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Abstract: A short overview on 3D live cell imaging is given. Relevant samples are described and
various problems and challenges—including 3D imaging by optical sectioning, light scattering and
phototoxicity—are addressed. Furthermore, enhanced methods of wide-field or laser scanning
microscopy together with some relevant examples and applications are summarized. In the future
one may profit from a continuous increase in microscopic resolution, but also from molecular sensing
techniques in the nanometer range using e.g., non-radiative energy transfer (FRET).
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1. Introduction

Experimental and pre-clinical life cell approaches traditionally use two-dimensional
(2D) cell cultures, which are easy to establish, but frequently provide results of limited
significance, since cells are lacking a physiological microenvironment. In contrast, three-
dimensional (3D) cell cultures, e.g., multicellular tumor spheroids (MCTS), maintain tissue-
like properties and therefore provide a more realistic background for experimental studies,
e.g., screening of pharmaceutical agents [1,2]. However, imaging of 3-dimensional speci-
mens is challenging, since the sample thickness commonly exceeds the depth of focus of a
conventional detection system, and light scattering considerably impairs the image quality.
Therefore, methods based on optical sectioning, e.g., confocal laser scanning microscopy
(CLSM) [3,4], Optical Sectioning Structured Illumination Microscopy (OS-SIM) [5], or light
sheet fluorescence microscopy (LSFM) [6,7] are applied preferentially. Here, images are
recorded plane by plane, and resulting 3D plots are calculated offline. A problem for
CLSM related methods as well as for OS-SIM is that for imaging each plane the whole
sample has to be illuminated, so that upon recording of the whole specimen phototoxic
damages are likely to occur [8]. Furthermore, photobleaching may increase in the course of
an experiment and falsify the experimental results. Altogether, 3D imaging creates a large
number of data (“big data”), which have to be handled appropriately.

2. 3D Samples

Two-dimensional cell cultures have a well-established protocol in biomedical research
and provide a simple, fast, and cost-effective tool for e.g., drug discovery assays. However,
mammalian cells commonly grow within a complex three-dimensional microenvironment
with a different gene expression and protein synthesis pattern [9]. Therefore, various 3D
models have been established to better mimic the natural cell environment.

Cells embedded in hydrogels, e.g., agarose, which are readily accessed by optical sec-
tioning methods like CLSM or OS-SIM may provide more realistic studies of cell morphol-
ogy, e.g., to examine the influence of mechanical signals on cell behavior [10]. Multicellular
(tumor) spheroids have gained significance in preclinical studies, as they appear to be
more appropriate for studies of cell physiology, cell metabolism, or tissue diagnostics. 3D
cultivation techniques commonly prevent cell attachment to surfaces, using hanging drop
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methods, liquid overlay methods or agitation-based approaches [11]. Cell cultivation in a
solid matrix, e.g., agarose gel, may permit 3D cell growth under realistic conditions [12,13].
Cell spheroids are generally characterized by an external proliferating region and an inter-
nal quiescent zone (caused by the gradient of nutrient and oxygen diffusion), which may
surround a necrotic core in larger spheroids [14].

Organoids are a type of 3D cell culture containing organ-specific cells that have
been grown from a range of organs, including kidney, breast and liver (for a review
see e.g., [15,16]). However, current 3D systems often lack a vasculature, which might
support tissues with oxygen and nutrients, remove waste and build up an immune system.
Nevertheless, organoid development is a rapidly growing field, and complex 3D systems
including fully vascularized brain organoids [17] or organs-on-a-chip [18] have been
reported in recent studies.

Traditionally, biopsies from a histological laboratory are routinely fixed and either
embedded in paraffin, or frozen as thin sections, stained and mounted on glass slides.
These procedures, however, introduce artifacts and severely limit the information, as only
a small fraction of a specimen is used for microscopy. Novel approaches of nondestructive
slide-free pathology are investigated, which allow deep volumetric microscopy of whole
biopsy specimens [19]. Imaging of whole organisms is an important tool in developmental
biology as well as drug screening [20]. Microscopy of small organisms requires either high
transparency or the application of optical clearing techniques (see below), if viability is not
a main criterion.

Measurements of 3D (cell) cultures often need specific sample holders, e.g., glass or
plastic tubes or even micro-capillaries, which may be rotated for multi-view applications
(see e.g., [21]).

3. Phenomena and Challenges
3.1. Light Scattering

Interaction of light with any kind of samples is described in terms of absorption
and scattering. In particular, light scattering experiments with angular or spectral res-
olution have been used for more than 30 years for characterization of various types of
cells [22,23] or for measurement of morphological changes in cells undergoing necrosis
or apoptosis [24,25]. However, scattering reduces the quality of images due to light at-
tenuation, blurring and a loss of contrast. Obviously, these problems are more severe
for three-dimensional than for two-dimensional samples, since scattering does not only
occur in a certain plane of detection, but also creates background signals from the whole
illuminated volume. This is well documented by Figure 1 showing 3D spheroids of Chinese
hamster ovary (CHO) cells of about 250 µm diameter expressing a membrane-associated
Green Fluorescent Protein (GFP). Conventional fluorescence microscopy (Figure 1a) shows
a completely blurred image, since information from the focal plane is superposed by out-
of-focus images, and since pronounced scattering further reduces the image quality. The
impact of scattering appears lower, if individual planes of the sample are selected either
by confocal laser scanning microscopy (CLSM) or by light sheet fluorescence microscopy
(LSFM). Nevertheless, a loss of fluorescence intensity occurs in the central parts of the
CLSM image (Figure 1b) and along the direction of light propagation in the LSFM image
(Figure 1c). Obviously, light attenuation is less pronounced in the LSFM image, where
due to the anisotropy of Mie scattering [26] light is scattered preferentially into forward
direction. However, some stripes in the direction of light incidence are often unavoidable.
Scattering is becoming lower at higher wavelengths, which are used preferentially in
multiphoton microscopy [27,28].
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Figure 1. Spheroids of CHO-pAcGFP1-Mem cells recorded by conventional fluorescence microscopy (a), CLSM (b) and 
LSFM (c). Single planes are selected in (b,c) at a depth of 60 µm within the spheroid; arrow indicates direction of light 
incidence in LSFM (excitation wavelength: 488 nm; fluorescence detected at λ ≥ 505 nm). 

For reduction of light scattering optical clearing techniques matching the refractive 
indices of sample and surrounding medium have gained considerable importance. There-
fore, these techniques are used increasingly for deep view imaging of skin, brain and other 
organs [29–31]. Currently available optical clearing techniques are not compatible with 
live cell imaging. However, efforts are being made to find biocompatible solutions, espe-
cially for ex-vivo applications [32]. While penetration depths are limited to 100–200 µm in 
non-cleared samples, they can be even larger than 0.5 mm in cleared samples, permitting 
e.g., to image entire neuronal networks in mouse brains. 

3.2. Phototoxicity, Photobleaching 
As reported above, 3D images are often based on optical sectioning, and information 

is summed up from z-stacks of individual exposures. Only for LSFM, each sectional image 
results from one illuminated plane, whereas for other wide-field and laser scanning tech-
niques, the whole specimen has to be illuminated for each image section. This implies that 
light exposure for obtaining a 3D image is summing up and often exceeds the limit of non-
phototoxic light doses. Tolerable light doses were determined in a previous manuscript 
[8] and ranged between 25 J/cm2 (375 nm) and 200 J/cm2 (633 nm) for cultures of native 
cells, thus increasing with illumination wavelength and corresponding to 4 min. up to 
about 30 min. of solar irradiance (around 100 mW/cm2). If cells were stained with a fluo-
rescent dye or transfected with a fluorescent protein, typical non-phototoxic light doses 
were only around 10 J/cm2, corresponding to 100 s of solar irradiance. In Figure 2, a max-
imum number of images is indicated for the case that cells are illuminated with 100 
mW/cm2 (corresponding to 1 nW/µm2) for 1 s (wide-field images) or 5 s (laser scanning 
image). While only about 20 layers of a 3D cell spheroid can thus be irradiated once by 
CLSM, each layer can be illuminated about 100 times by LSFM. This favors light sheet 
microscopy for long-term experiments in cell or developmental biology. 

In previous studies [33] we found that non-phototoxic light doses did not depend on 
whether the light was applied continuously or in short pulses. This implies that for mul-
tiphoton imaging (s. Section 4.1) the integral light dose and the wavelength of illumination 
appear to be the main limiting factors. Therefore, due to the longer wavelengths photo-
toxicity is generally lower for multiphoton than for single photon imaging. 

Increasing sensitivities of novel detection systems (e.g., ultra-sensitive cameras) will 
increase the number of images measured at non-phototoxic light doses and will permit 
recording of fast dynamic processes, e.g., rapid cell migration, membrane or microtubule 
dynamics, mitochondrial motion as well as endo- or exocytosis. 

Figure 1. Spheroids of CHO-pAcGFP1-Mem cells recorded by conventional fluorescence microscopy (a), CLSM (b) and
LSFM (c). Single planes are selected in (b,c) at a depth of 60 µm within the spheroid; arrow indicates direction of light
incidence in LSFM (excitation wavelength: 488 nm; fluorescence detected at λ ≥ 505 nm).

For reduction of light scattering optical clearing techniques matching the refractive
indices of sample and surrounding medium have gained considerable importance. There-
fore, these techniques are used increasingly for deep view imaging of skin, brain and
other organs [29–31]. Currently available optical clearing techniques are not compatible
with live cell imaging. However, efforts are being made to find biocompatible solutions,
especially for ex-vivo applications [32]. While penetration depths are limited to 100–200 µm
in non-cleared samples, they can be even larger than 0.5 mm in cleared samples, permitting
e.g., to image entire neuronal networks in mouse brains.

3.2. Phototoxicity, Photobleaching

As reported above, 3D images are often based on optical sectioning, and information
is summed up from z-stacks of individual exposures. Only for LSFM, each sectional image
results from one illuminated plane, whereas for other wide-field and laser scanning tech-
niques, the whole specimen has to be illuminated for each image section. This implies that
light exposure for obtaining a 3D image is summing up and often exceeds the limit of non-
phototoxic light doses. Tolerable light doses were determined in a previous manuscript [8]
and ranged between 25 J/cm2 (375 nm) and 200 J/cm2 (633 nm) for cultures of native cells,
thus increasing with illumination wavelength and corresponding to 4 min. up to about
30 min. of solar irradiance (around 100 mW/cm2). If cells were stained with a fluorescent
dye or transfected with a fluorescent protein, typical non-phototoxic light doses were only
around 10 J/cm2, corresponding to 100 s of solar irradiance. In Figure 2, a maximum
number of images is indicated for the case that cells are illuminated with 100 mW/cm2

(corresponding to 1 nW/µm2) for 1 s (wide-field images) or 5 s (laser scanning image).
While only about 20 layers of a 3D cell spheroid can thus be irradiated once by CLSM, each
layer can be illuminated about 100 times by LSFM. This favors light sheet microscopy for
long-term experiments in cell or developmental biology.

In previous studies [33] we found that non-phototoxic light doses did not depend
on whether the light was applied continuously or in short pulses. This implies that for
multiphoton imaging (see Section 4.1) the integral light dose and the wavelength of illumi-
nation appear to be the main limiting factors. Therefore, due to the longer wavelengths
phototoxicity is generally lower for multiphoton than for single photon imaging.

Increasing sensitivities of novel detection systems (e.g., ultra-sensitive cameras) will
increase the number of images measured at non-phototoxic light doses and will permit
recording of fast dynamic processes, e.g., rapid cell migration, membrane or microtubule
dynamics, mitochondrial motion as well as endo- or exocytosis.
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Figure 2. Maximum non-phototoxic light doses and maximum number of images for various meth-
ods of 3D live cell imaging. For autofluorescence experiments an excitation wavelength of 375 nm 
is assumed. An exposure time of 5 s is assumed for LSFM, and a time of 1 s for all other (wide-field) 
techniques (data partly reproduced from [8]). 
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recovery after photobleaching” (FRAP) has been applied to measure cell, membrane and, 
in particular, protein dynamics (for reviews see [36,37]). In this case, part of a fluorescent 
specimen is photobleached, and re-diffusion of molecules from outside this part is meas-
ured. However, this method should be applied with care since high light exposure may 
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for data management [40]. Recently, automated image processing and machine learning 
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tik [43]) software applications for high-performance 3D visualization and analysis are 
available.  
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Figure 2. Maximum non-phototoxic light doses and maximum number of images for various methods
of 3D live cell imaging. For autofluorescence experiments an excitation wavelength of 375 nm is
assumed. An exposure time of 5 s is assumed for LSFM, and a time of 1 s for all other (wide-field)
techniques (data partly reproduced from [8]).

A further phenomenon upon pronounced light exposure is photobleaching or flu-
orescence bleaching. This effect may be concomitant with modification or destruction
of a specific fluorophore [34] and makes quantitative evaluation of fluorescence signals
difficult. In some cases, intersystem crossing to a (non-fluorescent) excited triplet state
occurs, and after deactivation of this state the corresponding molecules may fluoresce
again (“fluorescence recovery”). This effect often causes characteristic “blinking” and
is used in single molecule spectroscopy (for a review see [35]). For more than 40 years
“fluorescence recovery after photobleaching” (FRAP) has been applied to measure cell,
membrane and, in particular, protein dynamics (for reviews see [36,37]). In this case, part
of a fluorescent specimen is photobleached, and re-diffusion of molecules from outside
this part is measured. However, this method should be applied with care since high light
exposure may damage living specimens.

3.3. “Big Data”

3D live cell imaging, especially light sheet microscopy of larger specimens, generates
large datasets that need to be stored and processed. Multimodal configurations, e.g., time-
lapse or multispectral devices, or high-throughput/high-content setups add even more
data leading to multidimensional datasets in the gigabyte or even terabyte range [38,39].
High-end computer hardware and central networks for efficient storage and retrieval of
data as well as for fast processing of huge datasets and appropriate data management are
needed. Open source software applications, e.g., OME Remote Objects (OMERO), enable
access to and use of a wide range of biological data and provide open, flexible solutions for
data management [40]. Recently, automated image processing and machine learning have
become valuable tools to extract meaningful information from large datasets. As cells can
be regarded as highly controlled objects, microscopy is well suited to pattern recognition
tools based on neural networks and deep learning [41]. Several commercial (Imaris, Amira,
Arivis) as well as non-commercial (BigDataViewer plugin for FIJI/ImageJ [42], ilastik [43])
software applications for high-performance 3D visualization and analysis are available.

4. 3D Microscopy

For many imaging applications optical microscopy and, in particular, fluorescence
microscopy plays a predominant role, and, therefore, relevant techniques are summarized
in this section.

4.1. Confocal Laser Scanning Microscopy

In Confocal Laser Scanning Microscopy (CLSM) samples are scanned point by point,
resulting in a two-dimensional image within typically a few seconds. A spatial pinhole in a
conjugate image plane is used to block out-of-focus light thus acquiring optical sections
with high contrast, as depicted in Figure 3. Information (e.g., fluorescence) from individual
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planes is then used for 3D image reconstruction by appropriate software. However, the
whole procedure needs comparatively long scanning times and high light exposure, which
may damage living specimens. One possibility to reduce light exposure is simultaneous
illumination of several parts of a sample by Spinning Disk Confocal Microscopy [44].

Photonics 2021, 8, x FOR PEER REVIEW 5 of 12 
 

 

a conjugate image plane is used to block out-of-focus light thus acquiring optical sections 
with high contrast, as depicted in Figure 3. Information (e.g., fluorescence) from individ-
ual planes is then used for 3D image reconstruction by appropriate software. However, 
the whole procedure needs comparatively long scanning times and high light exposure, 
which may damage living specimens. One possibility to reduce light exposure is simulta-
neous illumination of several parts of a sample by Spinning Disk Confocal Microscopy 
[44]. 

 
Figure 3. Principle of a confocal laser scanning microscope (CLSM); only a confocal beam passes the 
pinhole, whereas non-confocal beams are blocked. Moving of the sample in vertical direction allows 
imaging of different planes. Example: Focal planes of a spheroid of U373-MG glioblastoma cells 
incubated with acridine orange (5 µM, 40 min.) at different distances from top of the sphere (excita-
tion wavelength: 488 nm, fluorescence detection: ≥505 µm, image size: 460 µm × 460 µm). Repro-
duced in parts from [33]. 

In a classical laser scanning setup resolution is only slightly improved compared to 
wide-field microscopes (see below). If, however, the pinhole selects only a small part of 
the diffraction pattern (“Airy disk”) of individual points, the resolution may be improved 
up to almost a factor 2, while the detection sensitivity is reduced considerably. To circum-
vent this problem, the single pinhole has recently been replaced by an array of several 
individual detectors (Airy Scan Microscopy [45]), or by an ultrasensitive camera chip, 
where each pixel behaves as an “infinitely small pinhole” (Image Scan Microscopy [46]). 
Alternatively, resolution as well as sensitivity can be improved significantly by scanning 
the pinhole with another laser (Re-Scan Confocal Microscopy [47]).  

Multiphoton microscopy (MPM) achieves optical sectioning by focusing picosecond 
or femtosecond laser pulses onto a small spot in the sample, thus exciting fluorescence by 
two or more photons in the small focal volume during an extremely short time without 
the need of any pinhole [27,48]. The scanning process and vertical displacement of the 
specimen is the same as for CLSM. Although multiphoton microscopes have vastly im-
proved over the last 10 years, MPM still has some limitations in terms of the temporal 
resolution and long-term applicability as well as instrumentational challenges, e.g., suita-
ble objective lenses for NIR transmission [49,50].  

  

Figure 3. Principle of a confocal laser scanning microscope (CLSM); only a confocal beam passes
the pinhole, whereas non-confocal beams are blocked. Moving of the sample in vertical direction
allows imaging of different planes. Example: Focal planes of a spheroid of U373-MG glioblastoma
cells incubated with acridine orange (5 µM, 40 min.) at different distances from top of the sphere
(excitation wavelength: 488 nm, fluorescence detection: ≥505 µm, image size: 460 µm × 460 µm).
Reproduced in parts from [33].

In a classical laser scanning setup resolution is only slightly improved compared to
wide-field microscopes (see below). If, however, the pinhole selects only a small part of the
diffraction pattern (“Airy disk”) of individual points, the resolution may be improved up to
almost a factor 2, while the detection sensitivity is reduced considerably. To circumvent this
problem, the single pinhole has recently been replaced by an array of several individual
detectors (Airy Scan Microscopy [45]), or by an ultrasensitive camera chip, where each
pixel behaves as an “infinitely small pinhole” (Image Scan Microscopy [46]). Alternatively,
resolution as well as sensitivity can be improved significantly by scanning the pinhole with
another laser (Re-Scan Confocal Microscopy [47]).

Multiphoton microscopy (MPM) achieves optical sectioning by focusing picosecond or
femtosecond laser pulses onto a small spot in the sample, thus exciting fluorescence by two
or more photons in the small focal volume during an extremely short time without the need
of any pinhole [27,48]. The scanning process and vertical displacement of the specimen
is the same as for CLSM. Although multiphoton microscopes have vastly improved over
the last 10 years, MPM still has some limitations in terms of the temporal resolution and
long-term applicability as well as instrumentational challenges, e.g., suitable objective
lenses for NIR transmission [49,50].

4.2. Widefield Microscopy

In conventional wide-field microscopy, an image is generated from the focal plane of a
sample with a lateral resolution ∆x ≥ λ/2AN, as defined by the Abbe criterion for the case
of coherent illumination. Alternatively, the Rayleigh criterion ∆x = 0.61 λ/AN defines the
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resolution of a luminescent spot or an object illuminated incoherently with the wavelength
λ and the numerical aperture AN of the microscope objective lens. In both cases values
around 200 nm are achieved for numerical apertures AN ≥ 1.30 at λ = 500 nm. Often the
axial resolution is related to the depth of focus ∆z = n λ/AN

2, resulting in ∆z ≥ 400 nm
for the refractive index n = 1.50. This implies that the focal plane is very thin, and a lot of
out-of-focus information blurs the image considerably. Therefore, similar to CLSM, optical
sectioning is often necessary.

Optical Sectioning Structured Illumination Microscopy (OS-SIM) is a wide-field tech-
nique to separate in-focus information from signals generated in out-of-focus planes. To
achieve this, an optical grid is imaged in the plane of the sample in 3 phase positions
Φ1 = 0, Φ2 = 2π/3 and Φ3 = 4π/3 resulting in the intensities I1, I2 and I3. An algorithm
I = [(I1 − I2)2 + (I1 − I3)2 + (I2 − I3)2]1/2 permits to calculate an image from the focal plane,
while out-of-focus images add up to zero, as depicted in Figure 4. Upon variation of the
sample’s vertical position, several focal planes can thus be detected, and a 3D image may
be calculated [5]. While Figure 4 shows the principle of this method, Figure 5 shows an
application to CHO cells transfected with a membrane associated Green Fluorescence
Protein (GFP).
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It should be added that Structured Illumination Microscopy can also be used for super-
resolution imaging with a 2-times enhancement of resolution in comparison with the Abbe
criterion. In contrast to OS-SIM, “SR-SIM” [52,53]) is based on a coherent superposition
of two or three laser beams modulated by an optical grid at different angles and phase
positions. However, this technique is commonly limited to thin samples, as out-of-focus
light degrades the quality of the grid pattern in the sample plane. In addition, acquisition
of multiple (typically 9–15) raw images needed to reconstruct a single super-resolution
frame takes relatively long time and thus reduces acquisition speed. These limitations can
be overcome by illuminating the sample with a lattice pattern rather than grid lines, which
gives higher contrast and allows a more robust image reconstruction [54,55].

Light Sheet Fluorescence Microscopy (LSFM) is another wide-field method that uses
optical sectioning with the sample being illuminated from the side (at 90◦ with respect
to the microscope axis) by either a cylindrical lens or scanning of a laser beam. For 3D
imaging, the light sheet and the microscope objective lens used for detection can be shifted
simultaneously in axial direction, so that the illuminated part of the sample is always in
the focus of the objective lens. Both shifts may be different due to the refractive index
of the immersion fluid, but this can be corrected either mechanically [56] or by software.
Alternatively, the sample can be moved in axial direction through a static light sheet.
Thus, z-stacks can be recorded with low fluorescence background and high contrast, as
depicted in Figure 6 for spheroids of MCF-7 breast cancer cells incubated with the cytotoxic
drug doxorubicin. A 3D image can be calculated offline from these images, as described
elsewhere [57]. The main advantage of Light Sheet over OS-SIM is that only those planes
are illuminated, which are recorded simultaneously, so that light exposure is considerably
lower than for those methods, where recording of each image requires illumination of
the whole specimen. Commercial light-sheet microscopes (e.g., Carl Zeiss, Olympus,
Nikon) as well as open-source solutions or add-ons for existing microscopes are presently
available [56,58].
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h with doxorubicin (8 µM) at a depth of 20 µm (b) or 60 µm (c) within the spheroid. Red and green-
yellow fluorescence permit distinction of doxorubicin and its degradation product. Reproduced
from [57] with modifications.

With Axial Tomography specimens can be observed from various sides, and since the
lateral resolution in microscopy is always better than the axial resolution, the vertical axis
can be rotated into the horizontal position to profit from an enhanced isotropic resolution
of about 200 nm for conventional wide-field microscopy or CLSM and about 100 nm for
SR-SIM. However, rotation of samples needs specific sample holders and preparation tech-
niques, e.g., cells embedded in a gel within a rotatable capillary, whose refractive index can
be adapted to that of water or oil when using an immersion lens of high magnification [59].
A particular problem for 3D specimens is precise positioning of the samples upon rotation
as well as appropriate reconstruction of 3D images.
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Recently, Light Field Microscopy became an interesting candidate for 3D imaging of
fast biological processes, e.g., neural activity in whole animals [60,61]. It provides instant
3D excitation and single-shot volumetric recording that creates up to 200 3D images per
second, but requires a computationally demanding image reconstruction process and
offers comparably low spatial resolution. Novel approaches to image reconstruction with
deep-learning algorithms aim to overcome these limitations [62].

4.3. Deconvolution

In a diffraction-limited system, image formation can be described as a convolution
of light emitted from each point in the object with the point spread function (PSF) of the
microscope. Deconvolution, an image processing technique used to reverse this blurring
process has been introduced almost 40 years ago, and with increasing memory capacity and
calculation speed of personal computers 3D-deconvolution has become a well-established
lab tool for deblurring of microscopy data from various 3D techniques [63–66]. Commercial
deconvolution software packages, e.g., Huygens (Scientific Volume Imaging, Hilversum,
The Netherlands) or Auto Quant (Media Cybernetics, Rockville, MD, USA) and public
domain tools, e.g., Deconvolution LAB2 for FIJI [67], provide tools for 3D deconvolution,
which are comparably easy to use even for non-specialists in computational image pro-
cessing. Deconvolution algorithms are also used during image reconstruction for super
resolution methods, e.g., SR-SIM [68,69] and Image Scanning Microscopy [46].

5. Discussion

3D imaging of living specimens is a very challenging topic requiring: (1) experience in
the preparation and handling of 3D samples, (2) techniques of image sectioning and recon-
struction, (3) minimization of light scattering, (4) light dosimetry, as well as (5) processing
strategies for large datasets. Many experimental methods are based on light microscopy,
but also macroscopic or endoscopic systems as well as multi-well screening techniques
may be appropriate for certain specimens and applications. Since electron microscopy is
difficult to realize for living cells due to fixation of samples and high irradiation doses [70],
it is not further considered in this manuscript. However, “correlative microscopy”, i.e., a
combination of optical and electron microscopy presently gains considerable importance in
optical nanoscopy. Often nanometer distances cannot be resolved within a microscope, but
it is well known that fluorescence spectra as well as fluorescence lifetimes (for an overview
see [71]) depend on the microenvironment of a relevant fluorophore, including pH, viscos-
ity, and polarity. For example, shortening of the fluorescence lifetime of GFP in close vicinity
to cell membranes or to a cell-glass interface has been reported in the literature [72,73].
Molecular sensing techniques based on fluorescence spectra or lifetimes may be applicable
also to 3D cell systems. This holds in particular for studies on Förster Resonance Energy
Transfer (FRET), where after excitation of a so-called donor molecule excitation energy
is transferred to an acceptor molecule by interaction of optical transition dipoles, if their
distance is less than about 10 nm [74]. Applications to nanometer sensing in 3D systems
include studies of subdomains of proteins [75], probing of molecular cell-biomaterial in-
teractions [76] or monitoring of apoptosis by cleaving of a specific peptide linker [77]. In
case of larger molecules adjacent in cellular micro-domains (e.g., membrane domains or
intracellular organelles), or for studies of more than two interacting molecular populations,
their co-localization can be quantified to analyze this interaction. Co-localization methods
are based on two different, complementary methods: a pixel-based approach [78,79] or an
object-based approach [80,81], as well as a combination of the two approaches [82]. In the
future one may expect further increase of resolution in microscopy at non-phototoxic light
doses as well as novel highly specific applications of nanometer sensing in 3D cell systems.

6. Conclusions

We conclude that 3D live cell imaging is still a developing field for studying cell models
with tissue-like properties, whole organs or intact organisms. Appropriate methods have
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been developed, which remain to be further elaborated. Novel preparation techniques,
reduction or mathematical correction of light scattering, minimization of light exposure and
phototoxicity, as well as processing of large data sets remain great challenges for the future.
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