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Abstract: A novel two-stage n-PSK partitioning carrier phase recovery (CPR) scheme for
circular multilevel quadrature amplitude modulation (C-mQAM) constellations is presented.
The first stage of the algorithm provides an initial rough estimation of the received constellation,
which is utilized in the second stage for CPR. The performance of the proposed algorithm is studied
through extensive simulations at the forward error correction bit error rate targets of 3.8 ˆ 10´3

and 1 ˆ 10´2 and is compared with different CPR algorithms. A significant improvement in
the combined linewidth symbol duration product (∆νTs) tolerance is achieved compared to the
single-stage n-PSK partitioning scheme. Superior performance in the ∆νTs tolerance compared to
the blind phase search algorithm is also reported. The relative improvements with respect to other
CPR schemes are also validated experimentally for a 28-Gbaud C-16QAM back-to-back transmission
system. The computational complexity of the proposed CPR scheme is studied, and reduction factors
of 24.5 | 30.1 and 59.1 | 63.3 are achieved for C-16QAM and C-64QAM, respectively, compared to
single-stage BPS in the form of multipliers | adders.

Keywords: carrier phase recovery (CPR); circular quadrature amplitude modulation (C-mQAM);
coherent detection; phase noise

1. Introduction

High-order modulation formats together with coherent detection and digital signal processing
(DSP) have attracted significant attention to increase spectral efficiency in coherent optical transmission
systems [1]. Carrier phase recovery (CPR) algorithms play a key role in these systems for the estimation
and compensation of the phase noise induced by free running lasers. High-order modulation formats
impose stringent requirements on the performance of these algorithms, as the distance between
constellation points reduces with the increase in modulation order. The blind phase search (BPS)
algorithm [2] and the N-th power approach [3] have typically been proposed for CPR in square
multilevel quadrature amplitude modulations (Sq-mQAM) [4–6]. Although the BPS algorithm achieves
a high phase noise tolerance, it requires a large computational complexity especially for high-order
modulations where the required number of test phases increases. On the other hand, the N-th
power concept requires less hardware complexity but comes at the expense of a poorer phase noise
tolerance, as the relative number of suitable constellation points for phase estimation decreases with

Photonics 2016, 3, 37; doi:10.3390/photonics3020037 www.mdpi.com/journal/photonics

http://www.mdpi.com/journal/photonics
http://www.mdpi.com
http://www.mdpi.com/journal/photonics


Photonics 2016, 3, 37 2 of 11

the modulation order. Different two-stage CPR schemes, which include both approaches, have been
proposed to achieve similar phase noise tolerance as single-stage BPS while relaxing its computational
complexity [7–12].

Due to its particular shape, circular multilevel quadrature amplitude modulation (C-mQAM)
constellations provide a higher phase noise tolerance compared to Sq-QAM constellations. The n-PSK
partitioning CPR scheme for C-mQAM constellations proposed in [13,14] achieves a relatively high
linewidth tolerance with a low computational complexity. However, the algorithm requires a priori
amplitude discrimination for symbol classification, which undermines its performance at low optical
signal-to-noise ratios (OSNRs). In this paper, we propose a novel two-stage n-PSK partitioning CPR
algorithm for C-mQAM constellations to alleviate this problem. The first stage of the algorithm
provides an initial constellation estimation utilizing the n-PSK partitioning algorithm based on ring
selection. The second stage utilizes this estimated constellation to classify the received symbols
employing optimal symbol decision boundaries and applies the rest of the n-PSK partitioning process.
The combined linewidth symbol duration product (∆νTs) tolerance of the proposed algorithm is
studied through extensive simulations and is compared with different CPR algorithms to evaluate its
relative performance improvement. The performance of the proposed algorithm is also experimentally
evaluated in a 28-Gbaud back-to-back C-16QAM transmission system and compared with that of the
other CPR schemes. The computational complexity of the proposed algorithm is finally studied in
detail and a modification in the algorithm to reduce its computational complexity is also proposed.

2. Two-Stage n-PSK Partitioning Scheme for C-mQAM

The C-mQAM constellations studied in this paper have been proposed in [15] and are illustrated
in Figure 1 for C-16QAM and C-64QAM. Figure 1 also shows the bit mapping, differential sector
decoding, and amplitude odd/even symbol classes, which were proposed in [14] and are employed
in this paper. The proposed CPR scheme is divided in two stages, and its block diagram is depicted
in Figure 2. The first stage corresponds to the n-PSK partitioning CPR algorithm [14]. The second
stage is composed of the same functional blocks as the first stage. However, symbol classification in
the second stage is performed using optimal decision boundaries on the output data of the first stage.
Optimal decision boundaries are defined in this section and for the rest of the paper as optimal in the
presence of only additive white Gaussian noise (AWGN) in order to relax the overall complexity of the
algorithm. However, we notice that large ∆νTs-values will result in residual phase noise requiring a
different, higher complex approach for optimal symbol classification.
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Figure 1. (a) Distribution of the constellation points in a C-16QAM constellation. (b) Distribution of
the constellation points in a C-64QAM. The bit mapping, differential sector encoding, and symbol
amplitude classes are also illustrated for both cases.
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Figure 2. Block diagram of the proposed two-stage n-PSK partitioning carrier phase recovery (CPR)
scheme. (a) Input symbols. (b) Estimated constellation after first stage. (c) Detection of symbols with
optimal decision boundaries. (d) Detection of symbols using sub-optimal decision boundaries (an
alternative option to (c) for complexity reduction). (e) Final corrected symbols.

The amplitude of the received symbols in Figure 2 (inset a) is firstly calculated in the first stage
to classify the symbols into an odd or even class. Then, a e´j 2π

N phase rotation is performed for the
symbols belonging to even classes, where N represents the total number of different phases of the
C-mQAM constellation points. After this process, it is notable that the modulation components of
the symbols belonging to odd and even amplitudes are aligned. The N/2-th power operation is then
performed in the Viterbi and Viterbi (V&V) module over a block of M1 symbols, which is considered
for averaging the AWGN. This results in a phase noise estimator θ̂1 for the symbol in the middle
of the block after the unwrap operation. The phase noise estimator is used to compensate for the
phase noise of the input symbols, and the corrected symbols in Figure 2 (inset b) are fed into the
second stage of the CPR scheme. The input symbols in the second stage therefore correspond to
an estimation of the received constellation. This constellation estimation is then used for a better
classification of the input symbols of the first stage in Figure 2 (inset a) into odd or even classes. It
is noticeable that the ring selection process is now avoided as symbols are classified using optimal
decision boundaries in Figure 2 (inset c) in the symbol decision module, which increases the accuracy of
the classification process. Sub-optimal decision boundaries in Figure 2 (inset d) can also be considered
for a computational complexity reduction of the symbol decision process, as explained in Section 5.
The rest of the modules in the second stage are performed as explained for the first stage. However,
a different block size M2 can be considered for the second stage. Finally, a phase noise estimator θ̂2

is used to compensate for the phase noise of the input symbols, and the final corrected symbols are
shown in Figure 2 (inset e). It is notable that symmetrical rotations of the constellation due to cycle
slips occurring in the first stage of the algorithm do not affect the odd/even classification in the symbol
decision module of the second stage and consequently have no impact on the overall performance of
the CPR scheme.

3. Simulation Setup and Results

Extensive simulations were carried out in VPItransmissionMakerTM (VPIphotonics GmbH, Berlin,
Germany) [16] to evaluate the performance of the proposed CPR scheme. The simulation setup
corresponds to the transmission of a pseudorandom bit sequence (PRBS) with a sequence length
of 215 ´ 1 bits mapped onto 217 symbols in a 28-Gbaud back-to-back transmission system. The
outgoing signal after the transmitter is loaded with AWGN emulating erbium-doped fiber amplifier
noise. Then, the signal is directly fed in the receiver and passed to a DSP-based demodulator where
different CPR algorithms are applied for their relative performance evaluation. In order to mitigate the
effect of cycle slips, the symbols are then differentially decoded [14], and the number of bit errors is
counted for the bit error rate (BER) evaluation.
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The performance of the proposed algorithm is compared to the single-stage n-PSK partitioning
algorithm, BPS algorithm in Sq-mQAM constellations (BPSSq-mQAM), and BPS in C-mQAM
constellations (BPSC-mQAM). The bit mapping employed for Sq-QAM constellations can be seen
in [2], while the bit mapping for C-mQAM constellations is illustrated in Figure 1. The performance of
all the algorithms is evaluated at BER target limits of 1 ˆ 10´2 and 3.8 ˆ 10´3 assuming the use of
forward error correction (FEC). The number of test phases β in BPSSq-16QAM is set to 32 while β = 64
for BPSSq-64QAM. β is set to 32 for both BPSC-16QAM and BPSC-64QAM due to a π/4 rotational symmetry
of C-64QAM constellations. The block length of all the algorithms has been optimized to show the best
performance for each of the points in the figures.

Figure 3 shows the OSNR sensitivity penalties versus the ∆νTs for C-16QAM and Sq-16QAM
employing different CPR schemes at BER targets of 1 ˆ 10´2 (Figure 3a) and 3.8 ˆ 10´3 (Figure 3b).
The proposed two-stage n-PSK partitioning improves the performance of the single-stage n-PSK
partitioning and achieves a performance superior to the BPSC-16QAM algorithm. The probability of
wrongly classifying symbols during the ring selection process in the single-stage n-PSK algorithm
increases for low OSNR values. This process is avoided in the proposed two-stage n-PSK partitioning,
as symbol classification is performed using optimal decision boundaries resulting in an improved
performance of the algorithm. The use of sub-optimal boundaries in Figure 2 (inset d) results in a
similar performance and is proposed here to reduce the computational complexity of the algorithm as
explained in Section 5.
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Figure 4 shows the OSNR sensitivity penalties versus the ∆νTs for C-64QAM and Sq-64QAM
employing different CPR schemes at BER targets of 1ˆ 10´2 (Figure 4a) and 3.8ˆ 10´3 (Figure 4b). As
in the previous case, the proposed two-stage n-PSK partitioning CPR scheme outperforms the n-PSK
partitioning algorithm and provides higher performance than the BPSC-64QAM.

The influence of the block size for each of the stages that comprise the proposed scheme on the
BER performance is illustrated in Figure 5 for C-16QAM and C-64QAM. The results are obtained
for a ∆νTs corresponding to 1 dB OSNR sensitivity penalty. It is observed that, in this case, a larger
block size in the first stage, compared to the block size of the second stage, provides the optimum
performance of the algorithm. This is attributable to the wrongly classified symbols during the ring
selection process in the first stage that require a larger block size for its averaging.
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4. Experimental Setup and Results

Figure 6 illustrates the experimental setup for the performance evaluation of the proposed CPR
scheme. The transmitter is composed of an arbitrary waveform generator and an optical IQ modulator.
A pseudorandom bit sequence consisting of 215 ´ 1 bits is generated and mapped onto symbols
belonging to a C-16QAM constellation according to the bit mapping shown in Figure 1. The I and
Q output electrical signals are firstly linearly amplified and fed in the optical IQ modulators that
have a 3-dB bandwidth of 25 GHz. The incoming electrical signal is modulated onto the transmitter
laser having a ~100-kHz intrinsic linewidth. A phase modulator is used to manipulate the frequency
noise power spectral density of the transmitting laser. The arbitrary waveform generator is used to
generate phase noise sequences corresponding to different white frequency noise levels which are
linearly amplified and fed in the optical phase modulator in order to emulate the phase noise of a
semiconductor laser [17,18]. In order to avoid patterning effects and discontinuities in the phase noise
sequence while it is being repeated in the AWG, the phase noise sequence needs to be large enough to
ensure randomness and can be mirrored so as to match the initial and final points of the generated
sequence [18]. The outgoing 28-Gbaud C-16QAM signal is amplified using an EDFA and loaded with
noise in the OSNR module. The OSNR module consists of an optical attenuator and an automatic
gain control EDFA with constant output power. The signal is then directly fed into the coherent
receiver and passed to the DSP module where the data was demodulated offline with different CPR
algorithms in order to evaluate their performance. The Gardner algorithm was employed to achieve
clock recovery, while the constant modulus algorithm followed by the multi-modulus algorithm were
used for equalization [19,20]. Differential decoding was employed in all cases to mitigate the effect
of cycle slips [14]. The BER versus OSNR performance of the proposed algorithm is compared with
the BPSC-16QAM and the single-stage n-PSK partitioning algorithms, as shown in Figure 7. The block
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length of each of the algorithms studied was optimized in each of the points of the curves to show the
best performance. The number of test phases, β, was set to 32 in BPSC-16QAM. The proposed two-stage
n-PSK partitioning CPR scheme provides a higher performance compared to the other algorithms, and
this performance gain increases with the laser linewidth. The OSNR penalty depends on the reference
OSNR level to achieve a specified BER target, and it scales nonlinearly for different OSNR reference
levels. Therefore, considering the extra OSNR implementation penalty in the experimental setup, the
penalties observed in the experimental curves can be seen to be higher compared to those obtained
in simulations where the OSNR reference was of 18.6 dB and 17.5 dB for BER targets of 3.8 ˆ 10´3

and 1 ˆ 10´2, respectively.
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5. Computational Complexity

In this section, the proposed algorithm is compared with the rest of the algorithms studied in
this paper in terms of computational complexity. Six real multiplications and two summations are
assumed to perform the 4-th power operation in the V&V module [8]. Nine real multiplications and
three summations are assumed in the case of the 8-th power operation [14]. Two approaches are
considered for the implementation of the symbol decision circuit (DC) module in the BPS algorithm,
which is illustrated in Figure 8. In order to map a received symbol to one of the symbols in the
constellation, the distance between the received symbol and all the constellation points can be
performed. The received symbol is mapped to the constellation point where the calculated distance
is the minimum (Figure 8b). For the rest of the paper, we consider this approach as hard decision
and denote it with DC = 1. For the case of Sq-mQAM constellations, the decision circuit can be
implemented employing only comparators in the I and Q components of the received symbol as the
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decision boundaries lay on a square grid (Figure 8a) and is considered in this paper as soft decision
with notation DC = 0. However, this approach comes at the expense of a worse process performance,
as it is not resilient enough to shape distortions of the received constellation. These two approaches
are considered as the best- and worst-case scenarios (in terms of computational complexity), and any
other implementation of the DC module will result in a computational complexity within the range of
these two cases. The hard decision approach is considered in this paper for C-mQAM constellations,
as their optimal decision boundaries have a pentagonal shape in the complex plane. The hardware
implementation of the hard decision approach would require two real multipliers and three real adders
for each of the distance calculations, while only comparators are required in the soft decision approach.
The use of sub-optimal boundaries in Figure 2 (inset d) relaxes the complexity of the DC (in terms of
multiplications/additions) for C-mQAM constellations, as the decision is made based on the angle and
amplitude of the symbol requiring three real multipliers and one real adder for each symbol decision.
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best- and worst-case scenarios in terms of computational complexity. (a) Decision based on I and Q
levels comparison. (b) Decision based on distance calculation to all the points in the constellation.

Figure 9 illustrates the flow chart of the proposed algorithm for the evaluation of its computational
complexity. The red dashed line indicates the reusability of the calculations between modules. The
calculations of the V&V module in the first stage are reused in the second stage, and a sign change
performed on the bit representing the sign of the floating point number is performed for symbols
belonging to even classes. The implementation proposed in Figure 9 forces the maximum block length
of the second stage to be equal or smaller than the first stage (M2 ďM1). The computational complexity
derivation of the first stage was detailed in [14], and its calculation for the second stage in terms of
real-valued multiplications and summations is as follows:

1. Each of the decision symbol circuit modules requires DCmult, DCsum, and DCcomp multiplications,
summations, and comparisons, respectively.

2. The summation of the I and Q components of M2 symbols requires 2M2 ´ 2 adders.
3. The division inside the argument function requires one multiplication. A small look-up table

can be used for the argument calculation. Unwrap operation requires a comparator and one
summation. Multiplications and divisions of the power of two can be performed through bitwise
shifting operations.

4. In order to retrieve the I and Q components a small size look up table is required. Two comparators
and an adder are needed to keep the calculated value in the range of [0,2π).

5. 4M2 multiplications and 2M2 summations are required for phase correction of the input symbols.
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The computational complexity calculations of the proposed algorithm and the BPS algorithm are
illustrated in Table 1. Block-based concept, unwrapping function and the final symbol decision module
are assumed in all the calculations, as explained for the proposed two-stage n-PSK partitioning case.

Table 1. Computational complexity of various CPR algorithms.

Real Multipliers Real Adders Comparators

BPSSq-mQAM 6Mβ`Mpβ` 1q ¨DCmult
Sq ` 4M 6Mβ`Mpβ` 1q ¨DCsum

Sq ´ β` 2M` 2 β`Mpβ` 1q ¨DCcomp
Sq ` 2

BPSC-mQAM 6Mβ`Mpβ` 1q ¨DCmult
Circ ` 4M 6Mβ`Mpβ` 1q ¨DCsum

Circ ´ β` 2M` 2 β`Mpβ` 1q ¨DCcomp
Circ ` 2

n-PSK2Stages C-16QAM 10M1` 8M2` 2M2 ¨DCmult
Circ ` 2 5M1` 6M2` 2M2 ¨DCsum

Circ 3M1` 6` 2M2 ¨DCcomp
Circ

n-PSK2Stages C-64QAM 13M1` 8M2` 2M2 ¨DCmult
Circ ` 2 6M1` 6M2` 2M2 ¨DCsum

Circ 7M1` 6` 2M2 ¨DCcomp
Circ

n-PSK2Stages C-16QAM sub-optimal 10M1`M2p8`pDCmult
Sub `¨DCmult

Circ qq` 2 5M1` 6M2`M2 ¨ pDCsum
Sub `¨DCsum

Circq 3M1` 6`M2 ¨ pDCcomp
Sub `¨DCcomp

Circ q
n-PSK2Stages C-64QAM sub-optimal 13M1`M2p8`pDCmult

Sub `¨DCmult
Circ qq` 2 6M1` 6M2`M2 ¨ pDCsum

Sub `¨DCsum
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Circ q

Note: DC: Decision Circuit complexity; M: Filter length; M1, M2: Filter lengths of the first and second
stage, respectively; β: Number of test phases; Sq: Square constellations; Circ: Circular constellations;
mult: multiplications; sum: summations comp: comparators.

Table 2 shows the computational complexity reduction factors of the proposed algorithm, utilizing
sub-optimal decision boundaries (see Figure 2; inset d) relative to the BPS algorithm. In the case of
C-16QAM compared to Sq-16QAM, the computational complexity reduction factor is in the range
of 3.8–24.5 in the required number of real multipliers, and this factor is between 3.3 and 30.1 for the
number of real adders depending on the implementation of the DC module. In the case of C-64QAM
compared to Sq-64QAM, the computational complexity reduction factor is in the range of 2.6–59.1 in
the number of real multipliers, and in the range of 1.9–63.3 for the number of real adders depending
on the implementation of the DC module. Computational complexity reduction factors of 24.5 | 30.1
and 29.1 | 32.2 for the proposed two-stage n-PSK partitioning are achieved compared to BPS applied
to C-16QAM and C-64QAM constellations, respectively. The computational complexity reduction
factors are summarized, for the case of optimal boundaries, in Table 3.

Table 2. Computational complexity reduction factors relative to two-stage n-PSK partitioning algorithm
employing sub-optimal decision boundaries in the symbol decision circuit module.

Algorithm Reduction Factors [DC = 1, M1 = M2 = 19] (Multipliers | Adders) Specifications

BPS Sq-16QAM 3.8 | 3.3
24.5 | 30.1

M = 19, β = 32, DC = 0
M = 19, β = 32, DC = 1

BPS Sq-64QAM 2.6 | 1.9
59.1 | 63.3

M = 19, β = 64, DC = 0
M = 19, β = 64, DC = 1

BPS C-16QAM 24.5 | 30.1 M = 19, β = 32, DC = 1
BPS C-64QAM 29.1 | 32.2 M = 19, β = 32, DC = 1

Note: DC = 1 implies hard decision (worst-case complexity). DC = 0 implies soft decision.
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Table 3. Computational complexity reduction factors relative to two-stage n-PSK partitioning algorithm
employing optimal decision boundaries in the symbol decision circuit module.

Algorithm Reduction Factors [DC = 1, M1 = M2 = 19] (Multipliers | Adders) Specifications

BPS Sq-16QAM 2.4 | 1.8
15.2 | 16.6

M = 19, β = 32, DC = 0
M = 19, β = 32, DC = 1

BPS Sq-64QAM 1.4 | 0.9
31.8 | 32.5

M = 19, β = 64, DC = 0
M = 19, β = 64, DC = 1

BPS C-16QAM 15.2 | 16.6 M = 19, β = 32, DC = 1
BPS C-64QAM 16.1 | 16.5 M = 19, β = 32, DC = 1

Note: DC = 1 implies hard decision (worst-case complexity). DC = 0 implies soft decision.

6. Conclusions

A novel two-stage CPR scheme for C-mQAM constellations based on the n-PSK partitioning
algorithm is presented. The low-performance ring selection process in the single-stage n-PSK
algorithm is alleviated by using optimal decision boundaries in the second stage of the algorithm.
Simulation results on the performance of the proposed CPR algorithm show a noticeable improvement
in phase noise tolerance compared to the single-stage n-PSK partitioning algorithm. The phase noise
tolerance of the proposed algorithm is also compared with the BPSC-mQAM algorithm showing a
superior performance. Furthermore, the computational complexity of the algorithm is studied in detail
and compared to the BPS algorithm in C-mQAM and Sq-QAM constellations in order to assess the
computational complexity reduction factors. Utilization of sub-optimal boundaries in the DC module
is also proposed to further reduce the computational complexity of the algorithm while achieving
similar ∆νTs tolerance. Computational complexity reduction factors of at least 3.8 | 3.3 in the form of
multipliers | adders relative to BPSSq-16QAM are reported which can reach values of 24.5 | 30.1 for the
best-case implementation of the DC module. Compared to the BPSC-16QAM, computational complexity
reduction group factors of 24.5 | 30.1 are achieved.
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Abbreviations

The following abbreviations are used in this manuscript:

CPR: carrier phase recovery
∆νTs: combined linewidth symbol duration product
n-PSK: n-level phase shift keying
BPS: blind phase search
DSP: digital signal processing
Sq-QAM: square quadrature amplitude modulation
OSNR: optical signal-to-noise ratio
V&V: Viterbi and Viterbi
AWGN: additive white Gaussian noise
PRBS: pseudorandom bit sequence
BER: bit error rate
BPSSq-mQAM: blind phase search in square multilevel quadrature amplitude modulations
BPSC-mQAM: blind phase search in circular multilevel quadrature amplitude modulations
FEC: forward error correction
PM: phase modulator
EDFA: erbium doped fiber amplifier
OBPF: optical band pass filter
LO: local oscillator
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DSO: digital signal oscilloscope
AWG: arbitrary waveform generator
DC: decision circuit
DCmult: decision circuit complexity in terms of multipliers
DCsum: decision circuit complexity in terms of summations
DCcomp: decision circuit complexity in terms of comparators
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