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Abstract: A versatile sensing scheme for gas and biomolecule detection has been proposed theoreti-
cally using optimized GaP/Au/Graphene/Silicon structures. A Gallium Phosphide (GaP) prism
is used as a substrate in the proposed surface plasmon resonance based sensing scheme, which is
designed to be in Kretschmann configuration. The thicknesses of different constituent layers have
been optimized for the maximum values of the sensitivities of the gas and bio-sensing probes. To
delineate the role of the silicon layer, sensing probes without a silicon layer have also been numeri-
cally modelled and compared. The present GaP/Au/Graphene/Silicon probes possess higher values
of sensitivity for the detection of gas and biomolecules compared to the conventional SPR sensing
probes reported in the literature.
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1. Introduction

The enticing prospect of concentrating and controlling light at a sub-wavelength scale
has inspired tremendous interest in the field of plasmonics [1]. Different waveguide [2] and
metamaterial [3,4] geometries have been explored to develop nano antennas [5], optical
interconnects [6], super-resolution imaging [7], and different sensing devices [8]. Over
the last few decades, steady progress has been made in the development of biosensors in
diagnostic, enzyme detection, and food safety, and of gas sensors in industrial safety [1,9,10].
Since its first demonstration by Jorgenson et al., surface plasmon resonance in conjunction
with optical fibers has given birth to a new era in the field of sensing [1].

Surface plasmons are the collective oscillation of the free electrons at the metal dielec-
tric interface, leading to the generation of a resonant electric field that decays in a transverse
direction exponentially in both of the media [11]. Two configurations have been reported
in the literature for the excitation of the surface plasmons—the Kretschmann configuration
and the Otto configuration. Out of these two, the Kretschmann configuration is easy to
implement. In the Kretschmann configuration, SPR interrogation is performed with either
of the following two methods: wavelength interrogation or angular interrogation. In the
wavelength interrogation method, the angle of incidence of the exciting light is kept fixed
and the wavelength is varied to excite the SPR, while in the angular interrogation method,
the wavelength of the exciting light is fixed and the angle of incidence is varied. In the
Kretschmann configuration, the metal strip is deposited on the base of the prism and
p-polarized light is launch at the metal-prism interface from one of the faces of the prism at
an angle greater than the critical angle, and reflected light is detected from the other face.
The dielectric medium to be sensed is kept in contact with the metal film at the prism base.
The incident light after suffering total internal reflection generates an evanescent wave at
the metal dielectric interface, which passes through the metal film and excites the surface
plasmons at the metal-dielectric interface, resulting in the transfer of energy to the Surface
Plasmon Wave (SPW). We observed that, for a particular incident angle, the reflectivity

Photonics 2021, 8, 547. https://doi.org/10.3390/photonics8120547 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics8120547
https://doi.org/10.3390/photonics8120547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8120547
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics8120547?type=check_update&version=1


Photonics 2021, 8, 547 2 of 10

of the curve, measured at the other face of the prism, becomes minimum. This angle is
known as the resonance angle, and at this particular angle, the propagation constants of
the evanescent wave and the surface plasmon wave becomes equal. The resonance angle
depends on the refractive index (RI) of the outer dielectric medium, which is kept in contact
with the gold layer.

Once the gold layer is activated properly, the phenomenon of surface plasmon reso-
nance can be used for the detection of different gases and biomolecules. When the sample
containing biomolecules or gas molecules comes into contact with the metal surface, the
biomolecules is adsorbed, whereas the gas molecules reacts with metal film and change
the ambient RI, which gets reflected in terms of the shift in SPR (reflection) spectrum.
Performance of the sensor depends largely on the absorbance of the gas or biomolecules.
Hence, the nature of the gas and biomolecules very much affect the sensor’s performance.
Recently, graphene has emerged as another material with an important property of high
sensitivity towards different gases and bio-molecules. Graphene shows very good mechan-
ical, electrical, and optical properties, which has attracted many researchers and scientists
in different areas of research. Graphene, having zero bandgap, high electron mobility, very
low resistivity, and a 2D structure, opens a new window into the field of sensing [12].

In the present work, we have carried out a detailed theoretical analysis of a couple
of prism-based SPR sensors in the Kretschmann configuration. The prism is made up of
GaP material, with a base coated with Au. On top of the Au layer, there is a thin film of
graphene, and over that a silicon layer is considered. Silicon has been used to enhance the
field and therefore overall sensitivity of the device [13]. GaP is a transparent semiconductor
material with a refractive index of approximately 3.3 in the visible range of the spectrum.
Additionally, it is a wide band gap material [14]. To excite SPs, the angular interrogation
technique is utilized using light in the visible region of 632 nm. In our numerical simulation,
the thicknesses of the different layers have been optimized to maximize sensitivity in both
the gas and bio-sensing schemes. The study reveals that the proposed configuration for
a particular numbers of the graphene layers shows very high sensitivity towards bio-
materials, while at other thickness its sensitivity towards gas sensing is high. We have also
given a comparative analysis of our results for the GaP/Au/Graphene configuration, i.e.,
without a silicon layer coated sensor.

2. Basic Theory

If we consider a prism of GaP, the base of the prism is coated with Au film, which is
then followed with the graphene and then the silicon layers. The sensing medium (gases
and biomolecules) is considered to be in contact with this sensing probe. A schematic
diagram of the proposed probe is shown in Figure 1. A somewhat different configuration
is studied in [14]. TM-polarized monochromatic light of wavelength 632 nm from a He-Ne
laser is made to incident from one face of the prism, and the reflected light is observed
from the other face. Because the angular interrogation method is considered, the angle of
incidence is varied to achieve phase matching to excite the SPW. At resonance angle, the
light is maximally coupled to the surface plasmons, and reflectance shows a corresponding
minimum. The position of the reflectance minimum sensitively depends on the sensing
medium RI and changes accordingly. For numerical modeling of the proposed probe, the
following mathematical relations and parameters are used.

At the given wavelength, the RI of the GaP prism is 3.3 [15] and that of the Silicon
is 3.8354 + i 0.0245; i stands for iota [13]. The RI of Gold is calculated from the following
dispersion relation [16]:

ε(λ) = εr + iεi = 1 − λ2λc

λ2
p(λc + iλ)

, (1)
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where λp = 168.26 nm and λc = 8934.2 nm. The dispersion relation of graphene is given
as [17].

n(λ) = 3 + i
C
3

λ, (2)

where C is a constant having a value of 0.005446 nm−1, and the wavelength is measured
in nm. As graphene is a two-dimensional structure with a sheet thickness of 0.34 nm, its
total thickness depends on the total number of layers (L), deposited and calculated as
0.34 * L nm.
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Figure 1. Schematic diagram of the experimental set-up.

For numerical modelling, the N-layer matrix method has been used [18,19]. The
characteristic matrix of the N-layer structure can be expressed by:

M =
N
∏

k=2
Mk =

[
M11 M12
M21 M22

]
=

[
cos βk −i sin βk/qk

−iqk sin βk cos βk

] (3)

where βk = (2πdk/λ)
(
εk − n2

1 sin2 θ1
)1/2

and qk =
(
εk − n2

1 sin2 θ1
)1/2

/εk, respectively,
where nk and εk are the complex values of the RI and the permittivity of the kth layer
with thickness dk. The reflection coefficient, rp, of the p-polarized incident wave can be
expressed as:

rp =
(M11 + M12qN)q1 − (M21 + M22qN)

(M11 + M12qN)q1 + (M21 + M22qN)
(4)

and therefore the reflectance Rp is Rp =
∣∣rp

∣∣2.
In the θ vs.Rp plot, the angle associated with minimum Rp corresponds to resonance

angle (θres).
To evaluate the performance of the sensor, we use sensitivity and detection accuracy

(DA) as characterizing parameters, which are defined, respectively, as-
Sensitivity: If, for the change in the RI of the sensing medium by δns, the corresponding

change in the position of the transmission minima angle is δθSPR, then the sensitivity is
defined as [20–22].

Sn =
δθSPR
δnres

(5)

The unit of the sensitivity in the angular interrogation method is degree/RIU, while
in the wavelength interrogation method it is nm/RIU or µm/RIU. Note that RIU stands
for Reftactive Index Unit.

Detection accuracy: DA is defined as the full width at half maximum of the SPR
curve [20–22].
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3. Results

In this study, we have analyzed the two configurations Au/graphene/silicon and
Au/graphene using a GaP prism as a substrate. We have studied gas and biomolecule
sensing using the same configurations. For the gas sensing, the RI of the gaseous medium
are taken to be 1 RIU and 1.0008 RIU, because most of the gases have an RI close to 1.
The position of the dip in the reflectance spectra changes with the adsorption of the gas
molecules at the uppermost layer. The optimized thickness of the Au layer in the present
configuration is found to be 50 nm [14]. To optimize the design further, sensitivity was
calculated for a varying number of graphene layers (L) and for different thicknesses of
silicon layer.

In Figure 2, we have plotted the sensitivity versus the number of graphene layers
deposited over the Au coated GaP prism. To start with, the silicon layer thickness is
taken to be 11 nm. It is observed that, as we increase the number of graphene layers, the
sensitivity of the sensor increases up to a particular number of graphene layers and then
it saturates for a certain range of graphene thicknesses (L = 13 to 17), and afterwards it
decreases. We chose 13 layers of graphene as the optimum number for our design. Note
that using thermal evaporation or sputtering coating machines, we can deposit silicon
layers at a nm level thickness [19,23]. Normally, a thickness monitor equipment unit is
attached to this coating machine, which accurately measures the layer thickness.
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Figure 2. Sensitivity variation with no. of graphene layers for a gas sensing probe with 50 nm of Au
and 11 nm of silicon layer thickness. Maximum sensitivity is calculated to be 50 degree/RIU. The
circle symbols are simulated data points, which are fitted with red line.

Because graphene is a lossy material, it should decrease the DA of the probe, as
observed in Figure 3. The DA is optimal for four layers of graphene. The simulations for
DA calculations were performed for an analyte refractive index of 1 RIU.
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To optimize the thickness of the silicon layer, we fixed the thickness of the Au layer at
50 nm, used the optimized 13 layers of graphene, and varied the thickness of the silicon to
see the sensitivity variation in Figure 4. The maximum sensitivity of 53.75 degree/RIU is
observed for a 12 nm thickness of silicon. Thus, the optimized design for gas sensing is Au
(50 nm)/graphene (13 layers)/silicon (12 nm), with a sensitivity of 53.75 degree/RIU.
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We also studied the DA variation in the above design, as shown in Figure 5. Because
silicon is a lossy dielectric material, DA decreases with the increasing thickness of the
silicon. We would like to note that the simulations were performed for gaseous medium
refractive index 1 RIU.
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To have a comparative study, we have also studied the above sensor without the
silicon layer, as shown in Figure 6. The maximum sensitivity for gas sensing in this case is
observed to be 33.75 degree/RIU, which is significantly lower than the previously reported
value. This establishes the role of the silicon layer as a sensitivity enhancing layer.
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The SPR curve for the optimized gas sensing probe is shown in Figure 7. We have
plotted SPR curves for two refractive indices—1 RIU and 1.008 RIU.
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In the following, we have theoretically analyzed the bio sensing performance on the
above proposed probe design, but with differently optimized constituent layer thicknesses.
For biosensing, we have chosen the RI of the sensing medium, 1.330 RIU, and in the
presence of bio-molecules such as bacteria, enzyme, drugs, etc., the sensing medium RI
is assumed to shift to 1.335 RIU. To evaluate the sensor performance and to optimize its
design, we calculated the sensitivity with 50 nm of Au, varying no. of layers of graphene,
and a representative 11 nm thickness of silicon, as depicted in Figure 8. The figure reveals
that the maximum sensitivity of the probe towards the bio sample is 66.80 degree/RIU for
four layers of the graphene.
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To see the optimized thickness of the silicon layer in the above design, we varied
the silicon layer thickness, keeping the Au thickness fixed at 50 nm and no. of graphene
layers fixed at four. Figure 9 shows the sensitivity plot for the same and predicts the
optimum thickness of the silicon layer to be 12 nm, and the corresponding sensitivity is
72.60 degree/RIU.
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Figure 10 shows the corresponding DA plot. We have performed simulation for
refractive index 1.33 RIU.
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Figure 11 shows the sensitivity variation for the gas sensing probe with Au 50 nm
and varying no. of graphene layers. The silicon layer is absent in this particular case.
Maximum sensitivity is calculated to be only 34.40 degree/RIU, which is again very low
compared to the probe with a silicon layer. This again confirms the role of silicon in
sensitivity enhancement.
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The SPR curve for an optimized bio-probe with Au (50 nm)/graphene (four lay-
ers)/silicon (12 nm) is shown in Figure 12.
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In summary, a novel SPR-based sensor design, having potential for the detection of
both gas and bio samples, has been proposed and characterized. The sensor has a field en-
hancing silicon layer and an adsorbing graphene layer. The sensitivities for detection of gas
and bio samples are calculated to be 53.75 degree/RIU and 72.60 degree/RIU, respectively
at an interrogation wavelength of 632 nm. The optimized sensing probe’s design param-
eters for gas and bio-sensing are, respectively, Au (50 nm)/graphene (13 layers)/silicon
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has also been performed.
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