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Abstract: In classical Fourier optics, an optical imaging system is regarded as a linear space-invariant
system, which is only an approximation. Especially in digital holography, the space-variance effect
has a great impact on the image quality and cannot be ignored. Therefore, it is comprehensively
investigated in this article. Theoretical analyses indicate that the space-variance effect is caused by
linear frequency modulation and ideal low-pass filtering, and it can be divided into three states: the
approximate space-invariance state, the high-frequency distortion state, and the boundary-diffraction
state. Classical Fourier optics analysis of optical imaging systems only considers the first. Regarding
the high-frequency distortion state, the closer the image field is to the edge, the more severe the
distortion of high-frequency information is. As for the boundary-diffraction state, in addition
to the distortion of high-frequency information in the margin, a prominent boundary-diffraction
phenomenon is observed. If the space-variance effect of the imaging lens is ignored, we predict that
no space-variance effect in image holography will occur when the hologram is recorded at the back
focal plane of the imaging lens. Simulation and experimental results are presented to validate our
theoretical prediction.

Keywords: Fourier optics; signal processing; space-variance effect; digital holography; Fresnel
holography; image systems

1. Introduction

In signal and systems theory, a system whose properties do not change with its spatial
location is called a space-invariant system. In particular, the system response only depends
on the input signal and the system characteristics and is independent of the spatial location
where the input signal is imposed. Due to the linear space invariance of optical imaging
systems, classical Fourier optics describes the optical imaging system in terms of the
frequency response from the perspective of signals and systems [1].

However, the space invariance of optical imaging systems is only a simplification.
Related studies have pointed out that the space variance lowers the image quality of
the part of the image field that is farther away from the optical axis. Accordingly, this
simplification may be inappropriate for some cases. Yan et al. [2] discussed the axial
measurement error caused by the space-variance effect in digital holography by performing
numerous simulations of point and line spread functions. Lohmann and Paris [3] defined
the cross-correlation of two-line spread functions in an optical system as the evaluation
index of the space-variance effect of the system. Moreover, Brainis [4] investigated the
space-variance effect in aperture and lens imaging by analyzing the point spread function.

The aforementioned articles researched optical systems by analyzing the point spread
function, which is classical in Fourier optics. The responses of any point or edge in a
space-invariant system are the same, and every point or line is representative. A linear
space-invariant system satisfies the convolution theorem, and its transfer function can
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be expressed by the Fourier transform of its point spread function. Therefore, point and
edge spread functions can accurately describe the properties of space-invariant systems.
However, no transfer function is present in the space-variant system, and the point spread
function of a certain point can only describe the local response of the system to the point,
which is unrepresentative. Therefore, it cannot holistically or comprehensively describe
the system.

This study focuses on the causes of the space-variance effect, which have been studied
by some scholars. Tichenor and Goodman [5] identified the quadratic phase factor as
breaking the space-invariance condition of the single-lens imaging system. However, they
only studied the conditions under which the quadratic phase factor can be ignored. Thus,
although the optical imaging system can be simplified as a space-invariant system, the
properties of the optical imaging system under space-variance effects cannot be analyzed.
Pan et al. [6] showed that the spectrum broadening attributed to the quadratic phase
factor was an important contribution to the space-variance effect, but their discussion
on the space-variance effect was qualitative and not comprehensive. Herein, the role of
the quadratic phase factor in the space-variance effect and its propagation law in digital
holographic imaging systems are elucidated through a rigorous mathematical derivation.

Digital holography, an important three-dimensional measurement technology, can
simultaneously record the intensity and phase information of the measured object. It is
widely used in cell observation [7–9], particle and flow field measurement [10–12], and
topography [13–15] and tomography [8,16,17] measurement, among others. According
to the space-invariance approximation criterion proposed by Tichenor and Goodman [5],
the width of the object field of view (FOV) should be less than 1/4 of the width of the
aperture. This is easy to achieve for lens imaging. However, due to the limitation of the
resolution and magnification in digital holography, the transverse size of the object under
test or the virtual image of the front imaging system is usually comparable to the size of
the CCD/CMOS chip, so the space-variance effect is very common in digital holography,
especially digital Fresnel holography [18–21].

This paper analyzes the mathematical model of the Fresnel holographic imaging
system and determines that the image field is not the result of the ideal low-pass filtering of
the object field, as described in classical Fourier optics, but the result of the object field first
modulated by the linear frequency modulation (LFM) signal and then filtered by the ideal
low-pass filter. Thereafter, according to the ratio of the space–bandwidth product between
the LFM signal and the aperture, the space-variance effect of the holographic imaging
system is categorized into approximate space-invariance, high-frequency distortion, and
boundary-diffraction states. Notably, the classical Fourier optical analysis of optical imaging
systems only considers the approximate space-invariance state, which can be reduced to a
space-invariant system. In the high-frequency distortion state, the closer the image field
is to the FOV edge, the more severe the high-frequency information distortion is. In the
boundary-diffraction state, in addition to the distortion of high-frequency information
in the FOV margin, boundary-diffraction fringes are prominent. Specifically, the Fresnel
diffraction pattern of the aperture stop can be observed in the image field. To validate our
theory, we predict that no space-variance effect occurs in image holography [22,23] when the
hologram is recorded in the back focal plane of the imaging lens if the space-variance effect
of the imaging lens is ignored. Simulations and experiments were conducted to confirm
this prediction. For simplicity, the theoretical derivation in this paper is based on the
one-dimensional imaging case, but it can be easily extended to the two-dimensional case.

The rest of this article is organized as follows. In Section 2, the mathematical model of
Fresnel holography considering the space-variance effect is established. In Section 3, the
space-variance effect is divided into three states. In Section 4, the prediction is proposed
and confirmed by the results of simulations and experiments.
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2. Materials and Methods
2.1. Mathematical Model of Space-Variant Fresnel Holographic Imaging Systems

Diffraction in free space is linear space-invariant. According to the Huygens–Fresnel
principle, “every unobstructed point of a wavefront, at a given instant, serves as a source
of spherical quadratic wavelets. The amplitude of the optical field at any point beyond is
the superposition of all these wavelets [24].”. The Huygens–Fresnel principle comprises
two elements: the spherical wavelets hypothesis and the combination mode of spherical
wavelets—interference superposition. If free-space diffraction is considered, the above
points, respectively, correspond to the space-invariant and linear characteristics of free-
space diffraction.

However, although the diffraction-limited optical system is linear, it is not space-
invariant [3,25]. Without loss of generality, only the one-dimensional imaging process is
considered. Taking holography as an example, Figure 1 shows the recording and recon-
struction process of Fresnel holography, where R is the reference wave. For simplicity, the
back-propagation is represented to the right. The planes x0, x1, and x2 represent the object
plane, the CMOS chip (or hologram plane), and the observation plane, respectively.

From the angular spectrum point of view, diffraction in free space occurs from the
object plane to the CMOS chip, but due to the finite aperture, the CMOS will only selec-
tively receive the frequency components of each object point. In Figure 1, the frequency
components of A and B recorded by the CMOS are different, and the response on the obser-
vation plane markedly differs. In other words, the wavelet emitted by different positions of
the object plane received by the CMOS is different. Therefore, diffraction-limited optical
systems are space-variant systems.
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Figure 1. The recording and reconstruction process of Fresnel holography. A and B are any two points
on the plane x0.

Considering the object field uo(xo), diffraction from the object plane to the hologram
plane is expressed using the Fresnel diffraction formula as follows:

u1(x1) =
exp(jkd)

jλd

∞∫
−∞

u0(x0)w0(x0)exp
[

jk
2d

(x1 − x0)
2
]

dx0 (1)

where d is the recording distance, −d is the reconstruction distance, and k = 2π/λ. If the
object field has a rectangular boundary and the side length is L0, then w0(x0) = rect

(
x0
L0

)
,

where rect(·) represents the rectangular window function. Let the reference wave be

R(x1) = arexp[jψ(x1)] (2)

where ar = C1, ψ(x1) = C2x1, and C = constant. The hologram can then be obtained from
the interference between the object wave and the reference wave:

I1(x1) = |u1(x1) + R(x1)|2 = |u1|2 + |R|2 + R∗u1 + Ru∗1 (3)

By phase shifting or applying the off-axis technique, the object wave u1 recorded by
the hologram can be extracted. Through back-propagation, the reconstructed wave front
u2(x2) can be written as
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u2(x2) =
ar

2

λ2d2

∞∫
−∞

w1(x1)


∞∫
−∞

u0(x0)rect
(

x0

L0

)
exp
[

jk
2d

(x1 − x0)
2
]

dx0

× exp

[
−jk
2d

(x2 − x1)
2
]

dx1 (4)

where w1(x1) = rect
(

x1
L1

)
is the rectangular window function determined by the size of the

CMOS chip, which can be regarded as the aperture stop of the Fresnel holographic imaging
system. Ignoring the constant term in Equation (7), we can derive the reconstructed wave
front u2(x2) as

u2(x2) = exp
(
−jk
2d

x2
2
)
× FFT−1

{
rect

(
fx

L1/λd

)
FFT

[
u0(x0)rect

(
x0

L0

)
exp
(

jk
2d

x0
2
)]

fx0=
x1
λd

}
t f x0=x0=x2

(5)

where L1 is the physical size of the CMOS chip; FFT and FFT−1 represent the Fourier trans-
form and inverse Fourier transform, respectively; fx0 is the frequency-domain coordinates
after the Fourier transform; and t f x0 is the spatial-domain coordinates after the inverse
Fourier transform.

The system represented by Equation (5) is shown in Figure 2 as a block diagram. Accord-
ing to communication theory, the input signal, namely, the object field u0(x0)rect

(
x0
L0

)
, is the

modulation signal, and its spectrum distribution in phase space is shown in Figure 3a [26,27].
exp
(

jk
2d x0

2
)

is the carrier signal, which is also called the LFM signal or chirp signal.

u0(x0)rect
(

x0
L0

)
exp
(

jk
2d x0

2
)

is the modulated signal. The Fresnel holographic imaging
system consists of the following three parts:
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u0(x0)rect
(

x0
L0

)
in phase space. The thick blue line is the zero-frequency component of the object field

u0(x0)rect
(

x0
L0

)
. (b) The spectrum distribution of the modulated signal u0(x0)rect

(
x0
L0

)
exp
(

jk
2d x0

2
)

in phase space, which can be obtained by shearing (a) by x0
dλ . The thick black line is the cut-off

frequency. (c) Distribution of spectrum in phase space after ideal low-pass filtering. (d) The spectrum
distribution of the reconstructed wave field u2(x2) in phase space, which can be obtained by shearing
(c) by − x0

dλ .
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(1) Modulation of input signal u0(x0)rect
(

x0
L0

)
by carrier signal exp

(
jk
2d x0

2
)

. If ϕ = k
2d x0

2,

the frequency shift introduced by the carrier signal exp
(

jk
2d x0

2
)

when applying the
frequency shift theorem of the Fourier transform is

∆ f x =
1

2π
· ∂ϕ

∂x0
=

x0

dλ
(6)

Equation (6) shows that the frequency shift is dependent on the spatial coordinates,
which indicates that this process is space-variant. The distribution of the modulated
signal u0(x0)rect

(
x0
L0

)
exp
(

jk
2d x0

2
)

in phase space is shown in Figure 3b.

(2) Ideal low-pass filtering of modulated signal u0(x0)rect
(

x0
L0

)
exp
(

jk
2d x0

2
)

. rect
(

fx
L1/λd

)
represents a rectangular ideal low-pass filter, as shown in Figure 4, whose pass-
band is determined by the angular aperture of the CMOS target plane, namely,
− L1

2λd ≤ fx ≤ L1
2λd . As shown in Figure 3b,c, after the frequency shift of the mod-

ulation signal, the original low-frequency information becomes high-frequency. In
this case, low-pass filtering will block the original low-frequency information of the
modulation signal u0(x0)rect

(
x0
L0

)
. The farther away it is from the optical axis, the

more low-frequency information of the modulation signal u0(x0)rect
(

x0
L0

)
that will

be lost. Therefore, for the input signal of the system–object field u0(x0)rect
(

x0
L0

)
, the

aperture is not reflected as an ideal low-pass filter due to the frequency shift effect of
Equation (6) but as a frequency-selective filter, with the constant passband width and
center frequency changing with the position in the object plane. Such a filter presents
different frequency responses with different spatial locations of the modulation signal
u0(x0)rect

(
x0
L0

)
; that is, the filtering process is space-variant for the modulation signal

u0(x0)rect
(

x0
L0

)
.
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(3) Modulation of ideal low-pass-filtered signal by carrier signal exp
(
− jk

2d x0
2
)

. When the
reconstruction distance is equal to the recording distance, the two carrier signals before
and after filtering are conjugate and cancel each other, and the Fresnel holography
reconstruction automatically completes the demodulation process. Therefore, the
problem of quadratic phase aberration is not encountered in Fresnel holography. The
distribution of the reconstructed wave field in phase space is shown in Figure 3d.

The above analyses reveal that LFM and ideal low-pass filtering are critical to the
space-variance effect. Without LFM, the ideal low-pass filtering is strict with respect to
the object field, and the system will be space-invariant. Moreover, without ideal low-pass
filtering, the two carriers will cancel out, and the reconstructed wave front will not differ
from the object wave field.
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Both LFM and ideal low-pass filtering are important for space-variance effects, but
different optical systems require different considerations. For example, the space-variance
effect can be effectively suppressed by using larger optical elements to increase the passband
width of the low-pass filter. Usually, this requirement is easy to fulfill, such as by using
a larger lens. However, in some cases, such as the demand for a more compact design or
when some optical elements are very small, one can only rely on the control of LFM to
suppress the space-variance effect. For example, in digital holography, the size of CMOS
chips is usually very small, about a few millimeters.

2.2. Three Stages of the Space-Variance Effect

The solution to Equation (5) is derived to further analyze the space-variance effect.
From the perspective of signal processing, the chirp rate of the LFM signal exp

(
jk
2d x0

2
)

is
K0 = 1/dλ, its bandwidth is B0 = K0L0, and its space–bandwidth product is
SBP0 = B0L0 = K0L0

2. The object wave field u0(x0) is assumed to be a slowly varying
function compared with the LFM signal exp

(
jk
2d x0

2
)

; therefore, it can be ignored. This
approximation is reasonable for phase-only samples with slow phase changes, such as cells.
The modulated signal can be reduced to rect

(
x0
L0

)
exp
(

jπK0x0
2), and its Fourier transform is

U( fx0) =

L0/2∫
−L0/2

exp
[

jπ
(

K0x0
2 − 2 fx0 x0

)]
dx0 = exp

(
−jπ

fx0
2

K0

) L0/2∫
−L0/2

exp

[
jπ
(√

K0x0 −
fx0√
K0

)2
]

dx0 (7)

Assuming that
(√

K f f − x√
K f

)2
= v2/2, v =

√
2K0x0 −

√
2 fx0√
K0

, we have

U( fx0) =
1√
2K0

exp

(
−j

π f x0
2

K0

) V2∫
−V1

exp
(

j
πv2

2

)
dv (8)

The integral term of Equation (8) is the Fresnel integral, where

V1 =

√
2K0L0

2

2 +
√

2/K0 fx0

V2 =

√
2K0L0

2

2 −
√

2/K0 fx0

(9)

The spectrum U( fx0) of the signal rect
(

x0
L0

)
exp
(

jπK0x0
2) is

U( fx0) =
1√
2K0

exp

(
−jπ

fx0
2

K0

)
[C(V1) + jS(V1) + C(V2) + jS(V2)] (10)

where

C(V) =
V∫
0

cos
(

πv2

2

)
dv

S(V) =
V∫
0

sin
(

πv2

2

)
dv

(11)

As shown in Figure 4, the red line is the magnitude spectrum of U( fx0) with a rect-
angular envelope, and its main energy is relatively evenly distributed between − B0

2 and
B0
2 , rather than concentrated near the zero frequency such as in the classical distribution

of the magnitude spectrum [28]. This phenomenon is called central frequency spread-
ing [29,30]. Equation (10) offers a good approximation of the spectrum of the modulated
signal u0(x0)rect

(
x0
L0

)
exp
(

jk
2d x0

2
)

. Notably, the spectrum U( fx0) is only meaningful in the
system represented in Equation (5) or Figure 2 and is independent of the object wave u1(x1)
recorded by the hologram.
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The low-pass-filtering process can be divided into three states.

(1) Approximate space-invariance state. In this state, the filter passband width BL1 = L1/λd
is much larger than the bandwidth B0 = L0/dλ of the LFM signal; that is, the width
of the aperture L1 is much larger than the width of the object field L0. The blue
box in Figure 4 represents the passband of the low-pass filter in this case. Tichenor
and Goodman [5] pointed out that when L1 > 4L0, the space-variance effect is
negligible. The classical Fourier optical analysis of optical imaging systems rests on
the assumption of approximate space invariance; in other words, only the L1 > 4L0
case is considered.

(2) High-frequency distortion state. The passband width of the filter in this state satisfies
4B0 > BL1 > B0. The purple box in Figure 4 represents the passband of the low-pass
filter in this case. The energy blocked by the filter is mainly from the high-frequency
information of the object field far from the optical axis. The farther away the object
wave field is from the optical axis, the higher the frequency modulated by the LFM
signal is. Therefore, more information is lost in these areas after low-pass filtering, and
the image quality is worse, which is mainly reflected in the distortion of the abrupt
phase in the margin of the image wave field.

(3) Boundary-diffraction state. The green box in Figure 4 represents the passband of
the low-pass filter when BL1 < B0. In this case, the high-frequency information
and a mass of low-frequency information in the margin of the object wave field
are filtered out. Because the main energy of the optical field is concentrated in the
low-frequency information, high energy loss occurs in areas where low-frequency
information is filtered out, which leads to a decrease in the signal-to-noise ratio,
resulting in phase distortion.

When the space–bandwidth product TBP = K0L0
2 of the LFM signal exp

(
jπK0x0

2) is
sufficiently large, the U( fx0) spectrum can be approximated as

U( fx0) =
1√
K0

exp

(
−jπ

fx0
2

K0
+

π

4

)
, −B0

2
< fx0 <

B0

2
(12)

Equation (12) demonstrates that the spectrum of the band-limited LFM signal can still
be regarded as a band-limited LFM signal. Curlander and McDonough [31] pointed out that
when the spatial bandwidth product of the LFM signal is greater than 100, Equation (12)
is sufficient for obtaining the exact spectrum. Therefore, when the filter passband width
BL1 = L1/λd is less than the bandwidth B0 = L0/dλ of the LFM signal, that is, when the
aperture width L1 is less than the object wave field width L0, ignoring the constant phase,
the spectrum after ideal low-pass filtering can be approximated as

U( fx0) =
1√
K0

exp

(
−jπ

fx0
2

K0

)
, −BL1

2
< fx0 <

BL1

2
(13)

The signal presented in Equation (13) is considered a new LFM signal. Let K1 = 1/
K0 = dλ; its chirp rate is −K1. The bandwidth B1 = K1BL1 = L1 is the physical width of

the aperture. The space–bandwidth product is SBP1 = K1BL1
2 = L1

2

λd , which is the same
form as the Fresnel number.

The inverse Fourier transform of U( fx0) is

∼
u2(x2) =

1√
K0

BL1/2∫
−BL1/2

exp
[

jπ
(
−K1 fx0

2 + 2 fx0 x2

)]
d fx0 (14)
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From the derivation in Equations (7)–(10), we can obtain

∼
u2(x2) =

1√
2

exp
(

j
πx2

2

K1

)
[C(X1)− jS(X1) + C(X2)− jS(X2)] (15)

where
X1 =

√
2K1BL1

2

2 +
√

2/K1x2 =
√

2NF1(1 + 2x2/L1)

X2 =

√
2K1BL1

2

2 −
√

2/K1x2 =
√

2NF1(1− 2x2/L1)
(16)

where NF1 = L1
2

4dλ . Substituting Equation (15) into Equation (5), the quadratic phase factor
in Equation (15) cancels out. The reconstructed wave front is

u2(x2) =
1√
2
[C(X1)− jS(X1) + C(X2)− jS(X2)] (17)

which proves that no quadratic phase aberration is present in the Fresnel-holography-
reconstructed wave front. The above derivation assumes that the object field changes
slowly, so the solution to Equation (17) can also be regarded as the wavefront error, which
is caused by the space-variance effect on the low frequency of the image field.

Equation (17) is obtained from the back-propagation of R∗u1. The corresponding
wavefront error u2(x2) obtained from the forward propagation of R∗u1 is

u2(x2) =
1√
2
[C(X1) + jS(X1) + C(X2) + jS(X2)] (18)

Equation (18) is exactly the same as the Fresnel diffraction pattern of the square
aperture. The square aperture here is the CMOS chip. Therefore, BL1 < B0 is an instance of
the boundary-diffraction state. Moreover, Equations (17) and (18) reveal that the boundary
diffraction will disturb the entire image wave field, including the paraxial state.

The experimental results of the three stages of the space-variance effect are shown in
Figure 5. The sample is a laser-etched “XJTU” quartz plate with a maximum width of about
3 mm. The size of the CMOS chip used in the experiment is 12.8 × 12.8 mm2 (resolution
5120 × 5120, pixel size 2.5 × 2.5 µm2). Therefore, if the object wave field of the measured
sample is exactly located in the center of the CMOS chip, the approximate space-invariance
state L1 > 4L0 is satisfied, as shown in Figure 5a. In order to compare the measurement
results of the same location of the same sample under different conditions, the sample is
moved so that the relative position of the CMOS chip and the object wave field changes,
which is equivalent to using a sample with a larger size. If part of the main energy of the
object wave field irradiates outside the CMOS chip, the boundary-diffraction state BL1 < B0
or L1 < L0 is satisfied, as shown in Figure 5c. The condition between the cases shown in
Figure 5a,c corresponds to the high-frequency distortion state, as shown in Figure 5b.

From the perspective of signal processing, this boundary-diffraction disturbance
can be considered a ringing artifact, namely, Gibb’s phenomenon [6]. Cuche et al. [32]
utilized the apodization method to suppress the boundary-diffraction disturbance in dig-
ital holographic imaging and achieved good results in the application of holographic
measurements [33]. In general, in addition to consuming more time and computational
resources and having a reduced FOV, the apodization method can satisfactorily suppress
the boundary-diffraction perturbation of the intensity map. However, the apodization
method does not fundamentally change the space-variance effect of the optical imaging
system, so it cannot suppress the high-frequency information distortion in the marginal
area of the reconstructed image. In addition, because the apodization method reduces
the intensity of the hologram marginal area, the signal-to-noise ratio of the reconstructed
image in the corresponding area decreases, which leads to more severe distortion of the
phase map.
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Figure 5. Fresnel holographic measurements in the three stages of space-variance effect. (a–c) are
Fresnel holograms recorded under three conditions: the diffraction wave field of the measured
object falls on the center of the CMOS target plane; it falls to the right, but the main part is still
on the CMOS target plane; and part of the direct light does not fall on the CMOS target plane.
(d–f) represent the reconstructed intensity map of the three aforementioned holograms and zero
padding to 7500 × 7500 pixels during reconstruction. (g–i) are enlarged views of the red-boxed areas
in (d–f). Distinct boundary-diffraction fringes or ringing artifacts are evident in (i). (j–l) are the phase
diagrams corresponding to the red-boxed areas in (g–i). (m–o) are the contour lines at the red lines in
figures (j–l). (n) shows the phase distortion at the step, which is caused by the loss of high-frequency
information here due to the space-variance effect. (o) shows the perturbation of the low-frequency
information by boundary diffraction, and the overall trend of the contour being severely affected.

2.3. Eliminating the Space-Variance Effect by Recording Holograms at the Back Focal Plane of the
Imaging Lens

Due to the size of a CMOS chip, the numerical aperture of a Fresnel holographic
imaging system is usually much smaller than that of a lens imaging system. Moreover,
increasing the numerical aperture by increasing the CMOS chip size is expensive and
inefficient. Image holography [22,23] is a hologram-recording method that combines
holography with a lens imaging system. We deductively predicted that hologram recording
at the back focal plane of the imaging lens would not produce a space-variance effect, and
this prediction is proved by simulations and experiments. As shown in Figure 6, if the
constant term is ignored, the expression of single-lens imaging is

ui(xi) = exp
(

jk
2d2

xi
2
)
× FFT−1

FFT
[

uo(xo)exp
(

jk
2d1

xo
2
)]

fxo=
xl

λd1

× P( fxo)


t f xo=xo=

−d1
d2

xi

(19)
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where P(·) is the pupil function, and

1
d1

+
1
d2

=
1
f

(20)

where f is the focal length of the lens.
In the image holography schematic shown in Figure 7, the image holography consists

of single-lens imaging and Fresnel holography when the diffraction between each plane is
located in the Fresnel diffraction region. The image formed by the lens can be regarded as
the virtual object in Fresnel holography. The recording distance is −d3, and the reconstruc-
tion distance is d3, with their signs being opposite to those in ordinary Fresnel holography.
In this case, the formula for Fresnel holographic imaging is as follows:
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Figure 6. Schematic of single-lens imaging. d1 and d2 are object and image distances, respec-
tively; F and F′ are focal points; xo, xl , and xi are the coordinates of the object, lens, and image
planes, respectively.
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Figure 7. Schematic of image holography. d1 and d2 are the object and image distances of the lens,
respectively. The CMOS is located between the lens and the image plane, d3 is the distance between
the CMOS and the image plane, and d4 is the distance between the lens and CMOS. F and F′ are the
front and back focal points of the lens, respectively. xo, xl , and xi are the lens object, lens, and lens
image planes, respectively. xi is also the object plane of the holographic imaging system, which can be
regarded as the virtual object. xc and xci are the CMOS and reconstructed image planes, respectively.
In this case, xc lies between xl and xci, and xci coincides with xi.

uci(xci) = exp
(

jk
2d3

xci
2
)
× FFT−1

FFT
[

ui(xi)exp
(
−jk
2d3

xi
2
)]

fxi=
−xc
λd3

× rect
(

fxi
Lx/λd3

)
t f xi=xi=−xci

(21)

Substituting Equation (19) into Equation (21) yields a cumbersome expression.

uci(xci) = exp
(

jk
2d3

xci
2
)

× FFT−1{FFT{exp
(

jk
2d2

xi
2
)

× FFT−1

{
FFT

[
uo(xo)exp

(
jk

2d1
xo

2
)]

fxo=
xl

λd1

× P( fxo)

}
t f xo=xo=

−d1
d2

xi

× exp
(
−jk
2d3

xi
2
)
}

fxi=
−xc
λd3

× rect
(

fxi
Lx/λd3

)
}

t f xi=xi=−xci

(22)
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As shown in Figure 8, the optical imaging system presented in Equation (22) can be
represented by a block diagram, and the former is analyzed in the phase space, as shown in
Figure 9. The modulation of the LFM signal in phase space is manifested as the shearing of
the original signal, and the low-pass filtering is manifested as the cutting of the spectrum
along the frequency axis. Because shearing occurs before cutting, different states retain
different frequency components after cutting, as shown in Figure 9b, which will lead to
the space-variance effect. In Figure 7, the virtual object field of holography is the image of
the previous lens, which results in the spectrum undergoing reverse shearing and makes
it possible to “correct” the spectrum before passing through the next low-pass filter, the
CMOS, as shown in Figure 9d. In this case, the frequency response of the CMOS low-pass
filter to each spatial position is the same, and no new space-variance effect will be produced.
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𝐹𝐹𝑇 𝐹𝐹𝑇 𝑢 𝑥 𝑒𝑥𝑝 𝑗𝑘2𝑑 𝑥 𝑃 𝑓
𝑒𝑥𝑝 −𝑗𝑘2𝑑 𝑥 ⎭⎬

⎫ 𝑟𝑒𝑐𝑡 𝑓𝐿 𝜆𝑑⁄ ⎭⎪⎬
⎪⎫
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When
jk
2

(
xo

2

d1
+

xi
2

d2
− xi

2

d3

)
= 0 (23)

is satisfied, where xo =
−d1
d2

xi, that is,

d3 =
d2

2

d1 + d2
(24)

the distance between the lens and the CMOS target plane is

d2 − d3 = d2 −
d2

2

d1 + d2
=

d1d2
d1 + d2

(25)

According to Equation (20), we have

f =
d1d2

d1 + d2
(26)

and the following formula:
d4 = d2 − d3 = f (27)

That is, when the distance between the lens and the CMOS chip is the focal length of
the lens, the holographic imaging process will not produce a new space-variance effect.
In addition, it is necessary to exclude the influence of the lens as much as possible since
our focus is on the space-variance effect in digital holography. A large aperture lens can
be used to ensure this point. For example, in our experiment, a lens with a diameter of
50.8 mm was used as the image lens, thus satisfying the approximate space-invariance state.
When the space-variance effect of the imaging lens can be ignored, the whole holographic
imaging system remains space-invariant. From the perspective of Fourier optics, the back
focal plane of the imaging lens is the Fourier plane of the object field; thus, the aperture
stop located in the back focal plane is equivalent to the ideal low-pass filtering of the object
field, so the imaging process is space-invariant. In addition, for different object distances
of the same imaging lens, its Fourier plane remains the same, so the recording position of
focal plane holography also remains the same.

3. Results

The prediction was verified by simulations and experiments involving microlens array
topography measurements. As shown in Figure 10, an ordinary Mach–Zehnder interfer-
ometer was used for the experiment. A laser beam with a wavelength of 523.5 nm was
used in our experiment; the focal length of the imaging lens was 200 mm, and the sample
was placed 400 mm in front of the imaging lens to maintain a vertical-axis magnification
of 1×. The tested object was an lbtek MLAS10-F15-P300-AB microlens array with a pe-
riod of 300 µm and window size of 9 mm × 9 mm. A CMOS camera with a resolution
of 5120 × 5120 and pixel size of 2.5 µm was used for recording. To better compare the
image quality of the three hologram-recording methods, the holograms were cropped to a
resolution of 3800 × 3800 with a physical size of 9.5 mm.

For comparison, the following three sets of simulations and experiments were per-
formed: Fresnel holography, image holography with the recording of holograms at the
back focal plane (IHWF), and image holography without recording holograms at the back
focal plane of the imaging lens (IHWOF). To maintain the same numerical aperture as
that in IHWF, the CMOS was placed 200 mm behind the sample in Fresnel holography
and 200 mm behind the image plane of the imaging lens in IHWOF. Calculations show
that the recording distance satisfies the Fresnel approximation condition and the spectrum
separation condition of off-axis holography.
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Figure 10. Schematic of the image holography. BE, beam expander with spatial filter; BS, beam
splitter; M, plane mirror; L, imaging lens; d1, object distance; d4, distance between lens and CMOS; f,
focal length of the lens L.

The simulation processes of Fresnel holography and image holography are based on
the block diagrams shown in Figures 2 and 8, and the simulation results under the above
conditions are shown in Figures 11 and 12, respectively.
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Figure 11. (a–l) are the simulation results of microlens array measurements obtained using Fresnel
holography, IHWF, and IHWOF, respectively. (a,e,i) are the intensity maps. (b,f,j) are the wrapped
phase maps; (c) is the enlarged image of the area in the red box in (b); and (g,k) are the wrapped phase
maps after compensating for the phase aberration of the area in the red boxes in (f,j), respectively.
(d,h,l) are the enlarged images in the red boxes in (c,g,k), respectively.

Recording the hologram directly at the back focal plane of the imaging lens in the
IHWF experiment is difficult because the energy of the zero-frequency component is too
concentrated, and the overexposure of the low-frequency information is severe. Therefore,
the CMOS target plane can slightly deviate from the focal plane to record the hologram
and still maintain the approximate space invariance.
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Figure 12. Simulation results. (a,b) show the unwrapped phase maps of Fresnel holography and
IHWF reconstructed wave front, respectively (unwrapped results of the phase maps in Figure 11c,g,
respectively). (c,d) represent the profile curves at the red lines in (a,b), respectively.

The experimental results are shown in Figures 13 and 14. In Figure 14c, because of the
space-variance effect, the high-frequency information at the edge of the microlens array
is lost, while the phase in Figure 14d is in order. In addition, there is a phenomenon of a
“phase increase” at the edge in Figure 14, which may result from phase aberration. The
experimental results in [34–40] indicate that in digital holographic phase measurement,
it is difficult to perfectly control or eliminate the phase aberration in the whole field of
view. However, the “phase increase” in Figure 14 does not affect any of the analyses and
conclusions of this article.
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Figure 13. (a–l) are the experimental results of microlens array measurements for Fresnel holography,
IHWF, and IHWOF, respectively. (a,e,i) are the intensity maps. (b,f,j) are the wrapped phase maps;
(c) is the enlarged image of the area in the red box in (b); and (g,k) are the wrapped phase maps after
compensating for the phase aberration of the areas in the red boxes in (f,j), respectively. (d,h,l) are
the enlarged images in the red boxes in (c,g,k), respectively.
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Figure 14. Experimental results. (a,b) show the unwrapped phase maps of Fresnel-holography- and
IHWF-reconstructed wave fronts, respectively (unwrapped results of the phase maps in Figure 13c,g,
respectively). (c,d) are the profile curves at the red lines in (a,b), respectively.

The simulation and experimental results reveal that the imaging quality of IHWF is
significantly higher than that of Fresnel holography and IHWOF, and the imaging quality
of IHWOF is worse than that of Fresnel holography. The latter can easily be explained by
Figures 8 and 9. For example, the bandwidth of the LFM signal in IHWOF is twice that
of the LFM signal in Fresnel holography, so only the area in the center, which occupies
approximately 1/4 of the total area in Figures 11k and 13k, has relatively high imaging
quality. These results indicate that IHWF has the potential to suppress or even eliminate
the space-variance effect and further indicate the correctness of the proposed theory.

4. Discussion

In this article, Fresnel holography and holography with a lens are studied. It is
precisely because the object of study is very simple that it is possible to obtain theoretical
solutions. However, modern optical systems are often complex and contain a large number
of optical elements. Furthermore, different optical elements modulate the beam differently,
and the superposition effects are difficult to strictly derive.

It is meaningful to analyze the space-variance effect of complex optical systems to
improve the imaging capability of these systems. Unfortunately, these cases are beyond
the scope of this article. More research is needed on how the spatial effect will affect the
system and what kind of experimental phenomena occur in a system with a large number
of optical elements, such as grating and spatial light modulators.

One of the significant contributions of this manuscript is that it provides a good
framework: that is, through Fourier analysis and phase space analysis for each step of the
diffraction process, the space-variance effect of the whole system is finally obtained. This
lays a foundation for the future study of the space-variance effects of complex systems.

5. Conclusions

In this study, the digital holography imaging system is regarded as a space-variant
system. In digital Fresnel holography, the space-variance effect severely affects the measure-
ment results due to the small size of the CMOS chip. Therefore, it is inappropriate to treat
it as a space-invariant system. The discussion of space-variance effects in Sections 2 and 3
of this paper is based on Fresnel holography, but it is also applicable to ordinary optical
imaging systems. The presented analysis reveals that the space-variance effect is caused by
LFM and ideal low-pass filtering. If one of these two conditions is destroyed, the space-
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variance effect can be eliminated. Furthermore, three states of the space-variance effect
are pointed out: approximate space-invariance state, high-frequency distortion state, and
boundary-diffraction state. In this study, the two physical phenomena of high-frequency
distortion and boundary diffraction are added to the classical Fourier optical analysis of
an optical imaging system, which only considers the approximate space-invariance state,
making it more consistent with the fact.

Based on the theory proposed in this study, we have proved through theoretical
analysis, simulation, and experiments that the space-variance effect can be controlled by
adjusting the distance between the optical elements in the imaging system, especially
when recording the hologram in the back focal plane of the imaging lens, in which case
the holographic imaging process will not produce a new space-variance effect. In other
words, when the space-variance effect of the imaging lens can be ignored, there will be no
space-variance effect in the imaging system. Thus, this article provides a comprehensive
understanding of digital holographic imaging systems with the space-variance effect.
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