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Abstract: Silicon photonics (SiPh) has emerged as a promising technology for photonic integrated
circuits (PICs). One of the basic components in SiPh is the directional coupler (DC), which plays an
important role in signal monitoring with the requirement of low wavelength dependence and low
loss. This paper proposes a broadband and low-loss DC designed for signal power tapping on the
3 µm silicon-on-insulator (SOI) waveguide platform. By utilizing the advantages of multi-micron
waveguides and replacing one of the straight waveguides with an optimized arc-shaped waveguide
in the coupling region, the proposed DC enhances spectral stability and improves transmission with
negligible loss. Experimental evidence indicates that the proposed DC showcases a minimal variation
in the tapping ratio. From 1470 nm to 1630 nm, the largest deviation away from the tapping ratio
at 1550 nm is 1.433%. Additionally, the device exhibits a low excess loss of −0.27 dB. These results
suggest that the proposed device is well-suited to reliable signal power tapping and monitoring,
particularly within PICs.

Keywords: silicon photonics; directional coupler; power splitter; tap monitor

1. Introduction

Silicon photonics (SiPh) has gained prominence as one of the leading technologies for
integrated photonics, with a diverse range of applications in high-performance comput-
ing [1,2], optical communications [3], and optical sensors [4]. The key advantage of SiPh
lies in its compatibility with standard complementary metal oxide semiconductor (CMOS)
technology, resulting in cost-effective mass production. The directional coupler (DC) is a
fundamental and widely employed building block in SiPh, serving as a power splitter to
construct complex devices, such as Mach–Zehnder interferometers (MZIs) [5], wavelength
division multiplexers (WDMs) [6], optical switches [7], and electro-optics modulators [8].
In optical communication and sensing, the DC is commonly used to construct waveguide
taps to extract a portion of the light signal traveling along a primary waveguide. These taps
serve monitoring purposes, allowing for the precise measurement of the light signal’s char-
acteristics at a specific location [9]. However, coupled mode theory [10,11] demonstrates
that the coupling efficiency of conventional DCs with parallel waveguides sections is highly
dependent on the propagation constants. This leads to a varying amplitude of the coupling
power with the operating wavelength, resulting in strong wavelength dependence, which is
unfavorable for signal power tapping and monitoring applications. In the past two decades,
researchers have made significant efforts in developing broadband DCs [12–15]. Adiabatic
directional couplers [12] have demonstrated promising broadband operation, using tapered
waveguides for achieving adiabatic transitions; however, they have the disadvantage of
large footprints. Another approach [13] involves the use of sub-wavelength grating (SWG)
structures to enhance the coupling strength and reduce device size while maintaining
broadband operation. However, achieving this requires high fabrication accuracy to control
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the dimensions of waveguides. Additionally, broadband MZI-based couplers [14] which
integrate MZI structures into DCs still have challenges in terms of their larger footprints
compared to conventional DCs on the same SiPh platform. Consequently, the development
of DCs with broadband characteristics, low loss, and high fabrication tolerance continues
to be a topic that requires further exploration.

The 3 µm silicon-on-insulator (SOI) optical waveguide platform, also referred to as
the thick-SOI platform, has emerged as a highly successful option for SiPh fabrication over
the last ten years [16,17]. This platform has demonstrated exceptional performance in key
components such as etched diffraction grating (EDG) [18], arrayed waveguide grating
(AWG) [19], Ge photodetectors [20], and electro absorption modulators (EAMs) [21]. Addi-
tionally, these key building blocks have been successfully monolithically integrated [22,23].
In contrast to the majority of SiPh waveguide platforms that utilize sub-micron top silicon
waveguide layers, the 3 µm SOI waveguide platform presents significant advantages for
the design of ultra-wideband, low-loss, and high-fabrication-tolerance photonic integrated
circuits (PICs). The multi-micron waveguide core of the thick-SOI platform boasts signifi-
cantly lower effective index sensitivity, making it particularly well-suited for applications
that require spectral stability [24]. Meanwhile, the larger dimensions enable complete con-
finement of the optical mode field, reducing sensitivity to variations in waveguide shape
and resulting in negligible propagation loss of approximately −0.1 dB/cm [25]. Another
notable advantage of the thick-SOI platform is its wavelength independence and robust
performance across a wide range of waveguide dimensions for single-mode operation. This
behavior arises from the efficient leakage of higher-order modes into the slab modes of
rib waveguides, as long as the relative waveguide dimensions are well controlled. These
characteristics substantially enhance the potential of the 3 µm SOI waveguide platform
as an attractive choice for developing broadband, low-loss, and fabrication-tolerant SiPh
devices and systems.

In this work, we present a DC for tapping signal power on the 3 µm SOI waveguide
platform. The device exhibits broadband and low-loss characteristics by leveraging the
platform’s effective index insensitivity and low-loss transmission. By replacing one of
the two straight waveguides in the conventional coupling region with an arc-shaped
waveguide, the device achieves an effectively shortened coupling length, thus reducing its
sensitivity to wavelength as expected by the coupled mode theory. The proposed DC is
characterized over a broad wavelength range of 1470 nm to 1630 nm, resulting in minimal
fluctuations in the tapping ratio within the range of −1.373% to 1.433% when compared to
its value at 1550 nm, and a low excess loss (EL) level of −0.27 dB. These results indicate
that our design can serve as a fundamental component for various applications that require
stable power tapping and monitoring.

2. Principle and Device Structure

The schematic diagram of a conventional DC is presented in Figure 1. The DC is
composed of two symmetric arms that have a uniform width of W. Each arm comprises
a straight waveguide of length LC and two S-bends, functioning as the input and output
ports, respectively. Power exchange occurs between the two straight waveguides, and thus,
the term coupling length is applicable to describe the length of the straight waveguide. In
addition, the parts of the S-bends adjacent to the straight waveguides also contribute to cou-
pling, meaning that the effective coupling length is greater than LC. A cross-sectional view
of the coupling region is shown in Figure 1b. Careful design of the rib waveguide height H,
slab thickness h, gap size G, and W is required to achieve the desired coupling strength.
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Figure 1. (a) Top view of a conventional DC. (b) Cross-sectional schematic of rib waveguides in the
coupling region.

Based on the coupled mode theory or the supermode solution method, the DC’s
splitting ratio correlates with the mode effective index in each arm or the effective indices
of the supermodes supported by the two waveguides. However, the presence of mode
dispersion constrains the operating bandwidth. In this study, we applied the Lumerical
finite difference eigenmode (FDE) solver to determine the effective indices of two sets of
supermodes in the coupling region, which corresponded to diverse design parameters
and represented the distinct single-mode configurations on the 220 nm SOI waveguide
platform and the thick-SOI platform, respectively. In Figure 2a, the effective indices of
supermodes are plotted against the wavelength λ. The blue lines illustrate the design
based on the 3 µm SOI waveguide platform, with dimensions of H = 3 µm, h = 1.8 µm,
G = 2.2 µm, and W = 2.6 µm, while the red lines correspond to the design based on the
220 nm SOI waveguide platform, with dimensions of H = 220 nm, h = 70 nm, G = 150 nm,
and W = 450 nm. The solid and dashed lines in each color represent the effective refractive
indices of symmetric and antisymmetric modes, denoted by ns_eff and nas_eff, respectively.
Within the wavelength range of 1470 nm to 1630 nm, the ns_eff shifts by 0.1447 for the
220 nm waveguide-based design, whereas for the 3 µm waveguides, the shift is only 0.0031.
Similarly, the nas_eff shifts by 0.1841 and 0.0032 for the 220 nm and 3 µm waveguides,
respectively. The comparisons confirm that the ns_eff and nas_eff remain almost unaffected
by wavelength on the 3 µm SOI waveguide platform, which is important in extending the
bandwidth of the DC. Moreover, the difference between ns_eff and nas_eff, represented by
∆neff, is also examined. As shown in the insert of Figure 2a, within the wavelength range of
1470 nm to 1630 nm, the ∆neff for 3 µm waveguides is remarkably lower (i.e., nearly two
orders of magnitude) compared with 220 nm waveguides. This finding reiterates the lower
wavelength sensitivity of the thick-SOI platform.

The transmission of the DC can be expressed as [11]:

Tmain = cos2(πLC · ∆neff/λ
)

(1)

Ttap = sin2(πLC · ∆neff/λ
)

(2)

where Tmain and Ttap represent the transmission of the main and tap ports, respectively.
To investigate the impact of varying wavelengths on the transmission, we calculated the
derivative of Ttap with respect to wavelength:

dTtap

dλ
= πLC · sin

(2πLC · ∆neff

λ

)
·
−∆ng

λ2 (3)

where ∆ng = ∆neff − λ·d∆neff/dλ. It is noteworthy that for the sine function’s argument
lying between 0 and π/2, the right-hand side of Equation (3) monotonically decreases with
LC. Therefore, Ttap’s sensitivity to wavelength can be effectively minimized by employing a
relatively small LC value. To achieve the above, it is necessary for the 3 µm SOI waveguide
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platform-based coupling region mentioned earlier to have an LC value of less than approx-
imately 820 µm, meeting the sine function’s argument’s requirements by being smaller
than π/2. Figure 2b illustrates the transmission as a function of wavelength for LC values
of 200 µm, 400 µm, and 600 µm. The results demonstrate that DCs with shorter coupling
lengths exhibit a substantial level of splitting ratio stability. Additionally, the decrease in
LC leads to a corresponding decrease in Ttap, preventing excessive power coupling from the
main-path waveguide, which is advantageous for signal power monitoring applications.
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the design based on the 3 µm SOI waveguide platform when the LC values are 200 µm, 400 µm, and
600 µm, respectively.

To obtain a shorter coupling length, we propose a DC design presented in Figure 3a
(the SiO2 cladding has been omitted for clarity), where the tap waveguide in the coupling
region is designed as an arc shape. Two typical waveguide profiles, rib and strip, are
employed in the DC (see Figure 3b for their cross-sectional views). The rib waveguide
has a height of 3 µm and a slab thickness of 1.8 µm, whereas the strip waveguide shares
the same height but has a significantly thinner slab of only 0.2 µm. The reduced slab
thickness in the strip waveguide promotes its lateral mode confinement, leading to a
decrease in the bend radius and a more compact device footprint. Furthermore, Figure 3a,b
illustrate that the main path exclusively consists of the rib waveguide, whereas the tap
path incorporates the rib profile in the coupling and straight regions, and utilizes the strip
waveguide for the curved segment. A comprehensive description of the tap waveguide is
provided in Figure 3c, revealing its adoption of a mirrored structure with four designated
regions on each side, where each region serves a distinct function. Region I is an arc-
shaped waveguide designed for tapping signals, with R and θ denoting its radius and
angle, respectively. The geometric diagram of the coupling region reveals a progressively
increased gap between the arc-shaped and main waveguides with an increase in distance
from the mirror plane. This phenomenon leads to a gradual decline in the coupling strength,
resulting in weak coupling in regions that are further from the mirror plane. In other words,
in contrast to the conventional DC with two parallel straight waveguides, the power
transfer of our proposed design takes place only in the area where the two waveguides are
in close proximity. As a result, the effective coupling length is reduced, which considerably
decreases the wavelength sensitivity, as apparent from Equation (3). Region II secures
the mode converter [25,26] with a length L of 350 µm, achieving a low-loss transition
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between the rib waveguide and the strip waveguide. Region III features an S-bend that
employs a pair of Euler bends [27–29] to provide an efficient transition between straight
and curved waveguides, reducing mode mismatches, bend loss, and bend radii. In our
design, the starting radius RS1 of the Euler bend connected to the straight waveguide is
1500 µm, and the other radius RS2 connected to the curved waveguide is 150 µm. Region
IV comprises both the identical mode converter employed in Region II and a segment of the
rib waveguide. Its objective is to facilitate the guidance of the tapped signal towards the tap
port. The rib waveguide is designed to maintain a straight configuration, thereby enabling
the tapped signal to reach the edge of the sample chip where the DC is located. Thanks to
its efficient edge-coupling capability with lensed fibers, the rib waveguide greatly facilitates
the straightforward connection of the DC to the optical link during subsequent testing
procedures. Finally, both the main and tap waveguides in the proposed DC have a width
W of 2.6 µm for single-mode operation, while the gap size G between the two waveguides
along the mirror plane is also defined.
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Figure 3. (a) Perspective view of the proposed DC for signal power tapping. The SiO2 cladding has
been omitted for better visualization. (b) Cross-sectional views of the rib waveguide and the strip
waveguide. (c) The schematic for the DC with labelled design parameters.

The tapping ratio S and the excess loss EL of the device are defined as follows:

S = Ttap/
(
Tmain + Ttap

)
(4)

EL = 10log10
(
Tmain + Ttap

)
(5)

S is set as 4%. The effective coupling length of the proposed DC is ensured to stay be-
low 820 µm, as determined by the limitations of the sine function’s argument in Equation (3).
To achieve this, we initially set R to 7000 µm and θ to approximately 3.6 degrees. The eigen-
mode expansion (EME) solver in Lumerical is utilized to optimize the design parameters,
with a cell step size of 0.5 µm for accuracy. The simulation results at a fixed G of 2 µm
and at a wavelength of 1550 nm are presented in Figure 4a,b, depicting the variation of
S and EL with θ for three Rs, namely 7500 µm, 7000 µm, and 6500 µm. The results from
all three values of R indicate that an increase in θ leads to an increase in S, but it is also
accompanied by an increased level of device loss. In addition, varying R can also affect
S, but our primary interest lies in the trend of increasing R, which results in a decrease in
device loss. Moreover, as R grows, the shape of the curved waveguide approaches that
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of the straight waveguide, and this leads to an increase in the effective coupling length
of the coupling region. As previously discussed, this consequence results in a narrower
bandwidth, which is undesirable for the device’s performance. By taking all of these factors
into account, we selected optimal values of R = 7000 µm and θ = 3.7 degrees to maintain
low EL and large operating bandwidth, with a tapping ratio of 4% for the device. Figure 4c
displays the simulation results concerning the entirety of the coupling region, along with
the normalized electric field distribution on the cross-sections at its endpoints (indicated by
white dashed lines). This visualization enables clear observation of the power coupling,
revealing that a minor fraction is transferred into the tap waveguide, with the main path
effectively preserving the majority of the power.
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Figure 4. Simulated results of (a) S and (b) EL as a function of θ for different values of R. (c) Visual
representation of power transfer within the coupling region, with the electric field distribution on the
cross-sections which are depicted by white dashed lines.

The relationship between S (blue line) and EL (red line) as a function of G is aptly
depicted in Figure 5a. It is evident that adjusting G provides a way to regulate the device’s
tapping ratio. However, it must be kept in mind that reducing G would also elevate the
level of loss. This is due to the fact that a narrower gap results in more energy coupling into
the tap waveguide, leading to increased loss as a result of mode mismatch and waveguide
bending in the curved section. Additionally, a smaller G, while enhancing coupling strength,
amplifies the wavelength dependence of the device [30]. To achieve a desired S of 4% while
considering these factors, we set G to 2 µm. Figure 5b presents the simulated performance
of our proposed design, indicating a maximum deviation of S from its value at 1550 nm
of 0.6272% across the wavelength range of 1470 nm to 1630 nm, and the largest EL is at
−0.0977 dB. These results demonstrate that our designed DC offers low-loss characteristics
and a wide operational bandwidth, making it appropriate for wavelength-insensitive signal
power tapping and monitoring applications.
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We proceeded to investigate the proposed DC’s tolerance to fabrication errors arising
from deviations in waveguide geometry, which most often impact the width W and height
H of the rib waveguides as specified in Figure 1b. The calculated variations in S as a
function of wavelength for different waveguide geometry deviations are shown in Figure 6.
In Figure 6a, various Ws ranging from 2.54 µm to 2.66 µm are introduced, with a maximum
deviation of ±0.06 µm. The changes in S resulting from these waveguide profiles remained
within ±1% over a wide wavelength range from 1470 nm to 1630 nm. A notable point is that
the device’s wavelength sensitivity increases with decreasing W, since narrow waveguides
have a higher sensitivity of the effective refractive index of the fundamental mode to
the wavelength. In Figure 6b, we introduced fabrication errors of up to ±0.04 µm in
the waveguide height and observed changes in S ranging from −0.73% to +0.71% across
the entire optical band. These results indicate the excellent fabrication reliability of our
proposed DC.
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3. Experimental Results and Discussion

Several DCs with different values of G were fabricated on an SOI wafer comprising
a 3 µm top silicon layer and a 0.4 µm buried silicon dioxide (BOX) layer, and reference
straight waveguides were also fabricated on the same wafer. The fabrication process in-
volved deep-ultraviolet (DUV) photolithography followed by dry etching. To minimize
transmission loss, the etching process was optimized to smoothen the sidewalls of the
waveguide. Thereafter, a cladding layer was deposited using plasma-enhanced chemical
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vapor deposition (PECVD), with a 2.2 µm SiO2 layer and a 0.7 µm silicon nitride layer.
Further details about the fabrication process can be found in [31]. The scanning electron
microscope (SEM) image in Figure 7a shows the desired sidewall steepness of waveg-
uides. However, it should be noted that the rib waveguide had a profile of W = 2.77 µm,
H = 3.27 µm and h = 1.97 µm, reflecting errors of approximately 0.17 µm, 0.27 µm and
0.17 µm for waveguide width, height, and slab thickness, respectively. The impact of these
errors on the splitting ratio of the device will be discussed later. The top-view optical
microscope image of the devices with a range of G from 2.2 µm to 1.6 µm is displayed in
Figure 7b. The length of the coupling region for all devices is 903.45 µm, with an overall
footprint of 125 × 2825.65 µm2.
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1.6 µm, respectively.

The signal originating from the tunable laser source (Keysight 8164B) was edge-
coupled into the DC using a lensed fiber with a spot size of 2.5 ± 0.25 µm. Subsequently,
the output signal was captured through another lensed fiber and measured using a power
meter (Keysight N7744A). It is noteworthy that each interface between the fiber and
waveguide introduces a coupling loss of approximately −1.53 dB. Prior to entering the DC,
the signal was passed through a polarization synthesizer (Keysight N7786B) to selectively
excite only the TE mode. The final transmission results were then normalized using the
reference waveguide’s outcomes. In Figure 8a, normalized splitting ratios from 1470 nm to
1630 nm for different gap sizes are demonstrated. For the design focused on obtaining a
96%/4% splitting ratio, a tapping ratio of 5.753% at 1550 nm (red dash line) was attained,
displaying a variation of −1.373% to 1.433% throughout the entire spectrum. Similarly,
other designs with distinct gap sizes exhibit minor S deviations concerning wavelength,
indicating broadband features. It should be noted that all devices yield higher S than the
results calculated at 1550 nm illustrated in Figure 5a. Such difference can be attributed
to the larger dimensions of the fabricated waveguides in W and h compared to the initial
design. This leads to a narrower gap and a stronger coupling strength of the DC, resulting
in an increased coupling ratio. To test this hypothesis, we updated the simulation model’s
geometric features according to the SEM figure presented in Figure 7a. The findings from
subsequent simulations, presented in Figure 8b, showed good alignment between the
recalculated results (blue dashed line) and the experimental results (red dots), presenting
evidence that fabricated errors can be quantified for the tapping ratio. The fabrication
errors in W and h also contribute to the rise in device losses, driven by the corresponding
increase in the coupling ratio. Compared to the main waveguide, the curved shape of the
tap waveguide leads to higher radiation losses. Additionally, the mode overlap loss occurs
in the tap path due to the mode mismatch between straight and curved waveguides. The
higher coupling ratio signifies a greater amount of power coupled into the tap waveguide.
However, this power experiences higher losses in comparison to the main waveguide,
leading to an elevated level of excess loss in the device. Experimental results for EL are
provided in Figure 9, which displays measured values of −0.17 dB, −0.27 dB, −0.42 dB,
and −0.68 dB at 1550 nm, respectively, when the gap size reduces from 2.2 µm to 1.6 µm. It
is worth noting that in comparison to Figure 5a, the experimental ELs of the four devices
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exhibit varying degrees of increase. These increments are partly due to deviations in
waveguide dimensions and partly due to sidewall roughness, which is not captured in
the EL simulation results. Nonetheless, since all waveguides on the same chip possess
similar sidewall roughness, comparing the relative relationship of ELs for different gap sizes
remains meaningful. Figure 9 verifies our previous prediction that as the gap narrows, the
corresponding excess loss increases. In the forthcoming fabrication process, we will employ
finer masks to achieve waveguides with precise widths and enhance the photolithography
process to improve the quality of the etching profile. Additionally, we will opt for more
conservative values for the bending radius in order to minimize radiation losses and mode
mismatch within the tap waveguide, effectively mitigating the excess loss of the design.
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experimental results for the tapping ratio after updating waveguide dimensions based on SEM image.
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Despite significant fabrication variations, our proposed DC maintains notable wave-
length stability and low-loss characteristics, making it highly suitable for applications
such as SiPh transmitter chips that require signal power tapping and monitoring. Table 1
provides a summary of the comparison between our demonstrated DC and state-of-the-art
broadband power splitters. Compared to other devices, our design exhibits a wider band-
width covering the S, C, and L bands, with significantly low excess loss. The outstanding
performance can be attributed to two key factors—firstly, the curved-straight waveguide
coupling region design, and secondly, the inherent advantages of the 3 µm SOI waveguide
platform, including low wavelength sensitivity, low losses, and high fabrication tolerance.
In the future, these advantages could be further exploited to produce DCs with arbitrary
splitting ratios, promoting their application in large-scale SiPh integrated systems.
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Table 1. Comparison of performance with reported power splitters and this work.

Reference Type Wavelength Range (nm) Maximum Variation EL (dB)

[32] composite-sections DC 1530~1560 2% N/A
[33] DC using phase control 1518~1593 1.45% −1
[34] DC using SWGs 1500~1600 3% N/A

[35] 1 Adiabatic SWG DC 1400~1650 4.7% −0.24
This work Arc-shaped DC 1470~1630 1.433% −0.27

1 The data in this reference are simulation results.

4. Conclusions

We have designed and experimentally demonstrated a broadband DC with low-loss
characteristics based on the 3 µm SOI waveguide platform for signal power tapping. The
coupling region of the DC consists of a straight waveguide and an arc-shaped waveguide
that reduce the effective coupling length while maintaining efficient power splitting for
tapping. The shortened coupling length and the wavelength insensitivity of the 3 µm
waveguide ensure stable tapping ratios over a wide wavelength range. Experimental
results demonstrate that for our design with a target splitting ratio of 96%/4%, the tap ratio
variation remains within −1.373% to 1.433% from 1470 nm to 1630 nm. Additionally, the
device features low excess loss of only −0.27 dB at 1550 nm. Various designs with different
gap sizes were fabricated, tested, and matched well with our simulation results. Moreover,
the calculated results illustrate that the proposed device exhibits significant robustness
against fabrication imperfections. Given the recent advancements in SiPh industrialization,
the demonstrated low-loss DC with wide bandwidth capabilities can be extensively applied
in on-chip power sensing, among other areas.
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