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Abstract: We developed cobalt and carbon complex materials as counter electrodes (CEs) for dye-
sensitized solar cells (DSSCs) to replace conventional platinum (Pt) CEs. Co12 and Co15, both of
which are basic cobalt derivatives, showed good redox potential with a suitable open-circuit voltage
(VOC); however, their poor electrical conductivity engendered a low short-circuit current (JSC) and
fill factor (FF). Mixing them with carbon black (CB) improved the electrical conductivity of the
CE; in particular, JSC and FF were considerably improved. Further improvement was achieved by
combining cobalt derivatives and CB through thermal sintering to produce a novel CoCB material as
a CE. CoCB had good electrical conductivity and electrocatalytic capability, and this further enhanced
both JSC and VOC. The optimized device exhibited a power conversion efficiency (PCE) of 7.44%,
which was higher than the value of 7.16% for a device with a conventional Pt CE. The conductivity of
CoCB could be further increased by mixing it with PEDOT:PSS, a conducting polymer. The device’s
JSC increased to 18.65 mA/cm2, which was considerably higher than the value of 14.24 mA/cm2 for
the device with Pt CEs. The results demonstrate the potential of the cobalt and carbon complex as a
CE for DSSCs.
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1. Introduction

This paper is an extended version of our paper, Chi-Feng Lin; Pin-Hung Chen; Ting-
Hsuan Hsieh; Hsieh-Cheng Han; Kuo-Yuan Chiu: Cobalt derivatives as counter electrodes
in dye-sensitized solar cells. In Proceedings of the 2015 22nd International Workshop on
Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan; 1–4 July 2015;
Available online: https://ieeexplore.ieee.org/document/7173248 (accessed on 3 August
2015) [1].

Dye-sensitized solar cells (DSSCs) have attracted considerable research attention in
the last two decades. Compared with other types of solar cells, DSSCs afford advantages
such as low cost, simple fabrication process, and good conversion efficiency.

DSSCs are mainly composed of three parts: a working electrode (WE), a counter
electrode (CE), and an electrolyte. Figure 1 illustrates a schematic and the working principle
of a DSSC. First, dye molecules (D) adsorbed on the TiO2 layer are stimulated to the excited
state (D*) by the incident photon energy. Second, the excited dye molecules (D*) transfer
electrons to the TiO2 layer and external circuit, and thus reach an oxidized state (D+). Third,
the dye molecules (D+) in the oxidized state return to the ground state (D) by accepting
electrons from the iodide ion (I−) in the electrolyte; thus, I− changes into I3

− [2]. Finally,
I3
− changes back into I− by accepting electrons from the external circuit through the CE.
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Figure 1. Schematic and working principle of DSSCs.

Electrolyte and CEs play the key roles of catalytic reduction and electron conduction
in DSSCs. Developments of electrolyte in recent years are mostly focus on cobalt-based
electrolyte, water-based, and polymer-based systems [3–8]. For the CEs parts, platinum (Pt)
is used most commonly as a CE material. In 1991, Grätzel first used a Pt CE and reported
a conversion efficiency of 7.1%, which was derived from the high conductivity, chemical
stability, and excellent catalytic reduction ability of the CE [9,10].

Although Pt shows excellent catalytic reduction ability, it is an expensive metal;
therefore, its use increases the cost of DSSCs. Accordingly, studies have attempted to reduce
costs and to find suitable substitutes for Pt. Specifically, studies have investigated the use
of other composite materials [5], such as carbon materials [11–21], titanium nitride [22,23],
conducting polymer [24–26], cobalt (Co) composites [27], and cobalt sulfide [28–36], as
CEs to replace Pt. Among these, cobalt composite materials have good electrochemical
properties and low cost, and they are abundantly available [37–40]. Cobalt composites and
related structures, when used as CEs, show high photoelectric conversion efficiency [41–43],
making them a popular substitute for Pt in recent years [44–48].

In this study, we used various types of cobalt derivatives, including commercialized
materials such as cobalt(II) acetate tetrahydrate and vitamin B12 (VB12), as well as the newly
designed cobalt derivatives Co12 and Co15, as CEs in DSSCs. Furthermore, we combined
cobalt derivatives and carbon black (CB) to produce new complex materials. Consequently,
devices with Co12+CB and Co15+CB CEs showed power conversion efficiency (PCE) levels
of 5.46% and 6.74%, respectively. These values are close to the aforementioned PCE of
7.16% for a device with PT CEs. Furthermore, we combined VB12 and CB through thermal
sintering to produce a novel CoCB material as a CE. We also improved the conductivity of
CoCB with a conducting polymer. The optimized device showed a PCE of 7.44%, which is
higher than those of the aforementioned devices. Therefore, this result indicated that the
cobalt complex could be used as a substitute CE material in DSSCs.

2. Materials and Methods

DSSCs consist of a WE, an electrolyte, and a CE. To fabricate WEs, we first dissolved
polyethylene glycol, anhydrous titanium oxide powder (P25, ACROS ORGANIS), and
titanium isopropoxide in ethanol to produce a TiO2 slurry. Then, we spin-coated this slurry
on fluorine-doped tin oxide (FTO) substrates with an area of 0.24 cm2. After the spin
coating process, the TiO2 films were annealed in the furnace under 450 ◦C for one hour
to obtain the porous TiO2 layer. Finally, the TiO2 electrodes were immersed in N719 dye
(UR-N719, Solaronix) for 12 h to obtain the WEs.
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Conventional Pt CEs were fabricated through the thermal cracking process: 20 µL
hexachloroplatinic acid at concentration of 0.2 M was titrated on the FTO substrates and
then baked under 80 ◦C to remove solvent. After the titration process, Pt films were
annealed under 390 ◦C for 15 min to obtain Pt CEs. All cobalt complexes (cobalt(II) acetate
tetrahydrate, VB12, Co12, Co15, and CoCB) were dissolved in 1 M tetrahydrofuran (THF).
Subsequently, the solution was spin-coated on the FTO substrate and baked to form a thin
film for CEs. Finally, we assembled the WEs and CEs together and injected the iodine-based
electrolyte with LiI, I2, and TBP at the concentration of 0.5, 0.05, and 0.5 M, respectively.
After device fabrication, current–voltage (J–V) characteristics were measured using an I–V
sourcemeter (Keithley 2400) under the illumination of a 1-sun AM 1.5G solar simulator that
was calibrated using a Si reference cell. The optical properties of the CEs were measured
using ultraviolet (UV)-visible spectroscopy (UV-3101PC, SHIMADZU).

All experiments were repeated at least three times to make sure of the reproducibility
of the device and phenomena and to ensure the run-to-run variation for the same experi-
ment was within 5%. Besides, at least six devices were prepared for each parameter in every
experiment to confirm the stability of the fabrication process and the standard deviation of
each performance of the devices were calculated to show the stability.

3. Results and Discussion

Figure 2 presents the transmittance spectra of various CEs and their photographs. The
spectrum of each material is the average result of six samples in one experiment, and the
experiment is performed 3 times with different samples and the run-to-run variation is
within 5%. All the substitute CE materials, especially the cobalt derivatives, showed high
transparency in the wavelength range of 400–800 nm. The high transparency of CEs may
be a drawback relative to Pt CEs because less light will be reflected back to the devices,
thereby decreasing the absorption of WEs and in turn reducing the photocurrent and
device efficiency. Nevertheless, the high transparency of the electrodes demonstrates their
potential for use in devices for transparent electronics and building-integrated photovoltaic
(BIPV) applications [49].
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Figure 2. (a) Transmittance spectra and (b) photographs of various CEs.

Figure 3 shows the J–V characteristics of the DSSCs with cobalt derivatives as CEs, and
Table 1 lists the device performance levels. The results for each CE are the average values
of six devices in one experiment, and the standard deviation of the device performance
levels was calculated from the data of five devices in one experiment. The experiment was
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repeated at least 3 times and the run-to-run variation was within 5%. The performance
levels of the devices with the cobalt derivative CEs were considerably higher than those of
the devices with the FTO CEs, although the PCE was still much lower than the device with
Pt CE. It is well-known that FTO is not the appropriate catalytic material for CEs owing to
its low oxidation-reduction potential and poor electrocatalytic capability. Comparing the
device with FTO CE, devices with the VB12 and cobalt(II) acetate CEs showed a VOC of
more than 0.7 V. The device with cobalt(II) acetate CEs even showed 0.85 V in VOC, much
higher than that with Pt CE, indicating the good oxidation-reduction potential of cobalt(II)
acetate for CE application in DSSC. All devices with the cobalt series CEs showed a good
open-circuit voltage (VOC) but poor short-circuit current (JSC) and fill factor (FF), resulting
in low PCE. The results showed that cobalt derivatives have good oxidation-reduction
potential but overly low conductivity, resulting in a high series resistance and large charge
recombination in the device.
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Figure 3. J–V characteristics of DSSCs with various cobalt derivatives as CEs.

Table 1. Performance levels of DSSCs with various cobalt derivatives as CEs. The values in the
brackets are the standard deviation.

CEs JSC
(mA/cm2)

VOC
(V) FF η

(%)

VB12 3.34
(0.59)

0.71
(0.01)

8.17
(1.08)

0.19
(0.01)

Cobalt(II)
acetate

5.71
(0.22)

0.85
(0.01)

8.08
(1.02)

0.38
(0.02)

Co12 10.59
(0.57)

0.62
(0.01)

19.84
(1.01)

1.25
(0.11)

Co15 6.08
(0.21)

0.63
(0.01)

18.37
(1.23)

0.70
(0.27)

Pt 14.24
(0.29)

0.75
(0.02)

67.12
(0.26)

7.16
(0.09)

FTO 2.21
(0.28)

0.44
(0.01)

6.73
(0.61)

0.06
(0.01)

To increase the conductivity of the materials, new cobalt derivatives, Co12 and Co15,
were synthesized. These devices showed increased JSC values compared with the VB12
and cobalt(II) acetate CEs. The device with the Co12 CEs showed a JSC value of more
than 10 mA/cm2 and FF close to 20, resulting in a PCE of more than 1%, which is three
times higher than that of the commercialized cobalt derivatives used as CEs. The PCE
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remained low, indicating that the CEs of the devices could be optimized by enhancing the
conductivity of cobalt derivatives.

To increase the conductivity of cobalt derivatives, we introduced CB. This is because
carbon materials afford high conductivity, catalytic activities, and surface area, and are
thus good candidates for replacing Pt as CEs. CB, in addition to possessing the advantages
of carbon materials, is inexpensive and is thus considered a good CE for DSSCs. CB was
dissolved in 1.5 M THF and then mixed with a solution of cobalt derivatives at the same
volume ratio. For comparison, devices with pure CB CE at CB concentrations of 0.75
and 1.5 M were also prepared. Figure 4 illustrates the J–V characteristics of DSSCs with
cobalt derivatives mixed with CB as CEs, and Table 2 lists the device performance levels.
In particular, JSC and FF were found to be significantly enhanced, resulting in a large
improvement in the PCE of the devices with cobalt derivatives and CB as CEs. The JSC
value of the device with the Co15+CB CE increased from 6.08 to 11.15 mA/cm2 (i.e., an
83% improvement) compared with that of the device with the Co15 CE. Furthermore, the
FF of the devices with Co12+CB and Co15+CB CEs was improved by more than three
times, which is a similar improvement to that achieved with the use of conventional Pt
CEs. However, the device with the pure CB CE showed higher VOC, JSC, and PCE values
than did the device with the Co+CB CE, indicating that the enhanced device performance
may be attributed to the contribution of the CB alone. Specifically, the introduction of
cobalt derivatives reduced the electrical properties and electrocatalytic capability of CB.
Nevertheless, it should be noticed that compared with pure CB solution at a concentration
of 1.5 M, there was only half the amount of CB in the Co+CB mixed solution. It can be found
that the JSC of the device with 0.75 M CB as CE is lower than the device with Co12+CB as
CE. It indicates that the improvement of the device was not only contributed by CB, but the
interaction between Co12 and CB further increased the conductivity of CE after replacing
half the amount of CB with Co12. Besides, the FF of the device with the Co15+CB CE was
higher than that of the device with the CB CE, and the improvements in the performance
and efficiency of the device with the Co15+CB CE were higher than those of the device
with the Co12+CB. This trend was opposite to that of pure cobalt derivative CEs, indicating
that the cobalt derivatives were modified by CB.
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Table 2. Performance levels of DSSCs with cobalt derivatives mixed with CB as CEs. The values in
the brackets are the standard deviation.

CEs JSC
(mA/cm2)

VOC
(V) FF η

(%)

Co12 10.59
(0.57)

0.62
(0.01)

19.84
(1.01)

1.25
(0.11)

Co12+CB 13.23
(0.14)

0.65
(0.01)

63.28
(2.08)

5.42
(0.26)

Co15 6.08
(0.21)

0.63
(0.01)

18.37
(1.23)

0.70
(0.27)

Co15+CB 11.15
(0.33)

0.74
(0.01)

65.46
(1.73)

5.81
(0.19)

CB (1.5 M) 13.17
(0.08)

0.77
(0.01)

63.92
(1.05)

6.38
(0.08)

CB (0.75 M) 12.21
(0.09)

0.75
(0.01)

63.28
(1.13)

5.76
(0.1)

Pt 14.24
(0.29)

0.75
(0.01)

67.12
(0.26)

7.16
(0.09)

To further improve the electrical properties and electrocatalytic capability of cobalt
derivatives, we combined VB12 and CB through thermal sintering to produce a novel
CoCB material. We also improved the conductivity of CoCB with the conducting polymer
poly(3,4-thylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Figure 5 presents
the J–V characteristics of the DSSCs with CoCB modified with PEDOT:PSS as CEs, and
Table 3 lists the device performance levels. The device with pure PEDOT:PSS as CE was
also prepared for comparison. The results indicated that both the conductivity and the
redox ability of VB12 were greatly improved by CB. The device with the CoCB CE showed
a JSC value of 13.75 mA/cm2, VOC value of 0.78 V, and FF of 69.28, all of which were higher
than the corresponding parameters of the device with the CB CE. The VOC and FF of the
device with the CoCB CE were even higher than those of the device with the Pt CE, and
they considerably improved the PCE of the device. The optimized device with the CoCB
CE showed a PCE of 7.44%, and this value is higher than those of devices with both CB
and Pt CEs.
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Table 3. Performance levels of DSSCs with cobalt complex CEs. The values in the brackets are the
standard deviation.

CEs JSC
(mA/cm2)

VOC
(V) FF η

(%)

CoCB 13.75
(0.29)

0.78
(0.02)

69.28
(0.45)

7.44
(0.22)

CoCB
+

PEDOT:PSS

18.65
(0.63)

0.75
(0.02)

51.31
(1.49)

7.13
(0.18)

CB (1.5M) 13.17
(0.08)

0.77
(0.01)

63.92
(1.05)

6.38
(0.08)

PEDOT:PSS 17.33
(0.42)

0.72
(0.02)

42.60
(2.13)

5.32
(0.38)

Pt 14.24
(0.29)

0.75
(0.01)

67.12
(0.26)

7.16
0.09)

We also attempted to further improve the conductivity of CoCB by mixing the CoCB
solution with PEDOT:PSS. The device with pure PEDOT:PSS CE showed higher JSC com-
pared with all other devices because of the high conductivity, but the low electrocatalytic
capability of PEDOT:PSS increased recombination of the carrier and thus reduced FF of
the device. After mixing CoCB with PEDOT:PSS, as shown in Figure 5 and Table 3, JSC
increased from 13.75 to 18.65 mA/cm2, which was higher than the JSC of 14.24 mA/cm2

for the device with the Pt CE. However, the lower redox ability of PEDOT:PSS reduced the
VOC and FF, resulting in the device having a slightly lower PCE of 7.13%.

4. Conclusions

This study investigated the use of a series of cobalt derivatives as CEs to replace
conventional Pt CEs in DSSCs. Co12 and Co15, both of which are basic cobalt derivatives,
showed suitable JSC and VOC values for application as CEs; however, they had low FF
owing to their poor conductivity and redox ability. After Co12 and Co15 were mixed with
CB, the device performance was obviously enhanced. Further improvement was achieved
by combining conventional VB12 and CB through thermal sintering to form a novel CoCB
material as a CE. The JSC and VOC values were improved owing to the good conductivity
and redox ability of CoCB, and the optimized device showed a PCE of 7.44%, which was
higher than that of the control device with conventional Pt CEs. The conductivity of
CoCB could be further increased by mixing CoCB with PEDOT:PSS. The high conductivity
of PEDOT:PSS contributed to a further increase in JSC; however, its lower redox ability
reduced the VOC and FF. The results demonstrate the potential of the cobalt and carbon
complex as a CE for DSSCs.
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