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Abstract: The electron spill-out effect is considered in a singular metasurface. Using the hydro-
dynamic model, we found that electron spill-out effectively smears the sharp singularity. The in-
troduction of the electron spill-out effect also significantly changes the reflection spectrum, charge
distribution, field profile for a singular metasurface. Therefore, this spill-out contribution is crucial
and cannot be ignored for a realistic description of optical response in a singular system.
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1. Introduction

Plasmonic metasurfaces [1] have been a hot topic in the past decade and have been
used in many applications, such as wave-front control [2,3], wave absorbing [4,5], imag-
ing [6,7], and so forth. As a subset of plasmonic metasurfaces, singular metasurfaces [8,9]
have one additional hidden dimension. In contrast, to conventional metasurfaces which
require specific incident wave-vectors for surface plasmon excitation, singular metasurfaces
give rise to excitations at arbitrary incident wave vectors. Because of this unique property,
singular metasurfaces can be used as broadband electromagnetic absorbers, an example
being a black gold surface [10].

A singular metasurface has sharp points or narrow gaps, which are called “singular-
ities”. These singularities are so tiny that a macroscopic permittivity cannot accurately
describe the local optical properties because of the quantum nature of electrons. Thus,
the quantum effect of electrons should be considered near a singularity. These quantum
effects mainly include nonlocality [11] and electron spill-out [12]. Nonlocality is attributed
to the wave nature of electrons combined with the Pauli exclusion principle, and point like
charges are surrounded in the electron gas not by a point like screening charge but by a
finite cloud of electrons whose extent is determined by the Thomas-Fermi screening length
(typically less than one angstrom) [13]. This limitation sets the bound for the electric field
enhancement. Besides, the electron spill-out effect means that electrons can leak out of the
metal surface, where the length scale of spill-out is characterized by Feibelman’s d parame-
ters (typically a few angstroms) [14]. Such a small length scale makes the spill-out effect
observable only in a nanometer-size metallic particle [15] or a sub-nanometer gap [16].

To fully account for these quantum effects in plasmonic systems, a time-dependent
density functional theory (TD-DFT) [17–19] approach is required. However, this DFT
approach is quite time-consuming, especially for a large-number electron system. Luckily,
alternative methods, such as the hydrodynamic model, can handle these quantum effects
in a semi-classical way, avoiding solving many-body Schrödinger equations. The simplest
model is the hard-wall hydrodynamic model (HW-HD) [20,21], which incorporates the
nonlocal contribution from electrons. More recently, a more advanced model that considers
both nonlocality and spill-out is proposed, named as the self-consistent hydrodynamic
model (SC-HD) [22–25].

In our previous work on singular plasmonic systems, we have only incorporated
the contribution of nonlocality, which shows that the nonlocal effect strongly changes

Photonics 2021, 8, 154. https://doi.org/10.3390/photonics8050154 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-8648-1858
https://orcid.org/0000-0002-0185-2227
https://www.mdpi.com/article/10.3390/photonics8050154?type=check_update&version=1
https://doi.org/10.3390/photonics8050154
https://doi.org/10.3390/photonics8050154
https://doi.org/10.3390/photonics8050154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8050154
https://www.mdpi.com/journal/photonics


Photonics 2021, 8, 154 2 of 9

the spectrum of the system. A continuous spectrum in the local case becomes discrete
once the nonlocal contribution of the electron is taken into account [26–28]. However,
the electron spill-out effect was ignored in these calculations, and its role in the singular
system is still unknown. In this paper, we utilize two models (SC-HD and HW-HD) in the
calculation of the optical response of singular metasurfaces and compare them with classical
local response approximation (LRA). For simplicity, a simple metal without inter-band
transitions is studied to clarify the role of electron spill-out from the singular metasurface.

2. Methods

The schematic for this paper is shown in Figure 1. We consider both groove (upper
one in the left panel) and wedge (lower one in the left panel) singular metasurfaces, which
are parameterized with the period T and vertex angle θ [9]. On the right panel of Figure 1,
we conceptually illustrate the electron density distribution near the metal interface ∂Ω.
The total electron density n can be decomposed into the ground state n0(r) and the excited
state n1(r), where n0 corresponds to equilibrium electron density in the absence of field
excitation, while n1 to electron density induced by an incident field [29].

Figure 1. Schematic for the paper. For singular metasurfaces, we have considered three different
models: self-consistent hydrodynamic model (SC-HD); hard-wall hydrodynamic model (HW-HD);
local-response approximation (LRA). ∂Ω is metal surface, n0(r) is the equilibrium electron density,
while n1(r) is the induced electron density. Throughout this paper, the groove and wedge singular
metasurfaces are considered, as shown in the upper left and lower left panel of the figure, respectively.

For SC-HD, the normalized electron density of the ground state (n0 normalized by
ion density nion) continuously transitions from 1 to 0 across the boundary ∂Ω, where
the electron density exhibits some oscillations termed Friedel oscillations [29]. Likewise,
the induced electron density, n1, spills out of the metal surface and strongly oscillates
near the interface. In comparison, the equilibrium electron density in both HW-HD and
LRA becomes a step function [22], which means n0 is discontinuous at ∂Ω. Moreover,
the induced density for HW-HD only oscillates inside the metal, while for LRA n1 becomes
a delta function at ∂Ω. In the LRA, there is no constraint on the electron density so that
it becomes infinite. Once imposing a constraint, such as that in SC-HD and HW-HD, the
induced electron density becomes finite.

For the electrons in the metal, the equation of the motion can be expressed as [22–25]

men(
∂v
∂t

+ v×∇v + Γv) = −n∇ δG
δn
− ne(E + v× B), (1)
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together with the continuity equation for electron density, n

∂n
∂t

= −∇× (nv), (2)

where me, −e, and v are the mass, the charge, and the velocity of the electron, respectively.
Note that the Γ in the Equation (1) is the damping term. The functional G[n(r, t)] represents
the internal energy of the electron gas, which includes internal kinetic energy and the
exchange-correlation energy [18]. The detailed expression of the functional derivative of
G[n] is given in Yan’s work [23].

The electron density in the above system of equations can be written as n(r) =
n0(r) + n1(r), where the induced electron density n1 is treated as a perturbation. The
electron at equilibrium is also assumed to be motionless so that v = v1, and hence the
magnetic field appears when the system is perturbed, expressed as B = B1. However, the
static electrons support an electric field E0, so the electric field is formulated as E = E0 + E1.
Likewise, we also calculate the perturbation for the derivative of the energy functional
G[n], written as δG

δn =
(

δG
δn

)
0
+
(

δG
δn

)
1

[22].
Using perturbation theory, the equation system Equations (1) and (2) can be divided

into two sets of equations: zero-order ground state and first-order excited state. The zero-
order equation system is given as [22–25]

∇2φ0 =
−e
ε0

(n+ − n0) (3)

(
δG
δn

)
0
− eφ0 = µ (4)

∫
e(n+ − n0)dr = 0, (5)

which collectively determine the ground state charge density of plasmonic system. Note that
in the ground state calculation, the jellium model is used for the ion, in which the ion
density is uniform inside the interface ∂Ω but 0 outside [29]. In equation system above, n+

is the jellium background density such that n+ = nion, µ is the chemical potential, and φ0
is the electrostatic potential defined by E0 = −∇φ0.

In contrast, the first-order system of equations is written as [22–25]

(−iω + Γ)J1 =
n0e
me
∇
(

δG
δn

)
1
+

e2n0

me
E1 (6)

∇× J1 − iωρ1 = 0 (7)

which couples with Maxwell’s equation

∇×∇× E1 = (
ω

c
)2E1 + iωµ0J1, (8)

where the induced current J1 = −en0v1 and the induced charge density ρ1 = −en1. E1 is
the total electric field including incident and scattered fields. Equations (6)–(8) together
determine the excited state.

The difference between SC-HD, HW-HD and LRA mainly comes from the functional
derivative δG/δn. For SC-HD, this functional derivative includes contributions from the
Thomas-Fermi kinetic energy, the von Weizsäcker(VW) energy and the exchange-correlation
energy [30,31]. When only Thomas-Fermi kinetic energy is considered, we arrive at HW-HD.
Thomas-Fermi kinetic energy only accounts for the homogeneous electron gas. To account
for the inhomogeneity of electron gas, we need to consider high-order terms, where von
Weizsäcker(VW) energy is the second order correction. Note that von Weizsäcker(VW)
energy contains derivative terms like∇n, which becomes important and indispensable near
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the interface where the electron density, n, oscillates strongly. For the LRA, the functional
derivative is completely ignored, so that everything becomes local.

The ground state and excited state equations can be implemented with the finite-
element method in the commercial software COMSOL Multiphysics. We first numerically
solve Equations (3)–(5) to obtain the ground-state electron distribution n0. After that,
a second calculation solving Equations (6)–(8) gives the excited state, including reflection
spectrum, induced charge distribution, electric field, and so forth. The detailed implemen-
tation in Comsol can be found in Ding’s work [25].

3. Results

In this section, we employ the SC-HD, HW-HD and LRA models to calculate the optical
response of two singular metasurfaces in Figure 1. In the calculation, we consider the case
of a simple metal, like sodium. The corresponding ion density is n+ = 2.5173× 1028 m−3,
from which we obtain the plasma frequency ωp =

√
e2nion/meε0 ≈ 5.89 eV/h̄ [32]. Besides,

the damping parameter is Γ = 0.17 eV/h̄ [22]. The geometric setup for the singular
metasurface is T = 10 nm and θ = 0.6π rad. Excitation is by a plane wave incident
normally on the singular metasurface.

The ground state calculation is shown in Figure 2. The normalized equilibrium electron
densities n0/nion of groove and wedge singular metasurfaces are presented in Figure 2a,b,
respectively. It is obvious that the electron has some distribution outside the metal surface
(the black curve), which is the spill-out effect we are concerned about. Because of this
electron spill-out, the region immediately outside ∂Ω has a negative net charge, while
the region immediately inside has a positive net charge, which contributes to a dipole
layer in the ground state. Despite geometric singularities in the jellium background n+,
the ground state electron smears out this sharp point, making it as far as the electron are
concerned an effectively blunt singular metasurface [9]. We have also marked the length
scale in the figure, which shows this blunt tip has an around 2 Å diameter. In contrast, the
ground states for both HW-HD and LRA possess a step-function distribution rather than a
continuous transition in the case of SC-HD.

Figure 2. Ground state calculation for singular metasurfaces with SC-HD. The contour plot shows
the normalized equilibrium electron density, n0/nion. (a) Groove singular metasurface; (b) Wedge
singular metasurface.
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With ground-state electron distribution determined, we can next calculate the excited
state. We compare the reflection spectrum for SC-HD, HW-HD, and LRA cases in Figure 3,
where Figure 3a,b correspond to groove and wedge singular metasurfaces, respectively.
For LRA, we have previously demonstrated that the reflection is a continuous spectrum [9].
For a groove singular metasurface, the lower band Lg (ωc1 < ω < ωsp) is exited while the
upper band (ωsp < ω < ωc2) is a dark mode under normal incidence, where the notation
“Lg" means the LRA mode for groove singular metasurface (“L” is short for LRA and “g”
stands for groove), ωsp = ωp/

√
2 is the surface plasmon frequency and ωc1,2 is the cut-off

frequency. On the contrary, the wedge singular metasurface only supports upper-band
mode Lw, leaving the lower band as a dark mode.

Figure 3. Reflection of a singular metasurface according to SC-HD, HW-HD and LRA. The field
excitation is a plane wave at normal incidence. (a) Groove singular metasurface with vertex angle
θ = 0.6π rad; (b) Wedge singular metasurface with vertex angle θ = 0.6π rad; (c) Groove singular
metasurface with vertex angle θ = 0.8π rad; (d) Wedge singular metasurface with vertex angle
θ = 0.8π rad; (e) Groove singular metasurface with vertex angle θ = 0.9π rad; (f) Wedge singular
metasurface with vertex angle θ = 0.9π rad.

However, when the Thomas-Fermi kinetic energy is considered, the reflection spec-
trum ceases to be continuous but instead has a discrete spectrum [28]. In both Figure 3a,b,
a broadband continuous spectrum in LRA becomes a few discrete peaks in HW-HD, that
is, Hg1, Hw1 and Hw2. The notation rule is the same as that in LRA except for the
additional number which defines the discrete mode index. Now, we take the electron
spill-out effect into account, which requires a full consideration of all energy contributions
in functional derivative δG/δn, as shown in SC-HD case in Figure 3. The reflection spectra
of SC-HD exhibit distinct features comparing with other two cases. For the groove singular
metasurface, we observe that the Sg1 and Sg2 peaks tend to redshift relative to the Lg
band, while the Hg1 peak relatively blueshifts. Similar peak shifting can be observed in
the wedge singular metasurface.

As a free parameter, θ characterizes the shape of the singular metasurface. In Figure 3c,d,
we implement the same calculation as in Figure 3a,b except that the vertex angles for the
corresponding groove and wedge singular metasurfaces are θ = 0.8π rad. For LRA, the
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bandwidth of both groove and wedge singular metasurfaces become narrower when the
vertex angle is increased from 0.6π to 0.8π. From the reflection spectrum of the LRA,
we observe that the shifting of the cut-off frequency effectively blueshifts the central
frequency of band Lg for the groove singular metasurface, while redshifting the central
frequency of band Lw for the wedge singular metasurface. In Figure 3e,f, we further
increase the vertex angle to 0.9π, making the singular surface close to a flat surface (θ = π).
The spectra at θ = 0.9π for SC-HD, HW-HD and LRA all show weak resonances and
behave like a flat metal surface.

For SC-HD and HW-HD, when increasing the vertex angle the discrete peaks (Sg1,
Sg2, Sg3 and Hg1) for the groove singular metasurface blueshift, while the peaks (Sw1,
Sw2, Hw1 and Hw2) for the wedge singular metasurface redshift. Specifically, for the
groove singular metasurface, the blue-shift of peak Hg1 from Figure 3a–c is around 0.04ωp,
while for peak Sg1 is approximately 0.03ωp. Therefore, changing the vertex angle only
overall moves the spectrum. However, the electron spill-out contribution not only shifts the
peak position but also strongly changes the spectrum features, by creating some additional
peaks (Sg3 or Sw2).

From reflection spectra, we notice an isolated peak (Sg3 or Sw2) in the case of SC-HD.
These additional peaks are far from the mode discretized from the continuous mode in
LRA. To understand the physics of the additional peak in the reflection spectrum of SC-HD
case, we have compared the induced charge density distribution ρ1 = −en1 near the
singular surface in Figure 4. In this figure, we give the induced charge distribution for
all the marked peaks in Figure 3. Since the induced charge density for LRA is an infinite
delta function, we therefore only show the distribution for SC-HD and HW-HD. For S-type
peaks in both groove and wedge singular metasurfaces, the induced charge leaks out of the
metal surface but with different patterns. Let us take the groove singular metasurface as an
example, that is, Figure 4a, the Sg1 peak corresponds to the first-order surface plasmon
mode, while the Sg2 is the second-order surface plasmon mode. These modes come from
the discretization of the continuous mode Lg. We can tell that for Sg1 and Sg2, the induced
charge near the interface is either primarily positive or primarily negative. These charge
density profiles are similar to that of peak Hg1 of HW-HD. Although the induced charge
is confined inside the metal surface for Hg1 mode, it is the same kind of surface plasmon
mode as Sg1 and Sg2. However, the modes Sg1 and Sg2 differ from Hg1 in the centroid
of induced charge density. From Figure 4a, we observe that for Sg1 and Sg2 the centroid
of their induced charge density ρ1 lies outside the jellium edge ∂Ω, while the absence of
spill-out in Hg1 makes the centroid always inside the jellium edge. It is these spill-out
and “spill-in” effects that lead to the different peak shiftings in the reflection spectrum.
Likewise, in Figure 4b the spill-out of Sw1 mode and the spill-in of Hw1 and Hw2 modes
makes the wedge singular metasurface exhibit a similar peak shifting behavior.

Special attention should be paid to the Sg3 mode in Figure 4a. From the charge profile,
we can see that nearly the same amount of positive and negative charges on the two sides
of the interface, which differs from that of Sg1 and Sg2 whose charge is dominated by either
positive or negative charge. This additional mode is called Bennett mode, or multipole
surface plasmon mode [29,33]. For traditional surface plasmon mode such as Sg1 and Sg2,
the surface charge forms an effective monopole normal to the interface. However, for a
multipole surface plasmon, an effective dipole forms normal to the interface. Therefore,
the formation of a Bennett mode requires the spill-out of the electron at the metal interface,
which explains why this multipole mode is absent in the HW-HD and LRA. Moreover, a
similar Bennett mode is observed in Sw2 peak in wedge singular metasurface in Figure 4b.
Similar to Sg3, induced electron for Sw2 mode also forms a dipole momentum normal to
the interface.
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Figure 4. Induced charge distribution ρ1 of singular metasurface (θ = 0.6π rad) with SC-HD and
HW-HD, which corresponds to the peak marked in Figure 3. (a) Groove case; (b) Wedge case. Note
that ρ1 is complex and that the real part is shown.

Finally, we illustrate the electric field enhancement of a singular metasurface for SC-
HD, HW-HD and LRA in Figure 5. In our previous work, we show that the electric field
enhancement of singular metasurface in the LRA case diverges as long as the vertex angle
θ is larger than the critical angle θc [9,34]. For a LRA mode (ω = 0.65ωp) in Figure 5a,
the corresponding critical angle θc = Im[ln( ε−1

ε+1 )] = 0.237 rad < θ, making the electric
field diverge at the terminal point. For a LRA mode (ω = 0.75ωp) in Figure 5b, the critical
angle θc = −Im[ln( 1−ε

ε+1 )] = 0.333 rad < θ, leading to a divergence of electric for a wedge
singular metasurface.

Figure 5. Electric field enhancement of singular metasurface (θ = 0.6π rad) with SC-HD, HW-HD
and LRA, which corresponds to the peak marked in Figure 3. (a) Groove case; (b) Wedge case.
Note that the color function has been fixed as the same for all of contour plot so as to compare field
enhancement properties. Besides, the electric field of LRA mode diverges at the singularity.

Comparing LRA field with that of SC-HD and HW-HD in Figure 5, we conclude
that the electric field in LRA is more localized at the sharp point. This delocalization is
mainly attributed to the Pauli exclusion principle, that is, nonlocality, which hinders the
localization of electrons to a very large density. This constraint leads the field enhancement
of SC-HD and HW-HD to be finite and smaller than that of LRA case. Moreover, another
comparison can be made between traditional surface plasmon mode and multipole surface
plasmon mode. For Bennett mode in Figure 5 (Sg3 in the left panel or Sw2 in the right
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panel), we can observe that this multipole mode is highly localized at the interface, which
means it shows a stronger decay normal to the interface compared with other traditional
monopole surface plasmon modes. Note that in Figure 5 some modes exhibit maximum
field enhancement at the cusp, while some are not. This is mainly because of different
reflection phase at the cusp experienced by these surface plasmon modes [9,35].

4. Conclusions

In this paper, we consider the electron spill-out effect in the singular metasurface.
The ground state calculation shows that our sharp singular point is effectively blunt.
Besides, for the excited state, the introduction of the spill-out effect strongly changes the
reflection spectrum, charge distribution and near-field profile. Therefore, it is vital to
include this spill-out effect in the singular system, especially for a simple metal where the
inter-band transition is absent. Finally, the electron spill-out calculation is still numerical in
this paper, and an analytical approach of spill-out effect in the singular plasmonic system
will be left to future work.
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