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Abstract: We propose a fast calibration method to compensate the non-uniform illumination in
computational ghost imaging. Inspired by a similar procedure to calibrate pixel response differences
for detector arrays in conventional digital cameras, the proposed method acquires one image of
an all-white paper to determine the non-uniformity of the illumination, and uses the information
to calibrate any further reconstructed images under the same illumination. The numerical and
experimental results are in a good agreement, and the experimental results showed that the root
mean square error of the reconstructed image was reduced by 79.94% after the calibration.

Keywords: computational ghost imaging; single-pixel imaging; non-uniform illumination calibration

1. Introduction

Over the past two decades, ghost imaging has been one of the rapidly developing
computational imaging schemes [1–21]. Ghost imaging reconstructs images by illuminating
an object with a series of varying light intensity distributions and associating the knowl-
edge of these distributions and the corresponding total light intensity measured with a
bucket detector [2]. In a standard pseudothermal two-detector ghost imaging scheme [2–5],
the light intensity distributions are usually obtained by a scanning single-pixel detector
or a detector array. With the development of the micro-optical electromechanical system,
computational ghost imaging (CGI) was proposed [7]. In CGI, the intensity distributions
are generated by illuminating a spatial light modulator (SLM) with programmable masks
on it. The image is then reconstructed by correlating the calculated intensity distributions
of the masks at the object plane with their corresponding light intensities measured by
a single-pixel detector. CGI significantly simplifies ghost imaging systems and reduces
acquisition time by calculating the intensity distributions numerically rather than mea-
suring them experimentally. However, difference inevitably exists between the numerical
calculations and experimental measurements, and one major cause of such difference is the
non-uniformity of illumination sources [20–24].

To enhance the quality of a degraded image with non-uniform illumination, the
Retinex [22,23] algorithm is commonly used. It is well known that an image is the pixelwise
multiplication of the illumination component and reflectance component. The Retinex
algorithm uses estimating illumination methods to extract uneven illumination compo-
nents from images and then normalizes them. An effective method for estimating the
illumination component is the key to calibrate non-uniform illumination based on Retinex
theory [24]. The Retinex algorithm posits that the illumination component is the smoothed
version of the degraded image. Several techniques have already been reported in the
literature [24,25], such as some illumination estimation algorithms based on a filtering
strategy [24,26–28], PDE-based Retinex methods (the illumination is obtained by solving a
partial differential equation) [29,30], and variational model-based Retinex methods [25,31].
The above algorithm is also called retrospective calibration, which is a posteriori calibration
applied after the acquisition. However, their calibration accuracy is unsatisfactory [24],
because the illumination component is estimated.
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At present, the imaging performance of CGI is nowhere near image sensors using
detector arrays, especially silicon-based charge-coupled devices and complementary metal
oxide semiconductors [32,33]. Beside the fact that the research and manufacture of detector
arrays are intensively invested in due to the global market demands, sophisticated calibra-
tion procedures, such as dark current noise suppression and pixel-response non-uniformity
compensation, are applied before the image sensors are put into actual use [34–39]. There-
fore, it would be beneficial to investigate the same concept to improve the image quality
of CGI.

In this work, we propose a calibration method to compensate for the non-uniformity
of illumination in CGI. The proposed calibration acquires the knowledge of illumination
non-uniformity by reconstructing an image of an all-white paper. The knowledge is
then used to calibrate further reconstructed images and to improve their image qualities.
Theoretical analysis and experimental results indicated that the proposed method is feasible.
Specifically, the root mean square error (RMSE) of the experimentally reconstructed image
was reduced by 79.94%, from 0.2618 to 0.0525, after the non-uniformity was compensated
for using the proposed method.

2. Theory
2.1. The Principle of CGI

The scheme of CGI is performed as shown in Figure 1. Beams from the laser source
are modulated by a SLM, which is controlled by the computer to generate a series of binary
patterns and provide structed illumination. An imaging lens projects the patterns onto the
object, which forms the conjugation between the SLM and the object. A collection lens and
a bucket detector are used to collect the measured signal. The signal is then transferred to
computer for reconstruction by using a highspeed analogue-to-digital convertor.
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Figure 1. Numerical simulation flow chart. The light source was non-uniform, the intensity distribution of which was
Gaussian. 128 × 128 Hadamard marks were used as sampling masks.

In CGI, the measured signal Si is the illuminating light intensity distribution IL
modulated by the SLM mask pattern Pi and transmitted or reflected by the pixelated object
Io; i.e.,

Si = K·
x

IL(x, y)·Pi(x, y)·Io(x, y)dxdy, (1)

where K is a scaling constant, and x and y refer to the spatial coordinates in the transverse
plane. After many measurements, the reconstructed image Ir can be calculated using the
knowledge of Si and Pi [7,9]. If the patterns form an orthonormal basis, then an N pixelated
object can be completely sampled with N measurements. The reconstructed image can be
obtained by using [13–19]

Ir =
N

∑
i=1

Si·Pi. (2)
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2.2. The Calibration of Non-uniform Illumination in CGI

In most CGI works, illuminating light intensity IL is uniform distribution, considered
as a constant by presumption, and is not included in Equation (1). However, in this
work, we were to address the non-uniformity of illumination intensity distribution IL(x, y),
and therefore it needed to be considered.

If the illumination was uniform, the reconstructed image Ir would be strictly propor-
tional to the object Io. Here, by substituting Equation (1) into Equation (2), it is demon-
strated that Ir is not a scaled Io, but rather a scaled dot product of Io and IL; i.e.,

Ir =
N

∑
i=1

{
(K·IL(x, y)

x
Pi(x, y)·Io(x, y)dxdy)·Pi

}
= K′·IL·Io, (3)

where K′ is another scaling constant to ensure that Equation (3) stands. If the illuminating
intensity distribution IL was obtained, then an authentic image Ic of the object could be
yielded as

Ic = Ir/IL = K′·Io. (4)

To retrieve the non-uniform illuminating intensity distribution IL, the easiest way
is to set the object Io with a constant reflectivity R, such as a sheet of white paper. It is
worth mentioning that a white paper is not perfectly uniform in its reflectivity in general.
However, due to the quasi-Lambertian nature of the sheet of paper, combined with the fact
that the half angular size of the paper with respect to the detection point is small (7◦ in the
experiment), the sheet of white paper was considered as of a constant reflectivity R in this
work. Consequently, the image IWP of the white paper is proportional to IL as

IWP =
N

∑
i=1

{(
K·IL(x, y)

x
Pi(x, y)·R·Ones(x, y)dxdy

)
·Pi

}
= K′′·IL, (5)

where R and K” are also scaling constants and Ones is an all-one matrix. The authentic
image Ic can be obtained by

Ic = Ir/IWP =
(
K′/K′′

)
·Io. (6)

It is worth mentioning that all scaling constants, K, K′, and K′′, are irrelevant to the
reconstructions and their image quality evaluation because unity normalization will be
performed on all reconstructions.

3. Simulation and Experiment
3.1. Numerical Simulation Results

Numerical simulation was performed to demonstrate the proposed calibration meth-
ods; its procedure is shown in Figure 1. The illumination light distribution IL was set to be
a Gaussian function, which presented an expanded laser beam illumination, as

IL(x, y) = α
1√
2πσ

e(x−µ1)
2+(y−µ2)

2
+ β, (7)

where µ1 and µ2 are the mathematical expectation in the x and y dimension, and σ is
variance. α and β are the coefficients for adjusting the relative value.

In the simulation, the parameters for Gaussian illumination were µ1 = 30, µ2 = 30,
σ = 2000, α = 0.0089, and β = 0.1, and it was decentered in position, as shown in Figure 2a.
An alphabet with 128 × 128 pixel resolution was used as the object, as shown in Figure 2b.
Hadamard patterns were used for modulation purpose [14–19]. Detector noise was added
to the measured signals, and the averaged signal-to-noise ratio (SNR) of the measured
signal was 46 dB. The uncalibrated reconstruction is shown in Figure 2c, exhibiting the
influence of non-uniform illumination, such as missing letters at the bottom-right corner.
After being calibrated by the proposed method, image non-uniformity was significantly
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suppressed and the missing letters were recovered, as shown in Figure 2d, though with
some noise. Since the proposed method is to calibrate the global error caused by non-
uniform illumination, we chose RMSE as the main evaluation indicator. The root mean
square error (RMSE) was reduced by 39.21%, from 0.2548 to 0.0999.
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3.2. Experimental Results

An experiment was performed, as shown in Figure 3, using the same CGI system
setup as in numerical simulation. Beams from the laser source (Viasho VA-I_LNS-532, 532
± 0.1 nm, 200 mw) were expanded, and then modulated by a digital micromirror device
(DMD, Texas Instruments V-7000, 1024 × 768, operating at 2 kHz). A camera lens (Nikon
AF Nikkor, f = 35 mm, F = 1.8 G) imaged the DMD patterns onto the object. A single-
pixel detector (Thorlabs PDA100A-EC, 320–1100 nm, operating at 20 dB) and a highspeed
analogue-to-digital convertor (ADC, PicoScope 6404D, operating at 100 MS/s sampling
rate and 500 MHz bandwidth) were used to measure and transfer the intensity signals to
the computer for reconstruction.

DMD

 Laser
sourceComputer

Object

ADC

Camera lens
Mirror

Single pixel
detector

Collection
lens

Figure 3. Experiment system setup. The object was illuminated by a laser beam which was modulated
by a DMD. The camera lens was used to project the Hadamard masks onto the object. A high
speed analogue-to-digital (ADC) convertor was used to acquire the reflected light intensity from a
single detector.
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To calibrate the non-uniformity of the illumination, a white paper was set as an object
and its image, IWP, was obtained using Equation (5), which would be used as the estimated
illumination distribution IL. Hadamard patterns [14–19] with 128 × 128 pixel resolution
and differential measurement [11] were used for the image reconstruction. As shown
in Figure 4a, the laser-sourced illumination had a Gaussian distribution, laser speckles,
and other non-uniformity.
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(b) Uncalibrated reconstructed image; the peripheral area of the image was ambiguous due to the weak illumination.
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Under the same illumination condition and parameters configuration, a standard
CGI experiment was performed with an alphabet object. The reconstructed image Ir was
influenced by the non-uniform illumination. As a result, some letters could not be distin-
guished, and some letters had speckles on them, as shown in Figure 4b. To eliminate the
non-uniform illumination influence on the reconstructed image, the proposed calibration
method was performed using Equation (6) with the measured IWP. The quality of the
calibrated image Ic, as shown in Figure 4c, was significantly improved, and all letters
became distinguishable. The RMSEs, calculated with the ground truth, of the images before
and after calibration were 0.2518 and 0.0525 respectively, indicating a 79.94% improvement
by the proposed calibration method. Both the ground truth and the reconstructed images
were normalized and aligned in a manner such that they had the same dynamic range and
the same field of view. To demonstrate the whole procedure, the intensities (the normalized
greyscale values) of the same line in Figure 4a–d are illustrated in Figure 4e. The intensity
of the reconstructed image Ir (red line) was enveloped by the non-uniform illumination
IL (black dashed line). The intensity of the calibrated image Ic (green line) is in good
agreement with the ground truth (blue dotted line).

It is worth mentioning that the experiment contained two major non-uniform illumi-
nation scenarios, which were the global non-uniform due to the laser Gaussian distribution
and the local one caused by laser speckles, such as those on letters “H” and “I” in Figure 4b.

For comparison, a retrospective calibration method was applied to calibrate the non-
uniform illumination of Figure 4b. The retrospective calibration method performs cal-
ibration by estimating the non-uniform illumination with the assumption that the illu-
mination distribution is smooth [24]. However, such an assumption is invalid for local
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non-uniformity, such as laser speckles. On the contrary, the calibration method proposed
here calibrates both global and local non-uniform illumination. The comparison presented
in Figure 5 shows that the laser speckles on letters “H” and “I” were not eliminated after
retrospective Gaussian filtering calibration. The RMSE improved from 0.0689 to 0.0525 by
using the proposed calibration method rather than the existing retrospective one.
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4. Discussions

Interestingly, there are existing works [20,21] to eliminate the influence of non-uniform
illumination in traditional ghost imaging schemes, i.e., ghost imaging with signal and
reference paths. However, due to the nature of traditional ghost imaging, these works had
to use charge-coupled devices to record the non-uniformity of the illumination by accumu-
lating many frames of speckle patterns, which jeopardizes the real-time performance of a
ghost imaging system.

It is worth noting that the noise became obvious at the corner areas after the calibration.
That is because the SNR at these areas was low due to the weak illumination intensities,
and the proposed method only reduced the non-uniformity of the reconstructed image
caused by the illumination but would not improve the SNR of the image. The SNR was
calculated using the following equation:

SNR =
(
< I f >−< Ib >

)
/
(

σf + σb

2

)
, (8)

where < I f > and < Ib > are the average intensities of the image feature and background,
respectively (here calculated from the data within the white part of the letter and the black
part around the letter). σf and σb are the standard deviations of the intensities in the feature
and the background, respectively [40].

The image-quality improvement yielded in the proposed calibration was fundamen-
tally due to a global dynamic range normalization of the reconstructed image, which was
achieved by a pixelwise division in Equation (6). Importantly, the proposed illumination-
calibrated method cannot improve the SNR of a local area in the reconstructed image.
However, the calibrated images are more suitable for global observation and analysis.

5. Conclusions

In this work, an illumination calibration procedure was proposed to address the
non-uniform illumination problem in computational ghost imaging. Without any extra
device, the proposed procedure acquires one image of an all-white paper to determine
the non-uniformity of the illumination and uses the acquired information to calibrate
any further reconstructed images under the same illumination condition. Numerical and
experimental results demonstrated that, without the proposed calibration, certain areas in
the reconstructed images became indistinguishable and image information was missing
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due to the non-uniform illumination. The missed information can be recovered after the
proposed calibration; the quality of the reconstructed images was significantly improved
by approximately 80%. The proposed calibration method can be applied to other ghost
imaging techniques.
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