 nm group, animals exposed to a
PBM with λ = 660 nm (n = 21); and for the 780 nm group, animals exposed to a PBM with
λ = 780 nm (n = 21). The animals were further divided into three periods for clinical
evaluation and tissue collection: 8, 14 and 20 days (four animals in each experimental
time for the control group, and seven animals in each experimental time for the PBM
groups). Two animals died, one from the control and one from the 660 nm group, totaling
to 52 animals at the end of the experiment (Table 1). The study design is illustrated in
Figure 1.
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Table 1. Laser parameters and number of animals in each experimental period.

Groups and Laser Parameters
Number of Animals

Day 8 Day14 Day 20 Total

λ = 780 nm, 30 mW, 7.5 J/cm2, 10 s,
spot size = 0.04 mm ø; Irradiation = every 48 h

07 07 07 21

Λ = 660 nm, 30 mW, 7.5 J/cm2, 10 s,
spot size = 0.04 mm ø; Irradiation = 48/48 h

07 07 06 20

Control 04 04 03 11

Total 18 18 16 52
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Figure 1. Study methodology in accordance with the experimental periods.

2.2. Photobiomodulation

The animals were anesthetized according to the protocol previously described. Then,
they were placed in a horizontal support for the PBM procedure. A GaAlAs diode laser
irradiation (MMOptics®, Brazil) was performed in the tongue mucosa every two days.
Five irradiation points were chosen to cover the entire exposed surface of the tongue,
three in the base and two in the tongue apex. The laser parameters are listed in Table 1.
The control group was subjected to the same manipulation and procedures performed
for the PBM groups, including intraperitoneal anesthesia, maintenance in the horizontal
support, and PBM simulation with the laser probe positioned on the tongue surface, but
without illumination.

2.3. Clinical Assessment

OM severity was assessed by a clinical examination of the tongue, in which edema
and erythema, extension of the ulcerated surface, and extension of the pseudomembrane
formation were graded using the scores described in Table 2.

Each animal was evaluated clinically at the time of laser irradiation. After anesthesia,
the animal operator photographed the rat tongue using the same illumination, 2 focus
magnification, and the same focus distance from the tongue surface. Each animal was pho-
tographed three times; the best image was chosen for further analysis by two independent
examiners, who were blinded to the groups and experimental times. Prior to the definitive
registering of the clinical scores, these examiners were calibrated by observing and apply-
ing the grades to random images of the rat tongue in which different clinical situations
were presented. The groups and experimental periods were concealed. This process was
repeated three times, and the third evaluation was submitted to the agreement kappa test.
A 100% agreement between the examiners was achieved. The definitive examiners’ grades
were then analyzed in terms of the relative frequency of each score.
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Table 2. Clinical scores for assessment of oral mucositis severity.

Grades Description

Edema and erythema
0 Absence of tumor and redness in the tongue
1 Absence of tumor; slight redness in some areas of the tongue
2 Presence of tumor; slight redness in some areas of the tongue
3 Presence of tumor; intense redness in some areas of the tongue
4 Presence of tumor; intense redness in the entire tongue surface

Pseudomembrane formation
0 Absence of pseudomembrane
1 Isolated pseudomembrane
2 Continuous pseudomembrane covering ≤ 20% of the tongue surface
3 Continuous pseudomembrane covering 21% to 50% of the tongue surface
4 Continuous pseudomembrane covering ≥ 51% of the tongue surface

Ulcerated surface
0 Absence of ulcers
1 One small ulcer (unifocal)
2 Multiple small ulcers with a total extension of ≤20% of tongue surface
3 Multiple small ulcers with a total extension of ≥21% of the tongue surface
4 Coalescent ulcers with a total extension of ≤30% of the tongue surface
5 Coalescent ulcers with a total extension of 31% to 50% of the tongue surface
6 Coalescent ulcers with a total extension of ≥51% of the tongue surface

2.4. Euthanasia and Histopathological Analysis

Euthanasia was performed at 8, 14 and 20 days with an overdose of the anesthetics
applied intraperitoneally, with subsequent finalization in a CO2 chamber. The rat tongue
was extirpated using a surgical scalpel blade, washed in physiological solution, and fixed
in 4% paraformaldehyde solution for 24 h. Laboratorial processing for paraffin-embedding
was performed for all the samples. Histological sections (3µm thick) were obtained and
stained with hematoxylin and eosin (HE). Specimens at the experimental time of 14 days
were also stained with Masson’s trichrome, for the analysis of collagen deposition, which
was more evident at this moment of the repair process than at 8 and 20 days.

An experienced pathologist examined the histological sections, analyzing the following
tissue elements: necrosis, inflammatory infiltrate, re-epithelization, collagen deposition,
angiogenesis, cellularity, and extracellular remodeling.

A semi-automated quantification of the collagen matrix and manual blood vessel
counting were performed for each group and experimental period. For this, histological
fields were digitized using a Leica DM2500 microscope (Leica Biosystems, Wetzlar, Ger-
many) with a Leica DFC 295 camera (Leica Biosystems, Wetzlar, Germany) and a LAS®

acquisition and morphometry program (Leica Biosystems, Wetzlar, Germany). The same
light intensity was used for all scans. The scanned images were kept in RGB format, with a
resolution of 2048 × 1536 pixels and a jpg extension.

For collagen matrix quantification, three fields in the ventral surface and three fields in
the dorsal surface of the tongue stained with Masson’s trichrome were digitized (×100 original
magnification) by an operator who did not know the groups and experimental periods. The
images were then submitted to a color deconvolution method using Image J software, which
segmented the image into red and blue colors, equivalent to the muscle and collagen fibers,
respectively. The area occupied by the blue color (collagen fibers) was quantified by means of
blue tone selection; this area was then normalized by the total area of the field, obtaining a
mean percentage of the collagen area presented in the histological section.

For blood vessel counting, 10 HE-stained fields (×400 original magnification) localized
in the lamina propria of the ventral and dorsal tongue surfaces were digitized by an operator
who did not know the groups and experimental periods. Blood vessels with visible lumens
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and various diameters were manually counted using Image J software. The total vessel
number was then obtained by summing the vessels counted in each field.

2.5. Statistical Tests

The data normality of the clinical scores was assessed using Shapiro–Wilk’s test. As
the data did not show normality, the groups were compared using the nonparametric
Kruskal–Wallis test, followed by Dunn’s test. The blood vessel counts did not achieve a
parametric distribution and were analyzed by the same statistical tests. The percentage
of collagen matrices exhibited a parametric distribution, and the groups were compared
using ANOVA followed by Tukey’s test. For the statistical analyses, GraphPad Prism 5®

was used. The level of significance was set at 5%.

3. Results
3.1. Clinical Outcomes

Figure 2 shows the clinical aspect of the rat tongue in each group and experimental
period. At 8 days, in the control group, the tongue exhibited intense erythema and edema,
as well as a confluent ulceration. In the 660 nm and 780 nm groups, the erythema was
more discrete compared to the control, and pseudomembrane formation and a restricted
ulcerated surface were noted. At 14 days, in all the groups, the erythema was mitigated and
the ulcerated area was reduced, mainly in the laser groups. At 20 days, in all the groups,
the tongue was completely healed.

3.1.1. Edema and Erythema

Figure 3A shows the grade frequency for edema and erythema. On day 8, all animals
in the control group had the highest edema and/or erythema scores. In the 660 nm group,
100% of the animals exhibited a score of 3, while in the group treated with the 780 nm
laser, this score was attributed to 70% of the animals. In both groups the differences were
statistically significant in relation to the control (p < 0.05). At 14 days, the laser groups
already had some animals with a score of 0 (35% in the 660 nm group and 25% in the 780 nm
group), in contrast to the control group, where these signs persisted to severe degrees in
all animals. The difference was statistically significant when the control was compared
to the 660 nm group. On the 20th day, in the laser groups, some animals were absent of
erythema and edema or evolved to score 1. The differences in relation to the control were
not statistically significant during this period.

3.1.2. Pseudomembrane Formation

Figure 3B shows the grade frequency for pseudomembrane formation. At 8 days,
the 660 nm group showed the highest scores (score 4–56.2%, score 3–47.4%), showing
significant differences in relation to the control (p < 0.05) but not in relation to the 780 nm
group. On day 14, in the control group, 87% of the animals showed low pseudomembrane
scores, whereas in the laser groups most of the animals did not exhibit this clinical sign.
This difference was statistically significant for both laser groups (p < 0.05).At 20 days, none
of the animals showed pseudomembrane.

3.1.3. Ulcerated Surface

Figure 3C shows the grade frequency for the ulcerated surface. On day 8, an ulceration
score of 6 was observed in 54.4% of the animals in the control group, compared to 10.5%
and 30.0% of the animals in the 660 nm and 780 nm laser groups, respectively. On day
14, in all the groups the ulceration score dropped to 4, with some animals in the laser
group without this clinical sign. In the 660 nm group, 25.5% of the animals showed
complete re-epithelization, whereas in the 780 nm group only 7.1% of the animals healed
the oral mucosa. At 20 days, 80% of the animals in the 660 nm group exhibited complete
re-epithelization, compared to 57.3% in the 780 nm laser group, and 25% in the control
group. In none of the experimental periods were the differences statistically significant.



Photonics 2023, 10, 16 6 of 13
Photonics 2022, 9, x FOR PEER REVIEW  6  of  14 
 

 

 

Figure 2. Representative images of the clinical aspect of the tongue after induction of oral mucositis 

with ionizing radiation (control group, (A,D,G)). The tongue received photobiomodulation with λ 

= 660 nm (660 nm group, B, E and H) or λ = 780 nm (780 nm group, (C,F,I)). The tongue was ana‐

lyzed after 8 days (A–C), 14 days (D–F), and 20 days (G–I) of ionizing radiation. 

3.1.1. Edema and Erythema 

Figure 3A shows the grade frequency for edema and erythema. On day 8, all animals 

in the control group had the highest edema and/or erythema scores. In the 660 nm group, 

100% of the animals exhibited a score of 3, while in the group treated with the 780 nm 

laser, this score was attributed to 70% of the animals. In both groups the differences were 

statistically significant  in relation  to  the control  (p < 0.05). At 14 days,  the  laser groups 

already had some animals with a score of 0 (35% in the 660 nm group and 25% in the 780 

nm group), in contrast to the control group, where these signs persisted to severe degrees 

Figure 2. Representative images of the clinical aspect of the tongue after induction of oral mucositis
with ionizing radiation (control group, (A,D,G)). The tongue received photobiomodulation with
λ = 660 nm (660 nm group, B, E and H) or λ = 780 nm (780 nm group, (C,F,I)). The tongue was
analyzed after 8 days (A–C), 14 days (D–F), and 20 days (G–I) of ionizing radiation.
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Figure 3. Frequency of severity grades for edema/erythema (A), pseudomembrane formation
(B) and ulcerated surface (C) attributed to oral mucositis induced with ionizing radiation (control
group) and treated with photobiomodulation performed with λ = 660 nm (660 nm group) and
λ = 780 nm (780 nm group). The tongue was analyzed after 8, 14, and 20 days of ionizing radiation.
The grade description for each clinical variable is shown in Table 1. * p < 0.05 (Kruskal–Wallis test,
followed by Tukey’s test).

3.2. Histopathological Evaluation

Figure 4 shows the histopathological aspect of the tongue mucosa in each group and
experimental period. In the control group, intense epithelial atrophy on both the dorsal
and ventral surfaces was observed at 8 days (Figure 4A), with a focal area of ulceration at
the transition from the ventral to dorsal surface. At the base of the ulcer, the granulation
tissue was composed of hyperemic blood vessels, fibroblasts, and fibrillar extracellular
matrices. The ulcerated surface exhibited a large area of necrosis, with the presence of
polymorphonuclear cell infiltrate. In the 660 nm group at the same period (Figure 4B), the
histopathological aspect was similar to the control, but the vessels were more dilated, and
the collagen deposition was more exuberant, especially near the ulcer surface. The 780 nm
group (Figure 4C) also showed the same characteristics as the two other groups, with the
difference that the vasodilatation was less pronounced, especially when compared to the
660 nm group.
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Figure 4. Representative histological fields showing the repair process of ionizing radiation-induced
oral mucositis (control group, (A,D,G)) treated with λ = 660 nm photobiomodulation (660 nm group,
(B,E,H)) or λ = 780 nm photobiomodulation (780 nm group, (C,F,I)). The repair process was registered
after 8 (A–C), 14 (D–F) and 20 days (G–I) of ionizing radiation (hematoxylin-eosin, ×20 or ×50
original magnification).

At 14 days, the control group (Figure 4D) showed an advanced repair process, with
resorption of superficial necrosis, partial reconstruction of the connective tissue by mature
granulation tissue, and intense re-epithelization. In the submucosa, the muscle fibers
were regenerating, and no sign of fibrosis was noted. In the 660 nm group at the same
period (Figure 4E), re-epithelization and muscle regeneration were similar to those ob-
served in the control group, but the granulation tissue exhibited a more abundant collagen
matrix and more pronounced angiogenesis. The 780 nm group (Figure 4F) had the same
histopathological pattern, with a predominance of re-epithelization, collagen deposition,
and angiogenesis.

At 20 days, in the control group (Figure 4G) the tongue mucosa was completely
healed, with no sign of fibrosis. The 660 nm (Figure 4H) and 780 nm (Figure 4I) groups
also exhibited complete repair of the oral mucosa, but more collagen deposition was
noted in the comparison to the control, mainly between the muscle fibers generating a
thick endomysium.

3.3. Blood Vessel Counting

Figure 5 shows the values for blood vessel density in accordance with the groups and
time periods. At 8 days, the control showed a significantly lower vessel density than the
660 nm (p < 0.05) and 780 nm (p < 0.05) groups. After 14 days, although the control showed
the lowest values compared to the laser groups, the differences were not significant. At
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20 days, the 660 nm and 780 nm groups showed a higher vessel density than the control,
but the differences were statistically significant only for the 660 nm group (p < 0.05).
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3.4. Collagen Matrix Measurement

Figure 6 shows the collagen matrix presented in each group at 14 days. The mean
percentage of the collagen fibers area is shown in Table 3 Analyzing the quantification of the
collagen matrix in the lamina propria, the 660 nm group showed the highest concentration
of collagen fibers, showing significant differences in relation to the 780 nm (p < 0.01) and
control (p < 0.01). The collagen area at the 780 nm was also higher than that of the control
(p < 0.01). In the submucosa, there were no significant differences in collagen area between
the groups, but for the muscle area, the laser groups showed higher values than the control
(p < 0.05 for both laser groups).
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Figure 6. Representative histological sections of the collagen matrix in each group at 14 days
(hematoxylin-eosin, ×400 original magnification). (A) Control group showing collagen fibers dis-
posable in various directions and with high cellularity, suggesting poor remodeling. (B) The 660 nm
group exhibiting a dense collagen matrix, without fiber patterns and fewer cellularity. (C) The 780 nm
group showing a dense but more remodeled collagen matrix between the muscle fibers.

Table 3. Mean percentage ± standard deviation of collagen fibers and muscle tissue in samples of
oral mucositis after 14 days of ionizing radiation.

Mucosa Submucosa

Group Collagen (%) Collagen (%) Muscle (%)

Control Group 16.93 ± 5 A 16.93 ± 5 47.89 ± 11 B
Laser 660 nm 35.69 ± 8 B 17.46 ± 8 52.95 ± 6 A
Laser 780 nm 28.13 ± 5 C 15.3 ± 9 53.62 ± 7 A

Different letters indicate statistically significant differences (ANOVA test followed by Tukey’s test).
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4. Discussion

In this study, we demonstrated, for the first time, that PBM with the same energy den-
sity and wavelengths of 660 nm or 780 nm exerted similar effects during the repair process
of OM induced by ionizing radiation. The two wavelengths showed clinical efficacy for
reducing inflammatory signs and ulceration. However, some discrete differences between
the two wavelengths were noted in the histopathology analysis, especially regarding the
more pronounced effect of the red laser on the blood vessel density and collagen deposition
in some phases of tissue repair.

The clinical outcomes found in the OM model adopted in the current study were com-
patible with those described in previous studies [18,19]. The OM was clinically recognized
in the animal through erythema and edema presented at 3 days after ionizing irradiation.
The onset of epithelial erosion was observed from the sixth day after irradiation. The dorsal
apex of the tongue was the first ulcerated region, probably due to the direct contact of the
tongue apex with the incisors, generating direct and constant friction in the attempt to seize
the food. The highest severity of OM occurred between days 8 and 12, in which coalescent
ulcers were noted on the tongue surface.

At 8 days, the animals exposed to 660 nm and 780 nm had high degrees of erythema
and edema, and microscopically, vasodilatation was notorious. It is most likely that the
great absorption of 660 nm and 780 nm by chromophores localized in the blood improved
vasodilatation and vascular permeability at 8 days. In addition, during this experimen-
tal period, the blood vessel density was greater in the laser group than in the controls,
suggesting that the vasodilatation induced by PBM facilitated vessel visualization, and
consequently influenced the blood vessel count. However, after 14 days, both 660 nm and
780 nm wavelengths were considered efficacious in mitigating erythema and edema; at
this period, most animals of the control group exhibited these inflammatory signs and the
animals with PBM did not. At 660 nm, this effect was more pronounced, considering the
severity scores adopted in the current study. The success of PBM in negatively modulating
the inflammatory process of the mucosa has also been described by recent studies [20,21],
mainly by decreasing the expression of pro-inflammatory factors in oral mucositis [4,22,23].

Both laser groups showed a significant reduction in pseudomembrane formation,
which occurred clearly at 14 days. This finding suggests that PBM reduced the necrotic
ulcer surface and improved re-epithelization. Microscopically, the two wavelengths pro-
moted efficient and comparable necrotic tissue absorption, supporting the clinical find-
ings. Macrophages with the M1 phenotype are mainly responsible for necrotic tissue
phagocytosis. There is some evidence that the effect of 660 nm on macrophages with this
phenotype is different from that induced by near-infrared wavelengths; 660 nm induces
more pro-inflammatory release by macrophages than 780 nm [24] and more nitric oxide
than 808 nm [25]. Although we observed a similar efficiency in the reduction of tissue
necrosis by the two wavelengths, it is important to consider different mechanisms of action
determined by the red and near-infrared wavelengths in terms of macrophage activation
and pseudomembrane absorption.

A marked effect of PBM is the reduction in the ulcerated surface, mitigating oral
pain and reducing the risk for secondary infection [5,26,27]. In the current study, both
PBM groups were efficacious in reducing the ulcerated surface area, mainly after 14 and
20 days, although the differences in relation to the control were not significant, probably
because the number of animals was insufficient. Microscopically, both groups showed
exuberant re-epithelization at these experimental periods and mature granulation tissue,
which is important for keratinocyte migration. Considering that the red wavelength can
activate keratinocyte differentiation [28] and seems to be more sensitive to keratinocyte
proliferation than near-infrared wavelengths [29], further in vivo studies are necessary to
elucidate the differences between the red and near-infrared wavelengths in the process of
OM re-epithelization.

The 660 nm group showed the highest vascular density not only at 8 days, as discussed
above, but also at 20 days. The increase in vascularity at this later repair stage is suggestive
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of angiogenesis. The 780 nm group also showed high mean values of vascular density, but
the differences were not significant in relation to the control due to the data variance. The
use of PBM has been previously associated in the literature with an increase in vascular
components during healing processes [30,31]. A study showed that a red laser (650 nm)
was more efficient in angiogenesis induction than a near-infrared laser (808 nm), leading to
the cycle progression of the endothelial cell, calcium influx, nitric oxide production, and an
increase in levels of the vascular endothelial growth factor associated with the macrophage
M2 phenotype [32]. In another experiment with skin flaps in rats, 660 nm induced an-
giogenesis via activation of hypoxia inducible factor α, whereas 780 nm caused a direct
increase in the vascular endothelial growth factor [31]. Therefore, both wavelengths can
activate angiogenesis through different pathways, with 660 nm having more pronounced
effect considering the conditions of OM repair and previous exposure to ionizing radiation.

The red laser also promoted higher collagen production than 780 nm, although this
near-infrared wavelength also induced more collagenization than the control. The 660 nm
wavelength, as already discussed in other studies published in the literature, has a great in-
fluence on stimulating the ability of fibroblasts to produce collagen [33,34]. An investigation
compared the use of 630 nm and 850 nm LEDs on cutaneous repair and concluded that red
LEDs induced more collagenization and intense expression of tumor growth factor β than
near-infrared LEDs, but both wavelengths were efficacious in improving skin healing [35].
This trend can be extrapolated to OM repair, mainly considering the connective tissue near
the epithelium.

An important aspect of the current study was that both wavelengths were applied with
the same laser parameters, with 7.5 J/cm2 per point. The energy densities used for OM vary
in the literature, being conditioned, among other factors, on the OM severity, laser or LED
equipment characteristics, and specific protocols established locally. An energy density up
to 6 J/cm2 was considered safe for oncologic patients [11,14], but recent protocols adopted
higher energy densities for OM (11.1 J/cm2) and have also been considered safe [36].
In the current study we adopted an intermediate energy density commonly applied for
the induction of OM repair, to improve the extrapolation of the results to the patient’s
clinical situation.

5. Conclusions

PBM performed with 7.5 J/cm2 and wavelengths of 660 nm and 780 nm improved
the repair of ionizing radiation-induced OM by reducing the inflammatory signs and
stimulating the absorption of the necrotic tissue surface, mainly when 660 nm was applied.
Both wavelengths activated angiogenesis and collagen deposition, but these tissue effects
were more pronounced when 660 nm was used.
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