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Abstract: In order to achieve non-cooperative target tracking and ranging in conditions of a weak
echo signal, this paper presents a real-time acquisition, pointing, tracking (APT), and ranging (APTR)
lidar system based on single photon detection. With this system, an active target APT mechanism
based on a single photon detector is proposed. The target tracking and ranging strategy and the
simulation of target APT are presented. Experiments in the laboratory show that the system has
good performance to achieve the acquisition, pointing and ranging of a static target, and track a
dynamic target (angular velocity around 3 mrad/s) under the condition of extremely weak echo
signals (a dozen photons). Meanwhile, through further theoretical analysis, it can be proven that
the mechanism has stronger tracking and detection ability in long distance. It can achieve the active
tracking of the target with a lateral velocity of hundreds of meters per second at about one hundred
kilometers distance. This means that it has the ability of fast long-distance non-cooperative target
tracking and ranging, only by using a single-point single photon detector.

Keywords: non-cooperative target; single photon detection; APT and APTR; laser scanning;
pulse accumulation

1. Introduction

With the development of science and technology, lidar-based tracking and ranging tech-
nology is more widely used in many fields, such as aerospace, automatic driving, etc. [1–8]. It
has significant application value for target search, tracking, motion obstacle avoidance, etc.
In recent years, to improve the detection capability in conditions of a weak echo signal for
hard targets in free-space, single photon detection (SPD) technology was introduced. The
SPD can offer the ability to respond to a single photon [5,9–12]. By using time-correlated
single photon counting (TCSPC), the SPD’s sensitivity can be greatly improved, far surpass-
ing classical devices such as linear mode APD or PIN diode, and the needed photon flux
is also lower. In this case, the SPD will allow the use of low-power laser sources to detect
non-cooperative targets in conditions of a weak echo signal. Currently, most of the research
mainly focuses on the rapid detection of weak signals, long-distance high-precision mea-
surement, ranging performance, and imaging [13–19] based on single photon detection.
However, there are few tracking researches based on single photon detection.

To study the tracking technology based on single photon detection, Du et al. [10]
provided a new method to simulate the process of tracking the non-cooperative object
that moves beyond visual range with a photon-counting laser ranging system. Related
algorithms are used to extract and predict the radial trajectory of the target. However, the
article does not involve lateral movement detection and has not achieved real tracking.
Wu et al. [5] studied the track of moving target by single photon lidar (SPL) in marine
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aerosol environment. The system realizes the tracking and ranging of the target by com-
bining the imaging system and the single photon ranging system. At present, for moving
targets, CCD, CMOS, and other imaging devices are usually used for passive tracking, and,
at the same time, coaxial laser ranging is carried out.

Passive detectors such as CCD and CMOS can only work when the target is illumi-
nated, which has great limitations [20]. Four-quadrant detectors and array detectors can
simultaneously obtain the orientation and distance information of the target, and can real-
ize active tracking of targets. However, they need cooperative targets and a standard round
image spot on the detector to extract the angle information of the target. Moreover, they are
affected by the difference in detection units’ parameters, crosstalk between detection units,
the echo spot size, and the dead zone [21,22]. When the total energy received by the optical
system is certain, the average energy detected on each unit of these detectors is lower than
that of the SPD. Moreover, it is difficult to measure direction for non-cooperative targets in
conditions of a weak echo signal.

In this paper, we design an APTR lidar system by combining the scanning module
with the single photon detection module and achieve distance detection and orientation
detection of targets in conditions of a weak echo signal. The scanning module is also used
as both the orientation detection module and the servo tracking module, and the system
features simple light circuit and convenient adjustment. Moreover, we improve the target
detection capability by providing the pulse accumulation method and centroid algorithm in
the signal-processing control module. Finally, the system completes the target’s acquisition,
pointing tracking, and ranging by selecting an appropriate number of accumulated pulses
in conditions of a weak echo signal. The experimental result shows that the target can be
captured, pointed, and tracked, and the distance of the target is also displayed in real time.
In addition, through further theoretical analysis, it has been proven that the system has
stronger tracking and detection ability in long distance by designing a set of practical and
feasible system parameters. It can achieve the active tracking of the target with a lateral
velocity of hundreds of meters per second at about one hundred kilometers distance only
by using a single-point single photon detector. It is potential and meaningful for the fast
long-distance non-cooperative target acquisition, tracking, and ranging.

2. Experimental Setup Description

To achieve the APTR of the non-cooperative target based on single photon detection
under a weak echo signal, we design the block diagram of APTR system and set up the
experimental platform of APTR system. As shown in Figure 1a,b, the laser beam from
Nd:YAG (1064 nm) pulsed laser is split into two branches by a ratio beam splitter. The
small part of the energy is detected by a PIN, which is used as the synchronous signal,
and the other part is transmitted to the target through the optical emitting system (FL1)
and fast steering mirror (FSM). The echo signal scattered by the target is coupled into the
optical fiber and detected by the SPD through FSM, a narrow bandpass filter (NBF), and an
optical receiving system (FL2). The NBF is used to remove most of the background noise
from sunlight and other sources. Therefore, the system has the advantages of light circuit
and convenient adjustment.

In addition, the signal-processing control module communicates with the single
photon detection module (TCSPC, SPD, and PIN) and the scanning module (FSM, linear
drive, and DSP). On the one hand, the signal-processing control module controls TCSPC
to collect the time and channel information of synchronous signal and echo signal. It
also records and decodes the data information. On the other hand, it controls the FSM
to scan the target, collects the angle information feedback from the FSM, and decodes
the angle information. The pulse accumulation method and the centroid algorithm are
used to process the target echo information in the signal processing control module. The
signal-processing control module can match the angle information and the target range
information to obtain the target’s three-dimensional point clouds and the target centroid
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position. Finally, the scanning module points to the target centroid and takes the orientation
of the target centroid as the scanning center.
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Figure 1. (a) Block diagram of APTR system based on single photon detection; (b) the experimental 

platform of APTR system based on single photon detection. 
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3. Single Photon Detection Model and Scanning Model and Target Position

To study APTR of the non-cooperative target based on single photon detection, the
paper has the theoretical analysis of the single photon detection model and scanning
model. Then the appropriate parameters can be selected to set the system and optimize
the collected data. Furthermore, for showing and understanding the process of extracting
and tracking the target, we also derive and analyze the three-dimensional coordinates and
orientation of the target and the angle coordinates of the scanning center.

3.1. Single Photon Detection Model and Analysis

According to the statistical optics theory, as the echo signal reflected from the rough
surface is weak, the number of detected photoelectrons follows Poisson statistics [23–25].
The distribution is given as follows:

P(k) =
e−ηqe ·(ns+nn)(ηqe · (ns + nn))

k

k!
, (1)

where P(k) is the probability that k photoelectrons are detected in a time bin; ns and nn are
the average number of signal and noise photons in a time bin, respectively; and ηqe is the
quantum efficiency of SPD.

The SPD will be triggered when at least one photoelectron (a photon event) occurs in
a time bin. Thus, the detection probability (PDS) is given by the following:

PDS = PA(1− P(k = 0)) = PA(1− e(−ηqe ·(ns+nn))), (2)

where PA = 1/
(
1 + ηqe·ϕ0·td

)
is the arm probability, and ϕ0 and td are mean noise photon

count and dead time, respectively.
When the pulsed laser is shut down, no echo photon signal is collected. In this case,

the false-alarm probability (PFAS) of a time bin can be obtained by simplifying Equation (2),
which is given by the following:

PFAS = PA(1− e(−ηqe ·nn)), (3)

In fact, a photon event cannot be distinguished from the noise photon events by
a single-pulse echo. Therefore, it is necessary to accumulate echo events. If the num-
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ber of accumulated events exceeds a certain threshold, the target is considered to be
found [13,24,26]. An appropriate threshold and pulse accumulation number can effectively
reduce the false-alarm probability and improve the detection performance. Assuming that
N pulse echoes are accumulated, the detection probability and false-alarm probability of N
pulses accumulated in a time bin are as follows:

PD = 1−∑kth−1
k′=0 Ck′

N [PDS]
k′ [1− PDS]

N−k′ , (4)

PFA = 1−∑kth−1
k′=0 Ck′

N [PFAS]
k′ [1− PFAS]

N−k′ , (5)

where kth is the threshold of the recognition target in a time bin, k′ is the index ranging from
0 to kth−1, and N is the number of accumulated pulses. Moreover, Ck′

N = N!
k′!(N−k′)! is the

number of combinations of N pulses accumulation taken by k′ at a time. Here, considering
the low light level environment, pile-up effect [27] or dead time effect could be ignored,
and PA is approximate to 1.

Here, we suppose the laser repetition frequency is 5 kHz, the pulse width is 10 ns, the
quantum efficiency (ηqe) of SPD is 7%, and the time bin is 10 ns, which is consistent with
the laser pulse width. The received average number of noise photons (nn) is 8.5 × 10−6 in
a time bin (10 ns) and 0.17 in each cycle (0.2 ms). The received average number of signal
photons (ns) is 10. As shown in the Figure 2, the detection probability and false-alarm
probability increase with the increase of the number of accumulated pulses. However,
when the number of accumulated pulses is fixed, the detection probability and false-
alarm probability decrease with the threshold increase, and the false-alarm probability
decreases more obviously. Therefore, we can appropriately increase the threshold and
the number of accumulated pulses to reduce the false-alarm probability and improve the
detection probability.
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Figure 2. Detection probability and false-alarm probability: (a) influence of number of accumulated
pulses on detection probability and false-alarm probability (ns = 10, nn = 8.5 × 10−6, kth = 1, 2, 3, 4)
and (b) zoom in on the selected area, where the probability from 0 to 2× 10−5.

Assuming the threshold is 1 in a time bin (10 ns), the received average number of
noise photons nn is 8.5 × 10−6, and the Quantum detection efficiency ηqe is 7%. Figure 3
shows that the target detection probability will increase as the number of echo photons or
the number of accumulated pulses increases, when the threshold and the average number
of noise photons is fixed. The target false-alarm probability increases with the number
of accumulated pulses increase, but the increase rate is low. Moreover, it has nothing
to do with the number of signal photons. Therefore, we can appropriately increase the
number of signal photons and the number of accumulated pulses to improve the target
detection probability.
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mulated pulses on detection probability and false-alarm probability (ns = 100, 30, 10, 3, 1, 0.3,
0.1, nn = 8.5 × 10−6, kth = 1) and (b) zoom in on the selected area, where the probability from 0 to
6× 10−5.

In fact, when the whole optical receiving and transmitting system is determined and
the energy of laser output is constant, the number of echo photons has a certain range
distribution within a certain distance. In this case, the appropriate threshold and number
of accumulated pulses are chosen to improve the target detection capability.

3.2. Scanning Model and Analysis

There are some main scanning methods, such as spiral scanning and raster scanning.
Different scanning modes have different characteristics. Among them, linear spiral scan-
ning has the advantage of high capture probability. This scanning method scans from
the high probability position to the least likely location and dwells on each spot for a
constant duration. Moreover, the scanning capture efficiency is relatively high [28–31]. The
geometry diagram of spiral scanning is shown in Figure 4.
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The constant linear velocity spiral scanning mode has a fixed expression [29], which
can be easily written into the scanning system’s DSP control to realize spiral scanning. The
equations are extended as follows:

Vr =

√
(1−F)·θ2

1/e

2 · π · t · Tdwell
, (6)

Vθ =

√
2 · π

(1−F) · t · Tdwell
, (7)

θmsa = (1− F) · θ1/e ·M, (8)

Tscan =
2 · π ·M · θmsa · Tdwell

θ1/e
= 2 · π · (1−F)M2 · Tdwell , (9)

where Vr and Vθ is the radial velocity and angular velocity of the scanning laser, respectively;
F is the overlap factor of the laser spot, which is generally 0.29 to cover all scanning areas
and prevents missing scanning [32]; θ1/e is the divergence angle of the laser beam; M
represents the number of rings and determines the maximum radius of the scan; θmsa is the
maximum angle of the laser scan deviating from the center of the scan; t is the time from 0
to Tscan; Tdwell is the expression for the laser dwell time on the target, which is actually the
scan time corresponding to the adjacent spot angle θ1/e/2, Tscan is the total scan time from
initial point to the searching end.

Then the X and Y angle coordinate of the center of the laser spot by a linear spiral
scanning is given. At the same time, for the classical scanning system parameters, after a
very short scanning time, the linear velocity, V, is also expressed. Their expressions are
as follows:

X = Vr · t · cos(Vθ · t), (10)

Y = Vr · t · sin(Vθ · t), (11)

V =
θ1/e

2 · Tdwell
, (12)

Suppose the time interval of the output angle information in the scanning system is
Tout, which is the time used for the overlap factor between two laser spots and is related to
the overlap factor and the laser dwell time. In addition, assuming that the target position
changes slightly within Tout. In order to extract the target signals for the single photon
detection, multiple pulses need to be accumulated within Tout. Then we have the following:

Tout =
(1− F) · θ1/e

V
= 2 · Tdwell · (1− F) =

N
PRF

, (13)

where PRF is the laser pulse repetition frequency, and N is the number of accumu-
lated pulses.

Combining Equations (9), (13), and (14), we see that the relationship between the total
scan time and the number of accumulated pulses is given by the following:

Tscan =
π ·M2 · N

PRF
, (14)

According to Equation (15), under the condition that the number of rings and laser
pulse repetition frequency are fixed, the smaller number of accumulated is, the shorter
the time it takes to scan a frame is, and the stronger its ability to capture and track the
target is [29]. Thus, under the guarantee of high detection probability and low false-alarm
probability, the number of accumulated pulses should be small.
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3.3. Derivation and Analysis for the Position of the Target

According the scanning model, we can get the three-dimensional coordinates and
orientation of the captured target. As shown in Figure 5, the three-dimensional coordinates
of the target are as follows:

x′ = L√
1+tan2(X)+tan2(Y)

· tan(Y),

y′ = L√
1+tan2(X)+tan2(Y)

· tan(X),

z′ = L√
1+tan2(X)+tan2(Y)

,

(15)

where the X and Y are the angle coordinate of the center of the laser spot by a linear spiral
scanning, and L is the distance of the echo target from the single photon detection. In the
formula written by DSP, X represents the vertical direction of the FSM, and Y represents
the horizontal direction of the fast mirror, so coordinate correction is carried out here.
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When the target is extended, it is possible to measure multiple points of the target.
Thus, the centroid algorithm is used to obtain the centroid of the target, which is given by
the following:

x0 =
∑n

i=1 ki · xi
′

∑n
i=1 ki

, y0 =
∑n

i=1 ki · yi
′

∑n
i=1 ki

, z0 =
∑n

i=1 ki · zi
′

∑n
i=1 ki

, (16)

n = |Tscan

Tout
+ 1|, (17)

where n is the number of points detected in a scan cycle, which is also called the number of
3D imaging pixels; || means rounding down; and the ki is the weighting factor. When the
detected distance is less than the system threshold, ki is equal to 0; otherwise, ki equals 1.
In fact, for a single target in the airspace, we do not consider the background of the target.

The distance, azimuth, and pitch of the centroid of the target are as follows:

L0 =
√

x2
0 + y2

0 + z2
0,

α = arctan( y0
x0
),

θ = arcsin( z0
L0
),

(18)
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At the same time, the scanning module points to the centroid of the target, and the
angle coordinates of the scanning center are changed, as given by the following:

X0 = arctan( x0
z0
),

Y0 = arctan( y0
z0
),

(19)

4. Strategy and Simulation Process of Target Tracking and Analysis of Experimental
Results, and the Ability of Tracking and Detection
4.1. Tracking and Ranging Strategy of Target and the Simulation Process

The target tracking flowchart is shown in Figure 6a. Firstly, according to the analysis
in Section 3, the system parameters are set. Then the signal processing control module
simultaneously controls TCSPC and the scanning module to collect laser echo information
and corresponding angle information, and decodes and preprocesses the collected data.
Next, the signal processing control module combines echo distance information of the
target or background by using the pulses accumulation algorithm and centroid algorithm
with the angle information to obtain and display the three-dimensional information of the
target and background. Finally, the system obtains the centroid orientation and ranging of
the target obtained by using the centroid algorithm. Then the scanning module points to
the target centroid and sets its orientation as the spiral line scanning center. By scanning
and capturing the target continuously, the system can track the target in real time. As shown
in Figure 6b, the simulation process of the APT of the target is presented. To simplify the
model analysis, a point target is defined as the target in the simulation. Simultaneously,
suppose that the target is captured on a plane of space. In Figure 6b, j represents the
number of times the target is captured in a frame, f is the number of frames scanned, and
tp is the time of processing data and about 0.65 s in the experiment. Moreover, x′0 and y′0
are the initial position of the scan center, and x0 and y0 are the initial position of the target
with a velocity of v and the azimuth of α; z′ is the distance from the center of the FSM to
the moving plane of the target. In addition, due to the spot overlap, the target may be
captured multiple times in a frame. Here we consider that the average is taken to update
the scanning center in the process.

4.2. Simulation and Experimental Results and Analysis

In order to verify the feasibility of the system based on single photon detection,
the experiment was carried out by setting reasonable parameters. In this system, the
output average power is 0.197 mw, and a histogram that was produced by 5000 cycles was
analyzed for the static target at about 3.26 m. It is found that the mean number of signal
echo photons is about 10, which means that the average received power is 9.34 × 10−15 W
with the repetition frequency of 5 khz, the peak power is 1.868×10−10 W with the pulse
width of 10 ns, and the average number of noise photons is 8.5 × 10−6 in each time bin
(10 ns) for the SPD with about 7% quantum efficiency to 1064 nm laser. Meanwhile, the
ranging resolution is about 30 cm by analyzing the full width at half maximum (FWHM)
of the weak echo signal. According to the analysis in Section 3, to ensure high detection
probability about 1 and low false-alarm probability less than 1 ×10−5 and considering
the fluctuation of the number of echo photons and short total scan time, the number of
accumulated pulses 14 and the threshold of the recognition target 1 were chosen for the
experiment. The main input system parameters are shown in Table 1.
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Table 1. Main input parameters of the lidar system.

Parameter Value

Pulse repetition frequency (PRF) 5 Khz
Divergence angle (θ1/e) 1.9 mrad

Number of accumulated pulses (N) 14
Threshold of the recognition target (kth) 1

Overlap factor (F) 0.29
Number of rings (M) 10

Time interval of the output angle (Tout) 2.8 ms
Total scan time (Tscan) 879.6 ms

According to the Table 1 and Equation (8), θmsa is 0.01349 rad. Thus, the scanning
field of view (FoV) is 0.02698 rad, and the lateral resolution, which is related to the overlap
factor and the divergence, is (1− F) · θ1/e, and its theoretical value is about 1.349 mrad. The
number of 3D imaging pixels is about 315, as seen in Table 1 and Equation (17). Meanwhile,
simulation parameters are set according to Table 1 and the target’s distance and state. The
simulation of the APT of a point target is shown in Figure 7. In this simulation, the blue
circle and green dot represent the scanning light spot and the trajectory of the dynamic
target, respectively. Moreover, the red dot and black dot represent the calculated position
and actual position of the target captured, respectively, and the angular error is less than
1.349 mrad. The static target and dynamic target are scanned with 2 frames and 10 frames,
respectively. Furthermore, it can be found that the simulation provides theoretical guidance
and visual process for actual capture and tracking experiments.
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Figure 7. The simulation of the APT of a point target: (a) the acquisition and pointing of a static target
(x0 = 0.025,y0 = 0.018, v = 0, α = 0, z′ = 3.26); (b) the APT of a dynamic target (x0 = −0.04, y0 = 0, v = 0.01,
α = 0,z′ = 3.26).

The target tracking and ranging experiment is carried out in conditions of a weak echo
signal in indoor lab. A background consistent with the reflectivity of the target is added
behind the target to better highlight the trajectory of the helical scan capture and tracking,
and the process of target tracking. The distance between them is about 41 cm. The initial
purpose of our system is to track and detect a single target in the airspace, and it usually
does not consider to distinguish two targets. Therefore, in the experiment, we can set the
appropriate system threshold, z’, from 3.14 to 3.34 m and extract the target centroid by
analyzing the previous distance information of the target and the background. Only after
extracting the centroid can the system carry out the next APT.

The static target is scanned, captured, and pointed, and the results are shown in
Figure 8a–d, which display the 3D information of the background and target scanned by
the spiral line for one experiment. The results show that the coordinates and distance of
the target centroid (the red dot) are (0.0257099, 0.0181003, and 3.26308 m) and 3.26323 m,
respectively, before pointing the target. Moreover, they are (0.0246935, 0.0178932, and
3.26281 m) and 3.26296 m, respectively, after pointing to the target. It proves that the
difference of the distance is small—about 0.00027 m—and the scanning center points to the
target. Figure 8e shows that the scanning center does not coincide with the target before
pointing to the target. Figure 8f shows that the scanning center coincides with the target
after pointing to the target. The experiment is repeated 10 times, which is shown in Table 2.
In the static target acquisition and pointing experiment, the average distance of the target
is 3.263513 and 3.261791 m, respectively, which is consistent with the theoretical value of
3.26 m within allowable error and the error is less than 0.0035 m. The standard deviation of
the target distance is less than 0.0236 m. Furthermore, the azimuth and pitch of the centroid
of the target are less than 0.113269 and 0.000979 rad, respectively. Meanwhile, these results
of Table 2 present that errors of the parameters before and after pointing to the target are
small and proves that the system has acquisition and pointing capability in conditions of
a weak echo signal.
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Figure 8. Target and background 3D information and image: (a,b) 3D point clouds and their front
view before pointing to the target, and (c,d) 3D point clouds and their front view after pointing to the
target; and (e) the image before pointing to the target (the yellow dotted line represents the target,
and the red dotted line represents the scanning center), and (f) the image after pointing to the target.

Table 2. Coordinates, distance, azimuth, and pitch of the target centroid.

No.
Before Pointing to the Target After Pointing to the Target

x0/m y0/m z0/m L0/m α/rad θ/rad x0/m y0/m z0/m L0/m α/rad θ/rad

1 0.0257 0.0181 3.2631 3.2632 0.6134 1.5612 0.0247 0.0179 3.2628 3.2630 0.6271 1.5612
2 0.0239 0.0223 3.2542 3.2544 0.7503 1.5606 0.0153 0.0188 3.2464 3.2465 0.8876 1.5634
3 0.0247 0.0156 3.2797 3.2798 0.5619 1.5619 0.0251 0.0214 3.2709 3.2710 0.7062 1.5609
4 0.0188 0.0215 3.2582 3.2584 0.8536 1.5619 0.0222 0.0234 3.2374 3.2375 0.8106 1.5609
5 0.0229 0.0216 3.2699 3.2701 0.7544 1.5609 0.0300 0.0220 3.2909 3.2911 0.6324 1.5595
6 0.0191 0.0222 3.2760 3.2761 0.8603 1.5619 0.0234 0.0147 3.2643 3.2644 0.5622 1.5622
7 0.0188 0.0233 3.2572 3.2573 0.8915 1.5615 0.0245 0.0189 3.2415 3.2416 0.6578 1.5612
8 0.0188 0.0196 3.2572 3.2573 0.8050 1.5622 0.0276 0.0188 3.2283 3.2285 0.5983 1.5605
9 0.0204 0.0234 3.2467 3.2469 0.8530 1.5612 0.0260 0.0218 3.2646 3.2648 0.6973 1.5606

10 0.0246 0.0174 3.2717 3.2718 0.6157 1.5615 0.0246 0.0205 3.3093 3.3095 0.6937 1.5610
Mean 0.0218 0.0205 3.2634 3.2635 0.7559 1.5615 0.0243 0.0198 3.2616 3.2618 0.6873 1.5611

Standard
Deviation 0.0027 0.0026 0.0100 0.0100 0.1133 0.0005 0.0037 0.0024 0.0236 0.0236 0.0932 0.0010



Photonics 2021, 8, 278 12 of 17

The dynamic target is scanned, captured, and tracked, and the results are shown
in Figure 9. The lateral velocity of the target is about 1 cm/s at 3.26 m, and the angular
velocity is about 3.067 mrad/s. The target is at the edge of the scan area and the target
does not move horizontally into the scan area until the scan begins. A total of 10 frames
are scanned, and the result is refreshed in each frame to achieve real-time tracking of the
target. The red arrow is the direction of the target motion, and the red dot indicates that the
target centroid is obtained by scanning in each frame. As shown in Table 3 and Figure 9a–c,
we can find that the target centroid moves horizontally about 13 cm but unstably by the
values of x0 and y0. The values of z0 and L0 indicate that the target has no absolute lateral
movement and is affected by the ranging accuracy; moreover, the mean of z0 is about
3.262076 m, which is consistent with the theoretical value of 3.26 m within allowable error.
There are ten centroid points for a total of 10 frames in (Figure 9a–c), which show the target
is tracked in real time. Figure 9d shows the image before tracking the target. When the
target stops moving, the system’s scan center finally points to the target, which is shown in
Figure 9e. Meanwhile, we have a second experiment under the same conditions in Table 3.
These data are consistent with the first experiment data and prove that the system has the
tracking ability of the target in conditions of a weak echo signal.
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Table 3. Coordinates and distance of the target centroid.

No.
1 2

x0/m y0/m z0/m L0/m x0/m y0/m z0/m L0/m

1 −0.0396 0.0000 3.2461 3.2463 −0.0399 −0.0033 3.2532 3.2534
2 −0.0383 0.0082 3.2305 3.2307 −0.0298 0.0066 3.2540 3.2541
3 −0.0232 0.0007 3.2840 3.2841 −0.0136 0.0069 3.2596 3.2597
4 −0.0014 0.0032 3.2678 3.2678 0.0068 0.0059 3.2756 3.2756
5 0.0096 0.0047 3.2723 3.2724 0.0180 0.0076 3.2869 3.2869
6 0.0306 0.0097 3.2462 3.2464 0.0389 0.0044 3.2579 3.2581
7 0.0473 0.0118 3.2597 3.2601 0.0491 0.0114 3.2648 3.2652
8 0.0616 0.0142 3.2681 3.2687 0.0693 0.0169 3.2387 3.2395
9 0.0784 0.0093 3.2788 3.2797 0.0861 0.0033 3.2468 3.2480

10 0.0937 0.0098 3.2785 3.2799 0.0961 0.0078 3.2721 3.2735

As shown in Figures 7–9, it is found that there is a little difference between the actual
tracking of the dynamic target and the simulation, which is caused by the instability of
the target motion, the ranging accuracy, and the fact that the target stops before the end
of the scan, etc. However, the experiment is consistent with the simulation as a whole.
Simultaneously, by combining tabular data, we can find that the system has acquisition
pointing and tracking capability based on single photon detection and have an excellent
performance to realize the acquisition, pointing and ranging of a static target, and the
APTR of a dynamic target with a lateral angular velocity is about 3.067 mrad/s, especially
in conditions of a weak echo signal. Moreover, weak echo detection is the basis of the
long-distance detection.

4.3. Analysis of Tracking and Detection Capability

In Sections 4.1 and 4.2, we found that the target tracking and ranging system based on
single photon detection has a good effect when the number of echo photons is about 10
weak echo signals and the noise is relatively weak, which verifies the ability of weak echo
tracking and ranging based on the combination of single photon detection and scanning
system. In order to show the fast long-distance tracking and detection ability based on
this system, we make a further analysis of the theory. Since the spiral scanning in this
experiment is relatively complex, we use the raster spiral scan as the equivalent substitute
for the simplifying geometric analysis, which is shown in Figure 1a. Spiral scanning has
a higher probability of capture when the target distribution model obeys the Gaussian
distribution, and the closer it is to the center, the faster the scanning will be and the higher
the scanning efficiency will be. Therefore, on the basis that the target has been captured,
the smaller the scanning range is set, the stronger the ability of capturing and tracking is.
However, the number of rings should be greater than or equal to 1, so that the position
of the target can be determined. In order to verify the tracking ability, the lateral angular
velocity of the target motion should meet the formula: w·T1 ≤ (1− F)θ1/e and T1 is the
time to scan the first lap. Only in this way can the target not escape from the scanning
area. Moreover, the movement distance of the target can not be more than the size of a spot
and multiple pulses can be accumulated on the target within the Tout time. It is assumed
that the approximate area or uncertain area information of the target can be obtained by
other methods.

The parameters of the designed system and the target are shown in Table 4, and they
are in line with the actual project. The number of received mean echo photons from the
target is about 10.8 in a time bin (2 ns) at 100 km by the following equation:

ns =
Et·ηt·ηr·τ2

r ·ρ·At·Ar

π·Z4θ2
1/e

· λ

h·c , (20)
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where h and c are the Planck’s constant and the velocity of light, respectively; Z is the
distance between the target and the system.

Table 4. The design parameters of the lidar system and the target.

Parameter Value

Energy of the laser (Et) 6× 10−3 J
Laser wavelength (λ) 1064 nm
Laser pulse width (Tt) 2 ns

Laser divergence angle (θ1/e) 200× 10−6 rad
Effective receiving area (Ar) 0.04 m2

Atmospheric transmittance (τa) 0.7
Optical efficiency of a lunch system (ηt) 0.9

Optical efficiency of a receiving system (ηr) 0.8
Reflection efficiency of the target (ρ) 0.3

Effective area of the target (At) 1 m2

Assume that the noise photons count rate is 1 Mcps, and the received average number
of noise photons n is 2× 10−3 in a time bin (2 ns). When the number of accumulated pulses
10 and the threshold of the recognition target 1 are chosen for the design the detection
probability and false-alarm probability are about 99.946% and 0.139%, respectively, by the
Equations (4) and (5) (the dead time is 45 ns). It indicates that the target can be detected at
a distance of 100 km. In fact, the number of accumulated pulses can fluctuate in a small
range without no considerable impact on high detection probability.

Under detectable conditions, we find that there are 9 probe points needed to complete
the first circle with a raster spiral scan. To meet detection requirements, each point stays
for about 2 ms and there are the accumulation of about 10 pulses. We can find that
T1 = 9·Tout = 18 ms, and the target with a lateral angular velocity of 7.8889 mrad/s can be
captured and tracked at F = 0.29 and θ1/e = 200·10−6 rad. It means that the system under
this research method has the ability to track a target with a lateral velocity of 788.89 m/s at
a long distance of 100 km which is show in Figure 10b. Moreover, the angular error is less
than 142·10−6 rad. Here, a frame is about 18 ms and the amount of data is relatively small,
and assume that the data-processing time is negligible. The number of accumulated pulses
can be up to 10 or more for Tout = 2 ms by the macro pulse method [13,33]. Meanwhile,
the ability of the target tracking and detecting also can be improved. And, the Equation
(13) needs to be partially modified as:

Tout =
(1− F) · θ1/e

V
= 2 · Tdwell · (1− F) =

1
PRFM

, (21)

where, PRFM is the macro pulse period, which can solve the range ambiguity. In the macro
pulse period, we can reasonably set N sub-pulses and accumulate them by compensating
the delay of the sub-pulses. In addition, the detection requirements also can be met by
using pseudo-random or true random coded [34–36] and PRFM is changed to the period of
a random sequence.
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5. Conclusions

In order to achieve the APTR of the non-cooperative target in conditions of a weak echo
signal, we designed an APTR lidar system. The system is composed of the signal processing
control module, single photon detection module, and scanning module. Moreover, the
system can avoid some defects caused by the devices, such as CCD, CMOS, four-quadrant
detectors, and array detectors for measuring target azimuth. In this paper, we analyzed
the relationship between the number of accumulated pulses and the detection and false-
alarm probabilities, and the total scan time by using a spiral scanning and single photon
detection models in detail. Furthermore, we also derive the three-dimensional coordinates
and orientation of the target. Then the target tracking and ranging strategy and the
simulation of APT of a target were designed. The pulse accumulation method and centroid
algorithm were applied to ensure the target detection capability. Finally, we completed
the preliminary functional verification experiment and select the appropriate number of
accumulated pulses to realize the APTR of the non-cooperative target in conditions of about
ten echo photons. Meanwhile, through further theoretical analysis, it was proven that the
system can have the ability of the fast long-distance non-cooperative target tracking and
ranging in conditions of a weak echo signal. Moreover, it provides a new idea for fast
long-distance non-cooperative target tracking and ranging only by using a single-point
single photon detector. It is meaningful to be applied to the active tracking and ranging of
an airborne target.
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