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Abstract: Photonic Hilbert transformers are fundamental components for optical computing and
signal processing. Here, for the first time we propose all-optical arbitrary-order Hilbert transformers
using phase-modulated fiber Bragg gratings (PM-FBGs) in transmission to our best knowledge. The
PM-FBG is a kind of fiber grating, whose coupling strength remains almost uniform and period
varies along the fiber length. For demonstration, we have designed and numerically simulated
0.5th-order, first-order, and 1.5th-order photonic Hilbert transformers, respectively. The profiles of
those PM-FBGs are obtained employing quasi-Newton optimization algorithm. Simulation results
show that the designed three Hilbert transformers are all in good agreement with the ideal results in
bandwidths up to 500 GHz and can tolerate a large range of input pulse width.

Keywords: fiber Bragg grating; photonic Hilbert transformer; optical fiber devices; optical signal
processing; optical pulse shaping

1. Introduction

All-optical signal processing for computing and networking has attracted increasingly
attention because it gives a solution to overcome the future speed limitation imposed by
the present electronics-based systems. Similar to electronic circuit, optical signal processing
circuit also needs the basic building blocks, for example photonic Hilbert transformer
(PHT). Hilbert transformation is a fundamental signal processing operation, and through
PHT, the Hilbert transform of an input temporal optical waveform can be obtained.

The order of a PHT can be integer or fractional. Both of them can find numerous
applications in many areas such as single-sideband (SSB) modulation, characterization of
broadband microwave signals, and widely tunable filtering [1–3]. For example, PHT can be
used to construct the analytic signal needed for SSB modulation from a real signal. While
fractional PHT (FrPHT) offers a new degree of freedom and its fractional phase can be used
as a secret key in SSB modulation [4]. PHT was firstly introduced by Emami and imple-
mented using multitap fiber optics [5], and FrPHT was firstly introduced by Christian and
implemented using asymmetrical fiber Bragg grating [6]. Up to now, various approaches
for the generation of PHT and FrPHT have been proposed, including fiber Bragg grating
(FBG) [7–9], long period grating (LPG) [10], waveguide Bragg grating (WBG) [11], planar
Bragg grating (PBG) [12], on-chip photonic crystal nanocavity (PCN) [13], and integrated
Kerr micro-comb source [14]. Compared to other schemes, fiber-grating-based PHTs offer
the advantages of simplicity, relatively low cost, low insertion loss, and full compatibil-
ity with fiber optics systems. In all fiber-grating-based PHTs, FBG-based PHTs are more
tolerant to environmental changes compared with LPG-based PHTs [15].

Phase-modulated fiber Bragg grating (PM-FBG) is a complex kind of FBG, whose
strength is almost uniform along the fiber length while it has a complex phase response,
corresponding to a complex period. However, this grating period can be directly encoded
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into the phase mask, which makes it easier to be fabricated and reproduced in practice
process. A number of devices based on PM-FBG have been designed and demonstrated
through simulation and experiments, such as virtual Gires–Tournois etalons [16], pulse
shaper [17], and photonic temporal differentiator [18]. In particular, PM-FBGs with a length
of 9 cm applied to delay line interferometer [19] and format conversion [20] have been
fabricated using a UV laser direct-writing system, where the gratings are created pitch by
pitch, and the coupling coefficient profile and the varied period are realized by controlling
the on/off of an acoustic optical modulator and moving the phase mask/fiber.

In this paper, for the first time we propose arbitrary-order PHTs based on phase-
modulated fiber Bragg gratings in transmission to our best knowledge. Taking the transfer
function of Hilbert transformer as the spectral response we needed, the coupling coefficient
and period of PM-FBG can be calculated by inverse synthesis method. Since the designed
PM-FBGs working in transmission, a coupler or circulator is not needed to separate the
reflected light from incident light, which improves the energy efficiency and reduces
the cost and complexity of the whole setup [8,21–24]. What is more, the PM-FBGs may
also use athermal packaging to significantly reduce the possible influence of temperature
changes [19], which can make them operate stably in practical applications.

2. Principle and Method

The spectral response (SR) of the PM-FBG that we will design can be expressed as
transfer function of Hilbert transformer H( f ).

H( f ) =


e−jn π

2 , f > f0

0, f = f0

ejn π
2 , f < f0

(1)

where n is the order of the Hilbert transformer and can be integer or fractional, and f0 is
the central frequency. Since FBG in transmission is a minimum-phase filter, the amplitude
response and phase response are related by means of logarithmic Hilbert transform [25].
If the desired spectral response is a minimum phase function, we can get the required
amplitude and phase response simultaneously. Unfortunately, the transfer function H( f )
of an arbitrary-order PHT is not a minimum-phase function. Thus, we have to convert the
non-minimum-phase function H( f ) to a minimum-phase function Hd( f ) firstly and we
can apply the method proposed in [26]. The method is based on the fact that any causal
temporal function with a dominant peak around or close to the origin will be either a
minimum-phase function or close to one [27]. Therefore, the non-minimum-phase function
H( f ) can be converted into minimum-phase function Hd( f ) using the following equation:

Hd( f ) = P1 + P2H( f )e−j2π f τ (2)

where P1 and P2 are the amount of power of the delta function and the designed PHT,
respectively, and τ is the relative delay. The parameters P1 and P2 are constrained by the
physical parameters of the grating (namely the maximum reflectivity of the FBG: Rmax)
and related by the following expression:

P1 + P2 ≤ 1

P1 − P2 ≥
√

1− Rmax
(3)

The time delay τ is introduced to separate the two signals and need to be selected
properly, which limits the bandwidth of the desired PHT.

As examples, we have designed three PHTs with order n being 0.5, 1, and 1.5, respec-
tively. We set the length of the fiber grating L = 5 cm, the amount of power of the delta
function P1 = 0.65 and the designed PHT P2 = 0.35, and the time delay τ = 35 ps for all the
examples. What is more, the PHT devices are designed to operate at the central wavelength
of 1550 nm and with a bandwidth ranging from 1548 nm to 1552 nm (corresponding to a
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frequency domain bandwidth of 500 GHz). Theoretically, there is no limit to the length
of the grating. Longer grating length could be chosen with a smaller coupling coefficient
to obtain the similar design result. However, one should note that the grating length is
usually limited by the translation range and accuracy of the fabrication system in practice.
The amplitudes of transmission spectral response Hd( f ) corresponding to different orders
are shown in Figure 1, from which we can see that the SR amplitude is symmetric about
the central wavelength of 1550 nm and oscillates with the same period on each side of the
central wavelength. The main difference for different orders appears around the central
part, where the amplitude decreases as the order increases. However, the overall shapes of
amplitudes are roughly the same. Consequently, PHTs with any orders could be designed
through the same process with different grating period distributions involved in the results.
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Figure 1. Amplitudes of transmission spectral response Hd( f ) corresponding to different orders.

The coupling coefficients and grating periods of the designed PM-FBGs can be cal-
culated using quasi-Newton optimization algorithm, which is an algorithm for finding
local maxima and minima of an input function. The quasi-Newton method is an alterna-
tive of Newton’s method and is used when the Hessian matrix of the input function is
unavailable or is too expensive to compute at every iteration [28]. The iteration steps of the
quasi-Newton method are as follows:

Step1: Define an initial point x0, let g0 = ∇ f (x0), the iteration direction d0 = −g0.
Step2: Obtain the step length ak:

f (xk + akdk) = min
a≥0

f (xk + adk) (4)

Let
xk+1 = xk + akdk, (5)

If gk+1 = 0, then xk+1 is the minimum point. The calculation will stop. Otherwise, go
to step3.

Step3: Let δk = xk+1 − xk, rk = gk+1 − gk, using the following equation:

Hk+1 = Hk +
1

(δk − Hkrk)
Trk

(δk − Hkrk)(δk − Hkrk)
T (6)

Let
dk+1 = −Hk+1gk+1

k = k + 1
(7)

Return to step 2.
Here, the input function f (x) is defined as the error between the desired transmission

spectral response Hd( f ) and the simulated spectral response using parameters of the
grating profiles we have calculated. For each iteration, the quasi-Newton method makes
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the error smaller, which means we are closer to what we want. When the error is small
enough, the optimization algorithm will stop.

3. Design Results and Discussion
3.1. 0.5th-Order Photonic Hilbert Transformer

When n = 0.5, according to Equations (1) and (2) the transfer function and the
minimum-phase function corresponding to it would be

H0.5( f ) =


e−j π

4 , f > f0

0, f = f0

ej π
4 , f < f0

Hd1( f ) = 0.65 + 0.35H0.5( f )e−j2π f τ

(8)

The coupling coefficient and grating period obtained by quasi-Newton method are
shown in Figure 2a. It can be seen from Figure 2a that the coupling coefficient is almost
uniform along the grating length, while the grating period variation oscillates in the range
of −1.7 nm to 2 nm. The maximum of the coupling coefficient is 320 m−1. According to
the obtained grating profile in Figure 2a, we calculate the simulated spectrum response
of designed PM-FBG employing transfer matrix method and compare it with the ideal SR
Hd1( f ) in Figure 2b. From Figure 2b, we can see that the simulated SR agrees well with the
ideal SR in a bandwidth of 4 nm, which means that the PM-FBG we designed could realize
the function of a 0.5th-order photonic Hilbert transformer.
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3.2. First-Order Photonic Hilbert Transformer

When n = 1, the transfer function and the minimum-phase function corresponding to
it would be

H1( f ) =


e−j π

2 , f > f0

0, f = f0

ej π
2 , f < f0

Hd2( f ) = 0.65 + 0.35H1( f )e−j2π f τ

(9)

The coupling coefficient and grating period of the PM-FBG we designed to realize
the function of a first-order photonic Hilbert transformer are shown in Figure 3a. From
Figure 3a, we can see that the grating period variation oscillates in the range of −1.9 nm
to 1.6 nm and the maximum of the coupling coefficient is 350 m−1. Figure 3b shows the
comparison between ideal SR Hd2( f ) and simulated SR of the designed PM-FBG, which
is calculated using the obtained grating profile in Figure 3a and employing the transfer
matrix method. Obviously, the simulated SR of our designed PM-FBG agrees well with the
ideal SR in a bandwidth of 4 nm.
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3.3. 1.5th-Order Photonic Hilbert Transformer

When n = 1.5, the transfer function and the minimum-phase function corresponding
to it would be
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H1.5( f ) =


e−j 3π

4 , f > f0

0, f = f0

ej 3π
4 , f < f0

Hd3( f ) = 0.65 + 0.35H1.5( f )e−j2π f τ

(10)

Adopting the same design process as the 0.5th-order and first-order PHT, the obtained
coupling coefficient and grating period of a 1.5th-order PHT are shown in Figure 4a.
The coupling coefficient is almost uniform along the grating length and the maximum is
310 m−1, while the grating period variation oscillates in the range of −2.5 nm to 2.2 nm.
Figure 4b shows the comparison between ideal SR Hd3( f ) and simulated SR of the designed
PM-FBG. It still can be seen that the simulated SR agrees well with the ideal SR in a
bandwidth of 4 nm.
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Figure 4. (a) Grating period (blue line) and coupling coefficient (red line) of the designed 1.5th-
order PHT and (b) comparison between ideal spectrum (dashed red line) and simulated spectrum
(blue line).

We also numerically demonstrate the functionality of the designed PM-FBGs by
launching a 3 ps-full-width at half-maximum (FWHM) input Gaussian pulse centered at
ω0 to the designed PM-FBGs. The obtained output temporal waveforms are presented in
Figure 5. Figure 5a shows the input 3 ps-FWHM Gaussian pulse. Figure 5b–d show the
obtained output pulse of designed 0.5th-order PHT, first-order PHT, and 1.5th-order PHT,
respectively. In each output pulse, there are two parts. The left part of the pulse is a copy of
the input Gaussian pulse and the right part of the pulse is the obtained Hilbert transformed
pulse. If needed, we can use a time gating device to get only Hilbert transformed pulse at
the output. It is also seen in Figure 5 that each of these three Hilbert transformed pulses
has split into two peaks. For the first-order PHT, the amplitudes of the peaks are similar.
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For the 0.5th-order PHT, the right peak of the Hilbert transformed pulse is greater, while
for 1.5th-order PHT, the left is greater.
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In order to get a clear view of the results of the designed PM-FBGs, we zoom in the
obtained Hilbert transformed pulses and compare them with the ideal Hilbert transformed
pulses in Figure 6. It can be seen from Figure 6 that the output temporal waveform results
of the designed PM-FBGs agree well with that of the ideal 0.5th-order PHT, first-order PHT,
and 1.5th-order PHT, respectively.
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Figure 6. Comparison between the ideal (dashed red line) and simulated (blue line) output pulses
for (a) 0.5th-order PHT; (b) first-order PHT; and (c) 1.5th-order PHT.

Finally, in order to evaluate the performance of the three designed PHT devices, we
calculate the cross-correlation (CC) coefficient using the following formula:

CC =

∫ +∞
−∞ fout(t)· fideal(t)dt√(∫ +∞

−∞ fout2(t)dt
)
·
(∫ +∞
−∞ fideal

2(t)dt
) (11)

where fout(t) and fideal(t) represent the amplitude envelopes of the temporal output wave-
forms of the designed PHT and the ideal PHT, respectively. The CC coefficient provides a
precise estimate of the level of similarity between the obtained waveform and the ideal
waveform, thus allowing one to infer the time-bandwidth product capabilities of the
proposed design [26].

The CC coefficients of the three PHT devices are shown in Figure 7. For 0.5th-order
PHT, when the FWHM of the input Gaussian pulse ranges between 1.1 ps and 9.5 ps, the
CC coefficient is larger than 90%, which means the numerically obtained temporal output
waveform is extremely correlated with the ideal. For first-order PHT, the range is 1.1 ps
to 9.3 ps, and for 1.5th-order PHT is 1.1 ps to 10.3 ps. For the designed 0.5th-order PHT,
first-order PHT, and 1.5th-order PHT, the maximum CC coefficient is about 0.9868, 0.9876,
and 0.9904, respectively. Those calculated CC coefficient values further confirm that the
designed 0.5th-order, first-order, and 1.5th-order PHTs based on PM-FBGs can perform
very accurate Hilbert transformation and tolerate the input pulse width.
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4. Conclusions

In conclusion, we have demonstrated a new approach of designing arbitrary-order
PHTs using phase-modulated FBGs in transmission. As examples, we have designed three
PHTs: 0.5th-order PHT, first-order PHT, and 1.5th-order PHT. The quasi-Newton method
has been employed to obtain the grating periods of the designed PM-FBGs, which makes
the design versatile and can be applied in any kind of grating design. The obtained grating
periods of these three PHTs are complex and oscillate up and down. We have demonstrated
the three PHT devices have very good performance in a usable bandwidth up to 500 GHz
and have a good tolerance to input pulse width. Moreover, the bandwidth can be further
increased with the increase of the grating period variation range. An optical circulator or
coupler is not required owing to the designed PM-FBGs work in transmission, which gives
the benefits of high energetic efficiency and simplicity. Compared to other types of FBG-
based PHTs proposed before [9], the fabrication method of the PM-FBG-based PHTs could
be easier and have greater reproducibility, since the grating periods of a PM-FBG could be
directly encoded into a phase mask. In addition, the maximum cross-correlation coefficient
can reach above 0.985, and the CC coefficient values confirm that the PM-FBG-based PHTs
can tolerate a larger range of input pulse width.
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