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Abstract: Measurement of optical properties is critical for understanding light-tissue interaction,
properly interpreting measurement data, and gaining better knowledge of tissue physicochemical
properties. However, conventional optical measuring techniques are limited in point measurement,
which partly hinders the applications on characterizing spatial distribution and inhomogeneity of
optical properties of biological tissues. Spatial-frequency domain imaging (SFDI), as an emerging
non-contact, depth-varying and wide-field optical imaging technique, is capable of measuring the
optical properties in a wide field-of-view on a pixel-by-pixel basis. This review first describes the
typical SFDI system and the principle for estimating optical properties using the SFDI technique.
Then, the applications of SFDI in the fields of biomedicine, as well as food and agriculture, are
reviewed, including burn assessment, skin tissue evaluation, tumor tissue detection, brain tissue
monitoring, and quality evaluation of agro-products. Finally, a discussion on the challenges and
future perspectives of SFDI for optical property estimation is presented.

Keywords: spatial-frequency domain imaging; depth-varying; wide-field; optical property; dis-
ease diagnosis

1. Introduction

Biological tissues are complex systems composed of different components with differ-
ent structural, chemical, and optical characteristics which are commonly treated as turbid
media in tissue optics. Diffraction, reflection, transmission, and other physically optical
phenomena often occur in light-tissue interaction as light travels through the tissues [1,2].
Radiative transfer equation (RTE) can best describe light propagation in biological tissues.
Great efforts have been made to solve the integro-differential form of the RTE analyti-
cally [3–5]. For example, Liemert et al. proposed an accurate and efficient solution of the
RTE for modeling the propagation of photons in the three-dimensional anisotropically
scattering half-space medium [6]. Recently, the same research team derived explicit analyti-
cal solutions for single-scattered radiance in a half-space medium under consideration of
a reflecting boundary. They considered both a unidirectional beam source as well as an
isotropic point source [7]. Diffusion approximation equation (DAE) is a simplified form of
RTE and has been widely used for modeling the behavior of light transport in tissues [8].
The particle characteristic is taken into account, while the light fluctuation property and
polarization effects are not considered in modeling light propagation through tissues. There
are, hence, absorption and multiple scattering events between the incident photon packet
and tissue particles. The propagation behavior through tissues can be characterized by the
optical properties, such as absorption coefficient (µa) and reduced scattering coefficient
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(µs′), which quantitatively describe the optical effects of absorption and scattering events in
light transport. Optical properties of biological tissues can provide valuable information for
clinical inspection and disease monitoring in biomedical optics, thus guiding the doctors
to have more accurate diagnoses. For example, tumor tissues can be detected based on
the differences of optical properties between the healthy and diseased tissues; so is the
monitoring for skin blood flow. The measured optical properties can also be used for
assessing quality and safety (e.g., firmness, soluble solids content, pesticide residue, etc.) of
agro-products (e.g., apple, tomato, blueberry, etc.) [9–11]. Therefore, accurate measurement
of tissue optical properties is of great significance in the field of biomedicine, as well as
food and agricultural engineering.

Currently, existing optical methods for measuring optical properties of biological
tissues can be divided into direct and indirect measurement methods [12–15]. The direct
method is advantageous on independent mathematical model (e.g., Beer–Lambert Law)
and simple data processing algorithm. However, this kind of method is limited in specific
samples with strict conditions (e.g., thin thickness), and needs to be careful with the
influence of stray light outside and reflection from the experimental device, such as the
cuvette. In contrast, indirect methods can be performed on intact samples nondestructively,
but need sophisticated instrumentation and complex mathematical models derived from
the DAE. Recent studies have been mainly focused on indirect methods for estimating
optical properties, because they are applicable to a wide range of biological materials
without the need for sample preparations. Table 1 briefly summarizes the commonly used
optical methods for measuring tissue optical properties, including collimated transmittance,
integrating sphere (IS), time-domain (TR), frequency-domain (FD), spatially resolved (SR),
and spatial-frequency domain imaging (SFDI). Reflectance and/or transmittance were
first measured by these techniques, and then the optical properties (i.e., µa, and µs′)
were estimated by using the inverse parameter estimation algorithms based on light
transfer model. During the past years, these optical techniques have been widely used
for measuring optical properties of different biological materials, such as human skin,
brain, and tumor tissues [16–18]. However, most of these techniques (i.e., IS, TR, FD, and
SR) employ a point light source for illuminating the target samples, which only enables
one estimation of optical properties through single measurement. The estimated optical
properties are treated as the average values in most cases, but cannot be used to describe the
spatial distribution of tissue optical properties for the non-homogeneous turbid materials.

SFDI, as an emerging optical imaging technique, is capable of measuring the tissue
optical properties in a wide-field area on a pixel-by-pixel basis [19]. Compared to other
methods listed in Table 1 (i.e., IS, TR, FD, and SR), SFDI employs spatially modulated
area lighting, instead of point lighting, for illuminating the turbid materials, and thus 2-D
and even 3-D optical property mappings can be achieved through single measurement.
In the SFDI technique, special patterns of 2-D illumination, usually sinusoidal patterns,
with different spatial frequencies are projected onto the surface of a target sample, and the
remitted diffuse reflectance is captured by using an imaging device (e.g., high-performance
camera). Demodulation algorithms, such as three-phase demodulation [20], Gram–Schmidt
orthonormalization [21], and spiral phase transform [22], are then applied to obtain the
direct component (DC) image and alternating component (AC) image. Tissue optical
properties can be finally determined by fitting the AC image based on inverse parameter
estimations. Biological tissue acts as a low-pass filter, thus low-frequency lighting is
more sensitive to absorption, while high-frequency component performs more effects
on scattering [23]. Therefore, the SFDI technique provides potential for decoupling the
absorption property from scattering property of biological tissues.
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Table 1. Commonly used optical methods for measuring optical properties of biological tissues.

Classification Measuring Method Light Transfer Model Optical
Property Ref.

Direct method Collimated transmittance Beer–Lambert Law µa, µs [24]

Indirect method

Integrating sphere Adding-doubling µa, µs′ [25]
Time-domain Diffusion approximation

equation, Monte Carlo or
analytical solutions of

radiative transfer equation

µa, µs′ [26]
Frequency-domain µa, µs′ [27]
Spatially resolved µa, µs′ [28,29]

Spatial-frequency domain imaging µa, µs′ [5,20,30]

µa: absorption coefficient, µs: scattering coefficient, µs′: reduced scattering coefficient.

Owing to the capabilities of wide-field imaging, depth- and resolution-varying char-
acterizing for biological tissues, SFDI has witnessed great progress in measuring optical
properties [20]. The estimated optical property values and/or mappings provide valuable
information for disease diagnosis, evaluation, and monitoring in biomedical domain, as
well as quality assessment in the food and agricultural engineering domain. This paper first
provides an overview of the principle of SFDI technique for estimating optical properties
of biological tissues. Then applications, based on published literature, for burn assessment,
skin tissue evaluation, tumor tissue detection, brain tissue monitoring, and quality assess-
ment of agro-products, are reviewed. Finally, challenges and future perspectives of SFDI
for measuring optical properties are discussed.

2. Principles and Methods
2.1. Typical SFDI System

As shown in Figure 1a, a typical SFDI system mainly consists of three parts: projection,
imaging, and sampling [31–33], which are specifically selected based on experimental
or practical requirements. An ordinary commercial projector is commonly used in the
projection part due to the low cost and easy-to-use property. The light engine produced by
Digital Light Innovations in Austin, TX, USA (e.g., model DLi CEL5500) is a better choice
for projecting patterns and has been widely used in the SFDI system, since it can obtain
high brightness, high definition, and real color images. When selecting the projecting part,
the performance, like frame rate, bit depth, and resolution, should be carefully considered
because the specific requirements for experimental research and engineering application
are different. Considering varying tissue properties at different wavelengths (e.g., 470, 525,
590, 625, 658, 690, 730, 850, and 970 nm), a wavelength dispersion device, such as liquid
crystal tunable filter (LCTF) and band-pass filter, is used for selecting required wavelengths
in the case of broadband quartz halogen tungsten lamp. Discrete light source (e.g., LED
with single wavelength) is another choice to have the predetermined wavelength based
on preliminary experiments. An imaging device (e.g., high-performance camera), coupled
with a prime lens, is used to acquire the remitted light intensity images under structured
illuminations with different frequencies and phases. Performance of the imaging device
needs to be higher than that of the projector. For example, if the frame rate of the projector
is 30 fps, the frame rate of the imaging device is better at 60 fps, so that the change of
the projection can be collected. It was reported that it took about 10 min to acquire three-
phase-images for 30 frequencies at four different wavelengths (a total of 360 images), with a
field-of-view about 5 × 5 cm [34]. A computer is connected with the projector and imaging
device to control output of the lighting patterns (i.e., frequency and phase), and acquire and
preserve the remitted images at different wavelengths. It should be noted that the pattern
projection and image acquisition should be triggered simultaneously. A pair of linear
polarizers is put in the projection and imaging parts to reduce and even eliminate specular
reflection from the sample surface. Target samples are placed on the sampling stage, which
has an adjustable height, allowing a consistent distance between the sample surface and
imaging device. It is desirable to have the sampling part move along the horizontal axis,
so that the SFDI system can be applied to the real-time applications. Note that most of
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the SFDI systems used in the published literature are constructed by the researchers, and
the SFDI device manufactured and produced by the Modulim Incorporation for research
purposes, called Clarifi® (https://modulim.com/, accessed on 23 March 2021), has also
been used in some studies [35–38].

Figure 1. (a) Schematics of a typical SFDI system. QTH and LCTF denote quartz tungsten halogen
and liquid crystal tunable filter, respectively. (b) Schematic of an endoscopic imaging system: a
laser source is expanded and collimated by lenses L1 and L2, passes through a mask of a sinusoid
printed onto a transparency and is collimated by L3 into the projection channel of the endoscope. The
polarizers P1 and P2 ensure specular light removal. The collection channel of the endoscope sends
light through L4 where it is imaged onto a CCD camera (adapted from Ref. [39]).

Figure 1b depicts the optical design of an endoscopic imaging system [39]. The
fundamentals of imaging in the spatial-frequency domain are preserved, starting with a
light source. Given a source with a fiber output, lenses L1 and L2 are used to expand and
collimate the beam onto a mask M of a sinusoidal pattern. The image of the illuminated
pattern is then collimated by L3 and polarized by linear polarizer P1 as it is sent through
the projection channel of the endoscope and onto the sample. The reflected light is imaged
through the collection channel of the endoscope. The collimated output is cross-polarized
with respect to P1 by linear polarizer P2 and then imaged by objective lens L4 onto the
CCD. This design combines the endoscope with SFDI, which makes it possible to measure
optical properties of endoscope in real-time with a large field-of-view.

2.2. Principle of SFDI for Estimating Optical Properties

The process of optical property estimation of biological tissues using SFDI can be
roughly divided into three steps: measurement of light intensity image remitted from
the target sample, acquisition of diffuse reflectance image through demodulation algo-
rithm, and inverse parameter estimation of optical properties from the demodulated image
(Figure 2). Reflected light intensity images under the incidence of multiple spatially modu-

https://modulim.com/
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lated patterns with different spatial frequencies (the number of black and white stripes per
unit length) and phases are first captured [40–44]. Then, demodulated diffuse reflectance
images at every frequency are obtained by using appropriate image demodulation algo-
rithm, such as three-phase demodulation, Gram–Schmidt orthonormalization, and spiral
phase transform. Finally, based on appropriate light transfer models, such as DAE and
Monte Carlo [45–48], optical absorption and reduced scattering coefficients of biological
tissue can be estimated by using inverse parameter estimation algorithms, like nonlinear
fitting algorithm [49] and look-up table [50–52].

Figure 2. Flow chart of data processing for estimating optical properties of biological tissues by using
the spatial-frequency domain imaging technique (adapted from Ref. [20]).

Assuming that light intensity function of the incident structured illumination on
sample surface is [20]:

S =
S0

2
[1 + M0 cos(2π fxx + α)] (1)

where S0, M0, fx, x and α denote the illumination intensity, spatial modulation depth,
spatial frequency, spatial coordinate, and spatial phase of the light source, respectively.

Light intensity image is obtained by capturing the remitted light from the sample
surface. The intensity of illumination I(x, fx) can be decomposed into DC part IDC(x) and
AC part IAC(x, fx).

I(x, fx) = IDC(x) + IAC(x, fx) (2)

IDC(x) is constant for different spatial frequencies, while IAC(x, fx) is a function of
spatial location and frequency, which can be expressed:

IAC = MAC(x, fx)· cos(2π fxx + α) (3)

where MAC is the amplitude envelope of reflected photon density, which is related to tissue
optical properties. Generally, the three-phase demodulation method is used to get the
value of MAC. In this method, three sinusoidal waves with specific spatial-frequency fx at
three initial phases (0, 2π

3 and 4π
3 ) are used to illuminate the sample, then the MAC can be

expressed as:

MAC(x, fx) =

√
2

3

{
[IAC1(x, fx)− IAC2(x, fx)]

2 + [IAC2(x, fx)− IAC3(x, fx)]
2 + [IAC3(x, fx)− IAC1(x, fx)]

2
} 1

2 (4)
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MAC is related to modulation transfer function MTFsystem, diffuse reflectance Rd, and
light source intensity I0, as shown in Equation (5).

MAC = I0·MTFsystem(x, fx)·Rd(x, fx) (5)

Hence, a reference sample with known optical properties, such as optical object or a
white plate with calibrated reflectance, is often taken as the reference to calibrate the SFDI
system for optical property estimation. The diffuse reflectance Rd of target samples can be
thus calibrated and expressed as:

Rd(x, fx) =
MAC(x, fx)

MAC,re f (x, fx)
·Rd,re f (x, fx) (6)

where Rd,re f (x, fx) is diffuse reflectance of the reference sample, and MAC,re f can be ob-
tained using Equation (4). By applying appropriate boundary conditions, the reflectance,
spatial frequency, absorption coefficient (µa), and reduced scattering coefficient (µs′) have
the following relationship, which was derived from the DAE by Cuccia [20]:

Rd( fx) =
3A µs′/µtr(

µ′e f f /µtr + 1
)(

µ′e f f /µtr + 3A
) (7)

where µtr = µa + µs′ is the transport coefficient, A =
1−Re f f

2(1+Re f f )
, Re f f = 0.0636n + 0.668 +

0.71
n −

1.44
n2 is the effective reflection coefficient, and n is the refractive index. The µ′e f f can

be expressed as:

µ′e f f =
(

3µaµtr + K2
) 1

2 (8)

where K = 2π fx.
Hence, µa and µs′ of the sample can be deduced by using appropriate inverse parame-

ter estimation algorithm by fitting the solution of DAE (Equation (7)). Though the DAE has
been widely used as the light transfer model for optical property measurement in SFDI,
the accuracy and versatility are partly hindered by its approximation nature with two
constraining conditions (i.e., scattering-dominant tissue, and relatively small illumination-
frequency). Thus, there are inaccurate measurements of optical properties for highly
absorbed tissues when using the DAE, such as strong absorption tissue caused by water in
the near-infrared wavelength. High frequency for the spatially varying illumination would
lead to sub-diffusive reflection, which is also not suitable to be solved using Equation (7).
Moreover, the scattering phase function, which describes the scattering angle probability of
photons in biological tissues, should also be considered when estimating optical properties
based on the DAE [4,5]. MC, as a numerical method for modelling light propagation
within tissues, launches and tracks a large number of photon packets in the simulation
process, and diffuse reflectance can be calculated based on the theory of probability and
mathematical statistics. MC is simple in operation and easy to be implemented with any
desired accuracy, if the time cost is affordable. Based on MC simulation, another optical
property measurement method in SFDI, called look-up table, has been emerging recently,
which can perform rapid calculation of optical properties, generated from diffusion model
forward predictions [20,52].

As mentioned above, the three-phase demodulation method is usually used for image
demodulation, which is the key step in SFDI. This method can provide relatively high
accuracy in optical property measurement, at the expense of being time-consuming, which
hinders the real-time application of SFDI. To overcome this shortcoming, a novel image
demodulation and inverse estimation method was proposed and developed, which allowed
researchers to determine the optical properties using a single phase-image, called single
snapshot of optical properties (SSOP). Reliant on Fourier transform and data processing in
the frequency space, SSOP at least requires two images with one phase-image for each of



Photonics 2021, 8, 162 7 of 20

the two spatial frequencies [53–55]. SSOP reduces the number of phase-images from three
to one, which improves the efficiency of both image acquisition and data processing by
about three times. Compared to the conventional three-phase demodulation and inverse
estimation, SSOP loses some image information since it only has one phase-image, resulting
in lower accuracy for optical property measurement.

3. Applications

Dognitz et al. [56] first investigated the potential of spatially modulated area lighting
by employing a xenon lamp with a band-pass filter to illuminate a patterned glass plate
and generate a circular modulation pattern. A CCD camera was used for capturing the
reflected image of the sample at three different modulated frequencies (i.e., 0.10, 0.16, and
0.50 mm−1). The results indicated that SFDI was capable of measuring the absorption and
reduced scattering coefficients noninvasively. However, the value of their work was not
recognized by the scientific community at that time. Thanks to the rapid advances in digital
technology and computing technology, great progress has been made in the development
of spatially resolved and time-domain techniques for measuring optical properties of
biological tissues, which, in turn, can be routinely used for chemical composition prediction
and functional analysis [57]. Therefore, the researchers began to renew their interest in
spatial-frequency domain imaging after the arrival of the twenty-first century. In 2005,
Cuccia et al. applied the SFDI technique for the measurement and analysis of wide-
field mapping of tissue optical properties [30]. They used a modulation pattern with the
frequency of 0–0.6 mm−1 at 640 nm, demonstrating that SFDI was a fast and inexpensive
method for tomographic imaging and quantitative optical property mapping in a wide
field-of-view. The conceptual framework, hardware composition, and software algorithm
proposed in their study have been widely used for optical property estimation by other
researchers. The estimated optical properties can be used in the field of biomedical optics
for inspecting breast tumors and non-melanoma tumor lesions, as well as in the food and
agricultural domain for apple internal browning and early bruise detection. The following
sections present more details regarding the practical applications of SFDI.

3.1. Burn Assessment

Burn is a common affliction which usually causes damage to the skin, mucous mem-
brane, subcutaneous and submucosal tissues, and even some complications. Accurate
detection of burn location and severity is critical for determining the scheme for the treat-
ment and recovery. Thanks to the advantages of SFDI for depth-varying characterizing of
biological tissues, it has been applied for surface and subsurface burn detection.

The potential of SFDI for burn assessment was first explored in a rat model, with
a graded control scheme for detecting burn severity [58]. The results showed that SFDI
technique was capable of quantitatively and noninvasively assessing the burn wound
severity, which could assist clinicians to better identify burn areas. Due to the small skin
area of rats, it is difficult to realize the artificial controllable burn models; thus, the pig has
appeared as a new model for burn assessment [59–61]. Mazhar et al. measured 48 cases
of severe heat burns in a pig model, and monitored functional and structural parameters
of each burn type for more than 72 h [37]. Ponticorvo et al. and Burmeister et al. imaged
wounds on the back of pigs with different burn degrees and calculated the absorption
coefficient based on Monte Carlo simulation [62]. It was proven that SFDI could reflect the
changes of skin parameters after the burns. Ponticorvo et al. shifted their focus to burn care
in an attempt to help quantify not only burn depth but also the progress of healing [19].
They showed that SFDI coupled with laser speckle imaging was capable of monitoring
changes in hemodynamic and scattering properties in burn wounds over a 28-day period.
These results highlighted the potential insights that can be gained by using SFDI to study
wound healing.

Table 2 lists the recent applications of burn assessment by using the SFDI technique,
including the test sample, measured optical property, indicator, frequency, and wavelength
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used in the experimental research. It can be observed that frequencies lower than 0.20 mm−1

were frequently used, because low-frequency illumination has larger light penetration
depth, which is suitable for detecting the subsurface burns. Visible lighting is still the
popular illumination and wavelengths beyond the visible range are lower than 1000 nm.
Near-infrared lighting may have abilities in penetrating deeper tissues, but requires more
expensive instrumentation, such as imaging and wavelength dispersion devices. Most of
the research in Table 2 was conducted on pigs and mice to create artificial burn wounds of
different levels. Both µa and µs′ could be used to examine the skin burns by comparing
the differences of measured optical property between healthy and burned tissues. Relative
changes in oxygenated hemoglobin concentration (HbO2), deoxygenated hemoglobin
concentration (Hb), total hemoglobin concentration (HbT), and blood oxygen saturation
(StO2) could be used to present the skin condition. StO2 was more frequently used as
an index of burn assessment due to its ability in revealing vascular damage and patency.
Figure 3 shows typical results of burn assessment for porcine dorsal skin with three levels
(i.e., superficial partial, deep partial, and full). It was found that the reduced scattering
coefficients of porcine dorsal skin with burns were smaller than those without burns,
indicating that the reduced scattering coefficient mappings estimated by the SFDI were
capable of burn detection.

Table 2. Burn assessment by using the SFDI technique.

Object Optical Property Indices Frequency/mm−1 Wavelength/nm Ref.

Rat burn in vivo
model

µs′
HbO2, Hb, HbT,

StO2
0, 0.10 650–970 nm with step length

of 20 nm [64]

µa, µs′ StO2, Hb 0.20 sixteen wavelengths in
500–700 nm [58]

µs′
HbO2, Hb, H2O,

StO2
0.20 seventeen equally spaced

wavelengths in 650–970 nm [19]

Pig burns in vivo
model

µa, µs′ StO2 0.20 658, 730, 850 [62]
µa, StO2 0.20 658, 730, 850 [65]

µs′ - 0, 0.05. 0.10, 0.15, 0.20 nine wavelengths in
470–970 nm [59]

µs′ - 0, 0.05. 0.10, 0.15, 0.20 eight wavelengths in
471–850 nm [60]

calibrated reflectance - 0, 0.05, 0.10, 0.20 471, 526, 591, 621, 659,
731, 851 [61]

Heat burns skin µa, µs′ - Eleven-frequencies in
0–0.44 490, 590, 660, 780 [63]

Figure 3. Typical results for burn assessment of porcine dorsal skin in three levels (i.e., superficial
partial, deep partial, and full). The top row is for color digital images, and the bottom row is for maps
of the reduced scattering coefficients (adapted from Ref. [62]).
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A large number of animal experiments on burn assessment have achieved acceptable
results, which gives researchers full confidence in the feasibility of applying the SFDI to
human beings for burn assessment. Recently, Poon et al. evaluated the burn severity
of human tissues using SFDI [63]. The thermal burn treatment of skin obtained during
plastic surgery was used as experimental material. Monte Carlo simulation was adopted to
replace the DAE for inversely estimating optical properties. Experimental results showed
that SFDI could be used for early evaluation of burns in human beings.

3.2. Skin Tissue Evaluation

Body skin tissue contains melanin, oxyhemoglobin, deoxyhemoglobin, and many
other physicochemical constituents. Among them, melanin content and oxygen saturation
can reflect the skin health status and provide much valuable information in detecting
skin diseases, such as port wine stain (PWS), actinic keratosis (AK), and pressure ulcers.
SFDI is advantageous in measuring these indices by extracting and mapping tissue optical
properties, which can be used to evaluate the skin tissue.

Cuccia et al. first employed modulated lighting to measure the optical properties of
forearm skin tissue, and the extracted optical properties can help detect the accumulation
and dissipation of blood volume for the human skin tissue [20]. After that, Chen et al.
extended the application of SFDI in skin tissue evaluation by decoupling the absorption of
melanin from that of hemoglobin successfully [66]. The measured absorption coefficients
were used to predict hemoglobin concentration and oxygen saturation of the skin.

On this basis, Mazhar et al. applied SFDI for recording the biochemical changes of PWS
after laser treatment [18]. It was proven that SFDI could present biochemical components
of wide-field tissues after laser treatment of PWS lesions. Similarly, the SFDI technique
was also employed by Saager et al. for imaging skin cancer lesions [67]. The results
demonstrated that SFDI is a new modality which can provide parameter information
for photodynamic therapy (PDT), so as to provide more quantitative and controllable
dosimetry for lesions.

Furthermore, SFDI has been applied for evaluating other skin diseases, such as AK
and pressure ulcers. Travers et al. measured the changes of optical properties and vascular
parameters of skin tissue suffering from mild light damage to AK by SFDI [68]. The results
showed that SFDI could provide quantitative maps of optical and vascular parameters
of precancerous lesions like human actinic keratosis, and also feedback on the process of
precancerous lesions transforming into malignant lesions. Figure 4 shows absorption and
histogram imaging maps for three patients at 590 nm. It was observed that the value of
absorption coefficient of the patient suffering from AK (P3 in Figure 4) was larger than the
patient without AK (P1, P2 in Figure 4), which was an early biomarker for evaluating AK.
In addition, Yafi et al. used SFDI for detecting pressure ulcers, indicating that SFDI has
the potential for risk stratification and healing of pressure ulcers [69]. Recently, Gevaux
et al. investigated the potential of combining hyperspectral imaging with SFDI to estimate
mappings of absorption and scattering properties of human face skin independently from
irradiance drifts [70]. This study showed the feasibility of this method, but additional
measurements on calibrated samples are required to fully identify its limitations and
sensitivity to errors. Combining SFDI with other optical techniques, such as diffuse
reflectance spectroscopy, for imaging a human prostate, demonstrated the ability for
distinguishing prostatic tissue (anterior stroma, hyperplasia, and peripheral zone) from
extra-prostatic tissue (urethra, ejaculatory ducts, and peri-prostatic tissue) [65].
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Figure 4. (a–c) are absorption maps for three patients at 590 nm, and the red arrow highlights the visible lesion for P3; (d)
is histogram of the absorption coefficient for the three patients at 590 nm; P1, P2 (without actinic keratosis), and P3 (with
actinic keratosis) in (e) are three patients expressing various levels of photodamage, corresponding to (a–c), respectively
(adapted from Ref. [68]).

3.3. Tumor Tissue Detection

Accurate measurement of tumor size and edge is critical for removing the tumor in
clinical surgery. Due to the differences of optical properties between tumor tissue and
normal tissue, SFDI provides potential for detecting tumor tissue. Diverse tumor tissues,
such as non-melanoma tissues, breast cancer tissues, and skin cancer tissues, have been
successfully detected by using the SFDI. Researchers decoupled the absorption of melanin
and hemoglobin from scattering, measured the hemoglobin concentration and oxygen
saturation of the skin, as well as estimated the scattering characteristics of the skin in
real time.

Rohrbach et al. demonstrated that combination of SFDI with ultrasound imaging
was capable of inspecting non-melanoma skin cancer, and SFDI could characterize non-
melanoma skin cancer phototherapy independently [16,71]. They concluded that SFDI
could monitor the changes of optical and vascular parameters in real time, thus providing
references for clinical surgery. Human ovarian tissues, cervical cancer and bladder tumor
tissues were also researched by the biomedical engineers using the SFDI [72–74]. It was
reported that the information derived from SFDI could provide significant contrast and
differentiation between microstructure parameters of different tissue types and disease
states, thus enabling tumor detection in these tissues.

SFDI was also used in breast cancer detection. Laughney et al. conducted studies
on detecting breast tissue excised during surgery using the SFDI technique [34,75]. The
results showed that SFDI could maintain the sensitivity to local scattering contrast in a
wide range, which indicated that SFDI is suitable for the edge assessment of breast surgery.
Figure 5 shows representative spectral parameter maps for tissue subtypes (i.e., normal,
fibroadenoma, ductal carcinoma in situ (DCIS), invasive cancer, and partially treated in-
vasive cancer after neoadjuvant chemotherapy). The extracted parameter maps, such as
histology, scattering amplitude, scattering slope, hemoglobin, oxygen, and water maps,
were valuable for tumor detection. Furthermore, the detection of breast tumor tissue by
SFDI was not limited to the samples excised during surgery, and it was also used in breast
tumor in vivo detection. For example, Nguyen et al. applied SFDI to breast reconstruction
with perforator flaps [76]. The results suggested that SFDI could provide intraoperative
oxygenation images in real time during surgery. With the use of this technique, surgeons
can obtain tissue oxygenation and hemoglobin concentration mappings to assist in intra-
operative planning. In order to explore the ability of SFDI in detecting different breast
tumor tissues, McClatchy et al. studied both freshly homogeneous and heterogeneous
resected samples of human breast tissue [77]. The results demonstrated that SFDI provided
mappings of microscopic structural biomarkers that cannot be obtained with diffuse imag-
ing (e.g., hyperspectral imaging), as well as characterized spatial variations not resolved
by point-based optical sampling (e.g., spatially resolved). In order to further study the
imaging ability of SFDI on tumor tissue detection, McClatchy et al., Robbins et al., and
Wei et al. conducted SFDI research on different breast tumor tissue samples, and the results
confirmed that SFDI could provide a wide-field mapping of scattering parameters for
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microscopic evaluation and distinguish different breast tissue morphology [78–80]. Table 3
summarizes some recent studies on detecting breast tumor by using the SFDI technique. It
can be observed that, in general, µa of tumor tissue is higher than that of normal tissue,
while µs′ is lower than that of normal tissue. However, the cervical tissue and bladder
tumor tissue are the exceptions, with the µs′ values being larger than that of normal tissue.

Figure 5. Representative spectral parameter maps for tissue subtypes. Spectral parameter maps correspond to the pathology
subtypes: normal (including fibrocystic disease) (red outline), fibroadenoma (blue outline), DCIS, invasive cancer and
partially treated invasive cancer after neoadjuvant chemotherapy (all black outline), and fat (yellow outline or label). Row 1
is the tissue photograph of the cut face of one slice of the specimen with the lesion; row 2 is the corresponding histology;
row 3 is the scattering-amplitude maps; row 4 is the scattering slope maps; row 5 is the hemoglobin concentration maps;
row 6 is the percentage oxygenated hemoglobin maps; and row 7 is the percentage water maps (adapted from Ref. [75]).
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Table 3. Recent studies on detecting tumor by using the SFDI technique.

Object Wavelength/nm
Optical Property of Normal

Tissue/mm−1
Optical Property of Tumor

Tissue/mm−1
Ref.

µa µs′ µa µs′

Breast tissue
658 - - - 0.910 [77]
750 - - - 0.750 [78]

Mouse tumor
530 0.025 1.850 0.032 0.950 [81]
659 - - 0.024 2.054 [82]

Non-melanoma skin
cancer

630 0.021 ± 0.002 1.497 ± 0.097 0.027 ± 0.003 1.177 ± 0.120 [16]
630 0.025 1.670 0.059 1.070 [71]

Human ovarian tissue 730 0.015 3.370 0.049 1.050 [72]
Cervical tissue 623 0.018 ± 0.001 0.900 ± 0.062 0.040 ± 0.004 1.412 ± 0.245 [73]

Bladder tumor tissue 623 0.018 0.550 0.045 1.050 [74]

Great efforts have been made to combine the SFDI with other mature techniques to
detect tumor on small animals. For instance, Zhao et al. [83] applied the correction of
modified sensor to SFDI and conducted a longitudinal drug response study on subcuta-
neous tumor models of small animals. They suggested that SFDI could transform optical
biomarkers of therapeutic response and drug resistance into imaging in vivo. Nandy et al.
combined SFDI with rigid endoscopy for imaging a tumor model of a living mouse, which
expanded the universality of SFDI application [81]. In the study of Burns et al., mouse
tumor models were imaged by SFDI for tumor visualization [84]. They demonstrated that
nanovesicles derived from erythrocytes and doped with an NIR chromophore (indocya-
nine green) could be used in conjunction with SFDI to visualize simulated tumors with
different depths and concentration of NIR erythrocyte mimicking transducers within tissue
mimicking objects. Moreover, Tabassu et al. employed SFDI for detecting tumor tissue in
mice, and a two-layered look-up table model was proposed to improve the identification
ability [82]. The two-layered look-up table model was shown to substantially improve
the ability of SFDI in the extraction of bottom (tumor) layer’s optical properties, which
revealed larger treatment changes in the tumor’s optical properties and a more hypoxic
tumor environment.

3.4. Brain Tissue Monitoring

Brain is the main part of the central nervous system and main regulator of vital
function. Quantitative measurements of absorption and reduced scattering coefficients of
brain tissue can help to describe changes in brain function.

In 2011, Lin et al. used SFDI to conduct optical imaging of brain tissue in mice with
Alzheimer’s disease (AD) [17]. The results showed that SFDI could measure quantitative ab-
sorption and reduced scattering coefficients of AD model, which can be used to investigate
the structural and physiological changes of AD nerve tissue. In a follow-up experimental
study, they focused on 3-month-old male CaM/Tet-DTA mice harboring transgenes for
the doxycyline-regulated neuronal expression of diphtheria toxin [85]. When doxycycline
was removed from the diet, CaM/Tet-DTA mice developed progressive neuronal loss in
forebrain neurons. The results demonstrated that neuronal death and brain inflammation
were associated with increased values of µs′ and this optical biomarker may be useful in
pre-clinical AD therapy evaluation or monitoring of disease progression in AD patients.
Singh-Moon et al. employed SFDI for evaluating the transport of cationic lipids in the arter-
ies of rats with transient cerebral hypoperfusion to brain tissue, which was the first study to
use SFDI for measuring drug uptake in postmortem tissue samples [86]. In the study, they
obtained a spatial mapping of drug or tracer deposition for further generation of a dataset.
Wilson et al. imaged the brain tissue of mice using square wave image and verified that
multispectral SFDI (i.e., 655, 730, and 850 nm) could detect oxygen extraction in the brain as
the brain resumed metabolism and electrical activity [87]. Their work enabled concurrent
characterization of dynamic changes in tissue hemoglobin concentration, oxygenation,
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and scattering in an animal model of cardiac arrest and resuscitation. Sibai et al. indicated
that implementing SFDI with a fluorescent-light transport model enabled recovery of 2-D
images of PpIX, alleviating the need for time-consuming point sampling of the brain sur-
face [88]. Despite the moderate errors in retrieving the absorption and reduced scattering
coefficients in the sub-diffusive regime with the values of 14% and 19%, respectively, the
recovered PpIX maps were within 10% of the point PpIX values measured by the fiber-optic
probe, validating its potential as an extension or an alternative to point sampling during
glioma resection. Recently, a method based on SFDI platform and different back-processing
algorithms for measuring the refractive index (RI) of mouse brain tissue in the NIR spectral
range was proposed by Abookasis et al. [89]. The changes in RI reflected the pathophysi-
ology of the brain during heat stress and presented an additional advantage of SFDI for
characterizing brain function. Figure 6 shows a series of 2-D false-color spatial maps of the
RI at different wavelengths for two extreme temperatures of 28 ◦C and 43 ◦C, indicating
that change in temperature leads to localized changes in RI within the brain surface and
SFDI was capable of describing the characteristics and functions of the brain tissue.

Figure 6. A series of 2-D false-color spatial maps of the refractive index (RI) at different wavelengths
for two extreme temperatures of 28 ◦C and 43 ◦C (adapted from Ref. [89]).

3.5. Quality Evaluation of Agro-Products

In the field of food and agricultural engineering, SFDI is also involved in the quality
evaluation of agricultural products. As early as 2007, Anderson et al. measured the optical
properties of normal and damaged apple tissues using the SFDI technique [10]. The results
showed that the reduced scattering coefficient of damaged apple tissues was larger than
those of normal tissues, demonstrating that SFDI can differentiate the damaged apple
from normal fruit. This is the first exploration and application of SFDI in the field of
agricultural engineering. However, there was no research reported in the next few years.
Until the year 2015, when the researchers in the food and agricultural engineering domain
turned their attention back to the SFDI technique for optical property estimation. There
are now two leading research groups working on the topic of SFDI technique in the field
of agriculture. One is the Intelligent Bio-industrial Equipment Innovation Team (IBE) in
Zhejiang University, which has established and developed the SFDI system for measuring
optical properties of pear and apple fruit [90–93]. The measured optical properties are
then used for quality evaluation, such as apple internal browning inspection and pear
bruise detection. Recently, Hu et al. combined SFDI with frequency optimization to
estimate the optical properties of two-layered tissues [94], indicating that the estimation
accuracy of the absorption coefficient and reduced scattering coefficient of the second
layer was 63.0% and 62.1% improvement, compared to that estimated with fixed frequency.
These results are valuable for decoupling the effect of peel tissue of agro-products (e.g.,
apple, tomato, and peach) from flesh tissue on optical property estimation, as well as on
quality assessment. The other group is the postharvest engineering laboratory at Michigan
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State University. A multispectral SFDI system was established and developed for optical
property estimation and food quality evaluation, especially for early apple bruise and
defect detection. Inverse algorithms for optical property estimation are optimized for
accuracy improvement [10,95,96]. In addition, early apple bruise and surface imperfections
are detected [21,22,97–99], and the 3-D structure of agro-products are reconstructed [100].
Overall, the study of SFDI in the food and agricultural engineering domain started relatively
late and mainly focused on quality evaluation (e.g., early bruise, internal browning, chilling
injury, etc.) of agro-products, including apple, pear, peach, tomato, and cucumber. The
SFDI technique can be extended to measure optical properties of more agro-products in
the future, which can be used to correlate with more quality attributes, such as firmness,
soluble solids content, and defects.

4. Challenges and Future Perspectives

Over the past two decades, we have seen significant research efforts in the devel-
opment and application of SFDI technique for measuring optical properties of biological
tissues. While this emerging technique offers new opportunities for disease diagnosis,
evaluation and monitoring in biomedical domain, as well as quality assessment of agro-
products in food and agricultural domain, there are still considerable issues and challenges
in using the technique. First, current modulation illumination patterns used in SFDI are
mostly sinusoidal patterns, while some are square waves or ring patterns. However, the
irregularity of tissue shape and structure always causes difficulties in the projection of
modulation patterns, since the tissue surface condition (e.g., uneven, heterogeneous) can
affect the accuracy of optical property estimations. Hence, parameter estimation algorithm
for correcting tissue irregularity was studied and proposed. Nguyen et al. [101] studied
curvature correction for reducing the incorrect measurement of optical properties due
to surface profile, while Nothelfer et al. proposed a new method for correcting surface
scattering in SFDI for an accurate determination of volume scattering [102]. There are
also some other correction methods, such as phase-measuring profilometry, developed for
improving optical property measurement with SFDI [92,103], but the performance of these
different correction methods was not quantitatively compared and determined. Therefore,
how to determine the most appropriate correction method for different target samples (e.g.,
skin tissue, tumor tissue, apple fruit, etc.) should be studied in the future.

Second, fast estimations of optical properties by using the SFDI technique are always
hindered by relatively slow speed of projection, signal acquisition, and data processing,
due to the fact that multiple frequencies, phases, and wavelengths are commonly used,
which partly limits the real-time applications, such as surgical imaging and operation. A
general SFDI experiment under the condition of two frequencies (e.g., 0 and 0.2 mm−1),
three phases (e.g., 0, 2π

3 and 4π
3 ), and one wavelength takes about five to twenty seconds

or even longer, which cannot meet the requirements of high real-time applications. Many
efforts have thus been made to accelerate the speed, such as SSOP, which reduces the num-
ber of phase-images from three to one, improving the efficiency by approximately three
times [89,104–111]. Development of hardware configurations, like the use of single-pixel
camera, instead of industrial CCD camera, could further speed up the optical property mea-
surement using the SFDI [54]. Now, the SFDI has been applied for real-time applications in
the field of biomedicine optics, such as visualization of lateral spatial distribution of tissue
chromophores over a contoured surface [112], and detection of early plantar ulcer of the
patients [113]. However, in the field of food and agricultural engineering, the real-time
application of SFDI is still challenging, because the speed requirement is higher than that
in biomedical detection. For example, a real-time inspecting and sorting production line of
apple quality works at a speed of 5–10 apples/second, which is rather fast and difficult to
meet with the current development of SFDI. Therefore, the efficiency of SFDI needs further
research in the future, especially for the food and agricultural application.

Third, the handheld SFDI equipment has been designed and manufactured based on
the increasing requirements for real-time applications. For example, Nadeau et al. analyzed
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several compact, low-cost hardware components, and presented data which were related
to component evaluation realized by handheld SFDI devices [114]. They designed a small
LED lamp with the size of 115 × 65 × 20 mm3. Due to the single wavelength of LED, the
frequency choice is relatively narrow. It carries processors without higher power and better
performance, so that the data processing is time consuming. Sager et al. designed and
manufactured a handheld SFDI device, which could conduct imaging with 1-D spatial
resolution [67]. Since they changed the plane imaging to line imaging, the scanning and
data processing speed was greatly improved. The instrument is compact, easy to use, and
can collect data from in vivo skin at relatively fast speed. At present, there are two ways to
optimize and improve the handheld SFDI device. One is to replace all components with
compact parts and compress the space between components to achieve a smaller volume of
the whole system. However, due to the smaller component size, there may be some loss in
the imaging size, wavelength, and frequency selection of the modulated images. Another
idea is to separate the detection part from the light source and camera, and connect them
with a light guide. This method can make each part be directly connected to each other, i.e.,
relatively small detection part, while the light source and the camera part are relatively
large, so as to avoid the loss of wavelength and frequency of the modulation patterns.
The disadvantage is that the two still need to be connected together, and the reliability
and flexibility of the connection are potential issues. Since the handheld SFDI device has
no sample table for placing samples, the distance between the camera and the measured
object cannot be controlled, which provides more challenges for accurate optical property
estimation with SFDI.

Fourth and finally, SFDI has been combined with other advanced techniques, such
as endoscope and fluorescence imaging, to extend the detection capability. For example,
Nandy et al. combined SFDI with endoscope for live mouse tumor imaging and absorption,
scattering, hemoglobin, and SO2 were measured in vivo [81], while Gioux et al. applied
the combination of these two techniques for real-time acquisition of optical properties of a
hand in motion [39]. SFDI was also combined with the technique of fluorescence imaging
to acquire maps co-registered in space and time of tissue optical properties and raw
fluorescence emissions followed by a model-based correction to estimate the quantitative
fluorescence. They provided a means to correct the emitted fluorescence with a quantitative
fluorescence model [115]. These combinations integrating the advantages of two or multiple
techniques can certainly expand the applications of the SFDI, but it should be mentioned
that the system complexity was also increased with more components, which is a new
challenge for real-time application. Moreover, multiple cameras were used to acquire
images at different wavelengths simultaneously, which can accelerate the speed of image
acquisition, at the expense of increasing system cost and calculation amount of image
processing. Very recently, deep learning algorithms (e.g., generative adversarial networks,
random forest, etc.) have evolved rapidly, which provide new means for image recognition,
defect detection, and object classification [116–119]. What makes such methods attractive
is their capacity to perform particularly well in learning nonlinear properties. In the future,
deep learning algorithms are expected to be combined with SFDI for rapid and accurate
optical property estimations of biological tissues.

5. Conclusions

Rapid advances in SFDI have been taking place over the past two decades, since
SFDI serves as an emerging depth-varying and wide-field technique for estimating optical
absorption and reduced scattering coefficients, which, in turn, can be used for disease
diagnosis, evaluation, and monitoring, as well as food quality assessment. In this review,
typical system and principle of SFDI technique for optical property measurement were first
described. The applications of SFDI technique in biomedical and agricultural engineering
domain were then reviewed and discussed, in terms of burn assessment, skin tissue
evaluation, tumor tissue detection, brain tissue monitoring, and quality evaluation of
agro-products. Finally, challenges and future perspectives of SFDI technique for measuring
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optical properties were discussed. This paper presents a comprehensive review of SFDI for
optical property measurement, which provides references for the interested researchers to
gain more insight into this emerging imaging technique, as well as develop this technique
for more extensive applications.
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