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Abstract: Recently, there has been increased interest in the shaping of light fields with an inverse
energy flux to guide optically trapped nano- and microparticles towards a radiation source. To
generate inverse energy flux, non-uniformly polarized laser beams, especially higher-order cylin-
drical vector beams, are widely used. Here, we demonstrate the use of conventional and so-called
generalized spiral phase plates for the formation of light fields with an inverse energy flux when they
are illuminated with linearly polarized radiation. We present an analytical and numerical study of
the longitudinal and transverse components of the Poynting vector. The conditions for maximizing
the negative value of the real part of the longitudinal component of the Poynting vector are obtained.

Keywords: spiral phase plate; generalized spiral phase plate; power-exponent phase plate; Poynting
vector; inverse energy flux; polarization

1. Introduction

The ability to shape light fields with the desired complex structure, so-called structured
laser beams, plays an important role in the field of laser manipulation for implementing op-
tical tweezers with advanced functionality. Conventional optical tweezers are unique tools
that use a strongly focused Gaussian laser beam for the trapping and three-dimensional
confinement of nano- and microparticles. Structured optical tweezers, also called holo-
graphic optical tweezers (HOT), provide more possibilities for laser manipulation due to
the possibility of controlling the local distribution of the optical forces acting on the particles
located in such a light field. For example, trapped particles can be guided along with the
desired two- or three-dimensional trajectory or rotated with a desired frequency depending
on the parameters of the used HOT. Recently, laser beams with an inverse energy flux have
attracted researchers’ attention. Such light fields allow the optically trapped particle to
be pulled towards the radiation source, i.e., in the direction opposite to field propagation.
Researchers have studied the formation of such advanced optical tweezers using light
fields with phase or polarization singularities. Currently, the most popular element for
generating light fields with phase singularities is probably the conventional spiral phase
plate (SPP) [1], an optical element with a complex transmission function exp(imϕ), where
ϕ is the polar angle and m is the topological charge of the formed vortex beam. The
wide popularity and spread of this element have led to a growth of studies on its various
modifications and generalizations to obtain new effective elements for forming light fields
with phase singularities with new properties. In particular, if conventional SPPs with an
integer value of m form vortex beams with an annular intensity distribution [2,3], then
SPPs with a fractional value of m [4] allow more complex intensity distributions [5] and can
be used for additional information coding [6]. A power-exponent phase plate (PEPP) [7,8]
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with the transmission function described as exp[i2πm(ϕ/2π)s], where m and s are arbitrary
numbers and ϕ is an azimuthal angle, can be used for shaping a spiral intensity distri-
bution. In 2020, we showed that a generalized spiral phase plate (GSPP) [9,10] with the
transmission function exp[ig(ϕ)], where g(ϕ) is an arbitrary smooth monotonic function,
always forms a spiral intensity distribution with a phase singularity point in the focal plane
of a lens. Variations in the phase function g(ϕ) affect the size and the twisting degree of the
generated light spiral, thereby determining the phase gradient along the light curve, which
is an important light-field characteristic for laser manipulation [11–13]. The transverse
energy flow density, which is proportional to the product of the field intensity and phase
gradient [14,15], allows guiding the trapped particle in a certain direction. However, the
longitudinal distribution of the energy flow density is a key for realizing light fields with
an inverse energy flux. The inverse energy flux phenomena [16–20] is related to “tractor
beams” [21–23] in optical trapping and manipulation and to the detection of “invisibility
cloaks” [24]. It should be noted that just one inverse energy flux does not guarantee the
existence of the pulling optical force—the optical force can be negative due to the neg-
ative Poynting vector component, but its effect is often blocked by the gradient-phase
force [25–28].

Earlier, the possibility of forming an inverse energy flux in the focal region for cylin-
drical vector beams (CVBs) of various orders was investigated, as was a linearly polarized
beam with a cosine amplitude distribution [17,18]. Despite the existence of many methods
for forming CVBs, linearly polarized laser sources remain the most readily available, af-
fordable, and widespread. Therefore, in this work, we investigate the possibility of forming
inverse energy flux in the focal region for a linearly polarized beam under diffraction
by both conventional and generalized SPPs. Due to the generation of non-annular light
distributions, GSPPs provide more opportunities to control the distribution of optical forces
acting on the trapped particle. In particular cases, we carry out analytical and numerical
studies of both the longitudinal and transverse components of the Poynting vector, includ-
ing both the real and the imaginary part. Recently, the imaginary part of this component
has attracted attention from researchers [29–32], since it was shown to contribute to the
transverse force acting on optically trapped Mie particles [29,30].

2. Methods

Consider the focused electromagnetic field in the focal region in the framework of the
Debye theory [33–35]:[

E(r, γ, z)
H(r, γ, z)

]
=

− i f
λ

θmax∫
0

2π∫
0

T(θ)F(θ,ϕ)
[

QE(θ,ϕ)
QH(θ,ϕ)

]
exp{ik[r sin θ cos(ϕ− γ) + z cos θ]} sin θdθdϕ,

(1)

where (r, γ, z) are the cylindrical coordinates in the focal region, (θ, ϕ) are the spherical
angular coordinates of the focusing system’s output pupil, θmax is the maximum value
of the azimuthal angle related to the system’s numerical aperture, F(θ, ϕ) is the complex
amplitude of the input field, T(θ) is the pupil’s apodization function (T(θ) =

√
cos θ for

aplanatic systems), k = 2π/λ is the wavenumber, λ is the wavelength, f is the focal length,
and (cx(θ, ϕ), cy(θ, ϕ))T is the vector of polarization coefficients of the input field,

QE(θ,ϕ) =

 A(θ,ϕ) C(θ,ϕ)
C(θ,ϕ) B(θ,ϕ)
−D(θ,ϕ) −E(θ,ϕ)

( cx(θ,ϕ)
cy(θ,ϕ)

)
,

QH(θ,ϕ) =

 C(θ,ϕ) −A(θ,ϕ)
B(θ,ϕ) −C(θ,ϕ)
−E(θ,ϕ) D(θ,ϕ)

( cx(θ,ϕ)
cy(θ,ϕ)

)
,

(2)
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with
A(θ,ϕ) = 1− cos2ϕ(1− cos θ),
B(θ,ϕ) = 1− sin2ϕ(1− cos θ),

C(θ,ϕ) = − sinϕ cosϕ(1− cos θ),
D(θ,ϕ) = cosϕ sin θ,
E(θ,ϕ) = sinϕ sin θ.

(3)

The complex Poynting vector [29–32] is proportional to the following expression:

P ' E∗ ×H. (4)

The real part of expression (4) is a standard Poynting vector, and the imaginary part is
interesting, as it relates to exciting non-standard forces arising at the interaction between
electric- and magnetic-induced dipoles [29].

In this work, we focus on the longitudinal component of the Poynting vector, which is
proportional to the following expression [36]:

Pz ' E∗x Hy − E∗y Hx. (5)

Note that Re[Pz] is the most important for our research, since it allows us to determine
the areas of reverse energy flow. In addition, the azimuthal component of the Poynting
vector Re[Pγ], which is related to the longitudinal component of the angular momentum,
is also interesting [37,38]:

jz ' Re[r× P]z = Re
[
xPy − yPx

]
= rRe

[
Py cos γ− Px sin γ

]
= rRe[Pγ]. (6)

Further, we consider the relative magnitudes of negative and positive values, so
constants and common factors can be ignored. To obtain explicit analytical expressions,
consider an input field with a superimposed narrow annular aperture with a central angle
θ0 and width ∆ [39,40]:

F(θ,ϕ) = F(θ0,ϕ) = S(θ0)F0(ϕ) (7)

where F0(ϕ) is an arbitrary function and

S(θ0) =

{
1, |θ− θ0| ≤ ∆/2,

0, else.
(8)

In this case, the field components in Equation (4) are calculated in the focal plane
(z = 0) by the following formulas: Ex(r, γ, z)

Ey(r, γ, z)
Ez(r, γ, z)

 ≈ t(θ0, z)
2π∫
0

F(θ0,ϕ)

 A(θ0,ϕ) C(θ0,ϕ)
C(θ0,ϕ) B(θ0,ϕ)
−D(θ0,ϕ) −E(θ0,ϕ)

( cx(θ0,ϕ)
cy(θ0,ϕ)

)
G(r, (ϕ− γ))dϕ, Hx(r, γ, z)

Hy(r, γ, z)
Hz(r, γ, z)

 ≈ t(θ0, z)
2π∫
0

F(θ0,ϕ)

 C(θ0,ϕ) −A(θ0,ϕ)
B(θ0,ϕ) −C(θ0,ϕ)
−E(θ0,ϕ) D(θ0,ϕ)

( cx(θ0,ϕ)
cy(θ0,ϕ)

)
G(r, (ϕ− γ))dϕ,

(9)

where t(θ0, z) = −i exp (ikz cos θ0)
√

cos θ0 sin θ0 · ∆ · f /λ, G(r,ϕ) = exp (ikr sin θ0 cosϕ).

3. Results

As an input field F(θ0, ϕ), consider a plane x-linearly polarized laser beam with the
polarization vector (cx(θ0, ϕ), cy(θ0, ϕ))T = (1, 0)T, passed through a GSPP [9,10]:

F0(ϕ) = exp[ig(ϕ)], (10)

where g(ϕ) is an arbitrary smooth function.
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In this case, Equation (9) is simplified and takes the following form: Ex(r, γ, z)
Ey(r, γ, z)
Ez(r, γ, z)

 ≈ t(θ0, z)
2π∫
0

exp[ig(ϕ)]

 A(θ0,ϕ)
C(θ0,ϕ)
−D(θ0,ϕ)

G(r, (ϕ− γ))dϕ, Hx(r, γ, z)
Hy(r, γ, z)
Hz(r, γ, z)

 ≈ t(θ0, z)
2π∫
0

exp[ig(ϕ)]

 C(θ0,ϕ)
B(θ0,ϕ)
−E(θ0,ϕ)

G(r, (ϕ− γ))dϕ.

(11)

Equation (11) shows that the components of the electromagnetic field Ey and Hx are
equal; therefore, the real part of the longitudinal component of the Poynting vector defined
by Equation (5) is proportional to the following value:

Re[Pz] ' Re
[
E∗x Hy

]
−
∣∣Ey
∣∣2. (12)

For an x-linearly polarized field, |Ey|2 is, as a rule, small. Therefore, a significant
inverse flow can be associated with the first term in Equation (12). Obviously, this term
essentially depends on the form of the function defined by Equation (10). Next, we analyze
the properties of this function to form a reverse energy flux on the optical axis.

3.1. Theoretical Analysis Based on the Stationary Phase Method

Since the wavenumber k for the optical wavelength range is large, we can apply the
stationary phase method [41,42], the error of which is defined as O(k−1/2). Using this
method, Equation (9) can be calculated approximately based on the following relation:

b∫
a

exp[±ip(ϕ)]q(ϕ)dϕ ≈ exp[±ip(ϕ0)]q(ϕ0)

√
±i2π

p′′ (ϕ0)
, (13)

where ϕ0 is a stationary point.
If there are several stationary points, then there will be a sum of terms defined by

Equation (13). In our case, the problem is facilitated by the fact that, in all three integrals
defined by Equation (11), function p(ϕ) is the same and is equal to the following:

p(ϕ) = g(ϕ) + kr sin θ0 cos(ϕ− γ). (14)

Using Equation (13) with Equation (11) gives the following equations for the case of
one stationary point:

E∗x ≈ t∗(θ0, z) exp[−ip(ϕ0)]A(θ0,ϕ0)
√
−i2π

p′′ (ϕ0)
,

Ey ≈ t(θ0, z) exp[+ip(ϕ0)]C(θ0,ϕ0)
√

+i2π
p′′ (ϕ0)

,

Hy ≈ t(θ0, z) exp[+ip(ϕ0)]B(θ0,ϕ0)
√

+i2π
p′′ (ϕ0)

.

(15)

Then, from Equation (12), the following equation for Re[Pz] is obtained:

Re[Pz] ∼ |t(θ0, z)|2 2π

|p′′ (ϕ0)|

(
A(θ0,ϕ0)B(θ0,ϕ0)− C2(θ0,ϕ0)

)
= |t(θ0)|2

2π

|p′′ (ϕ0)|
cos θ0. (16)

This number is positive, meaning that, in the presence of a single stationary point
(taking into account the approximation of the method), the presence of regions with a
negative energy flux is unlikely.

If there are two stationary points, then the field components are expressed by equations
similar to Equation (15), but there will be two terms corresponding to the first and second
points. Omitting the details of the calculations, we here present the final expressions:
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E∗x Hy = 2π∣∣∣p′′1 ∣∣∣A1B1 +
2π∣∣∣p′′2 ∣∣∣A2B2 +

2π√∣∣∣p′′1 ∣∣∣·∣∣∣p′′2 ∣∣∣ (A1B2 + A2B1)M1 +
2πi√∣∣∣p′′1 ∣∣∣·∣∣∣p′′2 ∣∣∣ (−A1B2 + A2B1)M2,

∣∣Ey
∣∣2 = 2π∣∣∣p′′1 ∣∣∣C2

1 +
2π∣∣∣p′′2 ∣∣∣C2

2 +
2π√∣∣∣p′′1 ∣∣∣·∣∣∣p′′2 ∣∣∣2C1C2M1,

(17)

where

M1 =


+ cos(p1 − p2), p′′1 , p′′2 have the same sign,

− sin(p1 − p2), p′′1 > 0, p′′2 < 0,
+ sin(p1 − p2), p′′1 < 0, p′′2 > 0,

M2 =


+ sin(p1 − p2), p′′1 , p′′2 have the same sign,

+ cos(p1 − p2), p′′1 > 0, p′′2 < 0,
− cos(p1 − p2), p′′1 < 0, p′′2 > 0.

(18)

Then, after taking the real part (dropping the common factor |t(θ0)2|), we get
the following:

Re[Pz] ∼ Re
[
E∗x Hy

]
−
∣∣Ey
∣∣2 =

2π∣∣∣p′′1 ∣∣∣ · cos θ0 +
2π∣∣∣p′′2 ∣∣∣ · cos θ0 +

2π√∣∣∣p′′1 ∣∣∣·∣∣∣p′′2 ∣∣∣ ·
[
2 cos θ0 + (1− cos θ0)

2 sin2(ϕ1 −ϕ2)
]
·M1 (19)

Thus, the longitudinal component of the Poynting vector depends on the ratio of the
signs of the second derivatives at stationary points. It is easy to see that, if there are exactly
two stationary points and the function p(ϕ) is smooth, then the signs will necessarily be
different, since the two adjacent extrema must be of different types.

From Equation (14), we can obtain the following expression for finding stationary points:

p′(ϕ) = g′(ϕ)− kr sin θ0 sin(ϕ− γ) = 0. (20)

When are there exactly two stationary points? Taking into account the fact that
sin(x) = 0 twice on the period, we see that two roots are provided at condition
krsinθ0 > max|g′(ϕ)| for any function g(ϕ). Obviously, it is necessary to consider the
region outside the optical axis (r > r0). The case for the optical axis is considered separately
in Section 3.2. Note also that the stationary phase method will give a significant error if
the stationary points are closely located. Therefore, in order to ensure a sufficient distance
between stationary points, we impose a stronger condition krsinθ0 > 2max|g′(ϕ)|.

For θ0→π/2, the first term in Equation (20) is much lower than the second one, and
we get two roots spaced apart by an angle close to 180 degrees. It is impossible to ignore
the first term, since, in this case, the two roots are exactly π radians apart, which leads to
the absence of negative regions (Pz ≥ 0) according to Equation (19).

3.2. Determination of Conditions for Inverse Energy Flow on the Optical Axis

If the goal is to obtain inverse energy flow on the optical axis, then the conditions for
this are different. In this case, Equation (20) takes the simple form g′(ϕ) = 0. Thus, the g(ϕ)
function is decisive. Figure 1 shows an example of a graph of a function with two extrema
(two stationary points).

For definiteness, assume that p′′1 < 0 (the first stationary point is the maximum) and
p′′2 > 0 (the second is the minimum). Moreover, to simplify calculations, assume that∣∣p′′1 ∣∣ = ∣∣p′′2 ∣∣ = p′′ . Then, from Equation (19), we obtain the following:

Re[Pz] '
2π

p′′
·
[
2 cos θ0 +

[
2 cos θ0 + (1− cos θ0)

2 sin2(ϕ1 −ϕ2)
]
· sin(p1 − p2)

]
. (21)
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Equation (21) shows that the inequality sin(p1 − p2) < 0 must be satisfied to obtain
negative values. If so, then sin2(ϕ1 − ϕ2) should be increasing. For fixed p′′ , the minimum
value of Pz is found if we have the following:

[sin(p1 − p2) = −1]& [sin(ϕ1 −ϕ2) = ±1]. (22)

In this case, it follows from Equation (21) that we get the following:

Pz,min = −2π

p′′
· (1− cos θ0)

2. (23)

This value is negative for any θ0, even in the paraxial case.
Thus, Equation (22) is the main result of this section and defines the condition for

the inverse energy flow on the optical axis for a purely phase input field defined by
Equation (10).

The conditions defined by Equation (22) mean that the difference between the values
of function g(ϕ) at the maximum and minimum must equal 3π/2 + 2πN, and the distance
between the positions of the extrema must equal π/2 or 3π/2. Considering that we need to
make p′′ smaller, it is better to choose a difference of 3π/2 (n = 0) and a distance of 3π/2.

The above reasoning shows a certain inconsistency between the desire to enhance the
inverse energy flow by decreasing the value of p′ ′ (see Equation (23)) inaccuracy increasing
of the stationary phase method in this case in this case. Thus, we have no guarantee that
the phase satisfying condition defined by Equation (22) will be optimal. Therefore, the final
conclusion will be made on the basis of numerical modeling by using exact Equation (9).
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3.3. Determination of Conditions for Off-Axis Inverse Energy Flow

The general reasoning given in Section 3.1, as well as previous studies [17,18], shows
that off-axis inverse energy flow can be greater than on the axis. This can be theoretically
justified by using Equation (20) for the full phase p(ϕ):

p(ϕ) = g(ϕ) + kr sin θ0 cos(ϕ− γ) = g(ϕ) + µ cos(ϕ− γ),
p′(ϕ) = g′(ϕ)− µ sin(ϕ− γ),
p′′ (ϕ) = g′′ (ϕ)− µ cos(ϕ− γ).

(24)

As follows from Equation (24), for µ 6= 0 (i.e., outside the optical axis), at least at one
stationary point, p′′ , becomes less than for µ = 0. In general, it is impossible to obtain
specific results, so we consider some examples below.
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3.4. Analysis of Special Cases and Simulation Results

This section discusses various specific examples and special cases of GSPP. In special
cases, it is much easier to carry out theoretical analysis, so in this section, we consider not
only the longitudinal but also the transverse components of the Poynting vector, as well
as account for not only the real but also the imaginary part of the Poynting vector, which
contributes to the transverse force acting on optically trapped Mie particles [29,30]. In the
simulation, the following calculation parameters were used: the annular aperture had a
central radius θ0 = 80◦ and width ∆ = 20◦.

3.4.1. Example 1: Classic SPP

First, consider the case of a standard SPP with a phase:

g(ϕ) = mϕ, (25)

where m is an arbitrary real number.
For integer m, the calculations in Equations (11) and (12) are performed analytically

and give the following result:

Pz = Re[Pz] + iIm[Pz] =

=
[
π2(1 + cos θ0)

2 J2
m(ρ)− (π2/2)(1− cos θ0)

2(J2
m+2(ρ) + J2

m−2(ρ))
]
−

−i
[
π2 sin2 θ0 sin 2γ Jm(ρ)(Jm+2(ρ)− Jm−2(ρ))

]
,

(26)

Pr = iIm[Pr] = iπ2 sin θ0 cos 2γ[(1 + cos θ0)Jm(ρ)(Jm−1(ρ)− Jm+1(ρ))+
+0.5(1− cos θ0)(Jm−1(ρ)Jm+2(ρ)− Jm+1(ρ)Jm−2(ρ))],

(27)

Pγ = Re[Pγ] + iIm[Pγ] = π2 sin θ0{(1 + cos θ0)Jm(ρ)[Jm−1(ρ) + Jm+1(ρ)]+
+(1− cos θ0)[Jm−2(ρ)Jm−1(ρ) + Jm+1(ρ)Jm+2(ρ)]}+
+iπ2 sin θ0 sin 2γ{(1− cos θ0)[Jm−1(ρ)Jm+2(ρ)− Jm+1(ρ)Jm−2(ρ)]−
− (1 + cos θ0)Jm(ρ)[Jm−1(ρ)− Jm+1(ρ)]},

(28)

where ρ = krsinθ0.
As seen from Equation (26), the real part of the longitudinal component of the

Poynting vector Re[Pz] has radial symmetry and does not change when m changes sign.
When the sign of m changes, the imaginary part Im[Pz] changes its sign to the oppo-
site and, for any m, has rotational symmetry of the second order due to the presence
of an angular dependence sin(2γ). A negative value for Re[Pz] at the origin occurs
only at m = ± 2. For m = 0 and m = ± 1, the results have a simpler form. In particu-
lar, for m = 0 Re[Pz] = π2(1 + cos θ0)

2 J2
0 (ρ) − π2(1− cos θ0)

2 J2
2 (ρ), Im[Pz] = 0, and for

m = ±1 Re[Pz] = π2(1 + cos θ0)
2 J2

1 (ρ) − (π2/2)(1− cos θ0)
2[J2

1 (ρ) + J2
3 (ρ)

]
, Im[Pz] =

∓π2 sin2 θ0 sin 2γ · J1(ρ)[J1(ρ) + J3(ρ)].
The radial component, as follows from Equation (27), is purely imaginary. Equation (28)

shows that the real part of the azimuthal component Re[Pγ] is radially symmetric and
equal to zero at m = 0.

It is more difficult to obtain analytical expressions for fractional values of m (as a rule,
the representation through the sum for integer m is used), and they will be less descriptive.
Therefore, we consider only the simulation results for these fractional values. Figure 2
shows the simulation results for standard integer and fractional SPPs with a transmission
function of exp(imϕ).
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The distributions of the intensity of the electric |E|2 and magnetic |H|2 components
of the field in the focal plane (z = 0), the distributions of individual components of the
Poynting vector, the real and imaginary parts of the longitudinal component, and the real
part of the angular component are shown. The longitudinal component is the main focus
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of this study, so we consider it comprehensively. The angular component of the Poynting
vector is closely related to the angular momentum of the field, which is often formed by
using SPP.

The simulation results for integer m fully correspond to analytical Equations (26) and (28).
In particular, the real part of Pz has radial symmetry, and the imaginary part Pz has
a structure corresponding to sin(2γ). Fractional orders of m lead to distortion of the
mentioned symmetries. However, for Im[Pz], there is complete symmetry of negative
and positive values for any m, which leads to a zero mean value of the imaginary part.
Nevertheless, locally, it can affect optically trapped Mie particles [29,30] and for m = ± 1,
the local maxima have the greatest value.

The maximum relative negative value for Re[Pz] is observed when m = 2 and it
is located at the origin. Note that, for integer m, the distribution of the real part Pz is
structurally similar to that for radial polarization of the mth order [17]. In both cases, the
generated distributions are radially symmetric and there is a negative value on the axis
only for m = 2. However, there are some differences: for radial polarization, the distribution
changes slightly when the sign of m changes; when m = 1, there are no negative values. For
the imaginary part, the difference is fundamental: for radial polarization, Im[Pz] = 0, and
for linear polarization for classic SPPs, Im[Pz] 6= 0 for any m 6= 0 (see Figure 2). Obviously,
for negative values of m, the results are similar; however, Im[Pz] and Re[Pγ] change signs
(compare the lines in Figure 2 corresponding to m = 2 and m = −2).

In Reference [18], superposition 0.5[exp(imϕ) + exp(–imϕ)] = cos(mϕ) was investigated.
The case m = ± 2 was also noted as special in terms of maximum negative values Re[Pz]
on the optical axis. However, References [17,18] also pointed out the meaning of using an
illuminating beam cos(mϕ) at |m| > 2, since this allows us to increase the total area and
energy of negative regions. The use of fractional values of m allows for continuous changes
in the properties of these areas, including changing their shape. Below, Example 2 shows
that, for sin(mϕ), there is a similar result up to rotation.

3.4.2. Example 2: Amplitude Spiral Plate with a Phase Shift

Consider a spiral plate defined as follows:

F0(ϕ) = sin(mϕ+ϕ0). (29)

Add to it a phase corresponding to the compensation of the kernel phase defined
by Equation (1):

g(ϕ) = −α cos(ϕ), (30)

where α is an arbitrary real number.
Then, p(ϕ) = –αcos(ϕ) + µcos(ϕ − γ) equals zero (for γ = 0) on a ring with a radius

of r0 = α/(ksinθ0). It is similar to phase compensation in the focal plane of the lens. In
this case, (γ = 0, α = µ) and F0(ϕ) = 1, and all quantities included in Equation (12) are
calculated exactly:

E∗x ∼
2π∫
0

A(θ0,ϕ)dϕ = π(1 + cos θ0),

E∗y ∼
2π∫
0

C(θ0,ϕ)dϕ = 0,

Hy ∼
2π∫
0

B(θ0,ϕ)dϕ = π(1 + cos θ0),

Pz ' E∗x Hy −
∣∣Ey
∣∣2 = π2(1 + cos θ0)

2 > 0.

(31)

Thus, in the considered region, the energy flux is positive.
However, the situation can be changed by using a non-unit amplitude, as was

used in Reference [18]. Consider an amplitude that co-phases to C(θ0,ϕ), that is, equals
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sin(ϕ)cos(ϕ) = 0.5 sin(2ϕ). This is the light field defined from Equation (29), when m = 2
and ϕ0 = 0. In this case we have the following:

E∗x ∼
2π∫
0

sinϕ cosϕA(θ0,ϕ)dϕ = 0,

E∗y ∼
2π∫
0

sinϕ cosϕC(θ0,ϕ)dϕ = −π
4 (1− cos θ0),

Hy ∼
2π∫
0

sinϕ cosϕB(θ0,ϕ)dϕ = 0,

Pz ' E∗x Hy −
∣∣Ey
∣∣2 = −π2

16 (1− cos θ0)
2 < 0.

(32)

Thus, in this case, the energy flow is inverse. Consider the amplitude defined by
Equation (29) and the phase defined by Equation (30) together:

F0(ϕ) = sin(2ϕ) exp[−iα cos(ϕ)]. (33)

For a field defined by Equation (33), using the tabular formulas Section 2.5.27 in
Reference [43]) gives the following in the explicit form:

E∗x = 0,
Hy = 0,
E∗y = −2π(1− cos θ0)[J0(α− µ)− J4(α− µ)].

(34)

Equation (34) shows that, for γ = 0, the energy flux is negative and equal:

Pz ' −aπ2(1− cos θ0)
2[J0(α− kr sin θ0)− J4(α− kr sin θ0)]

2. (35)

Note that the imaginary part Im[Pz] in this case is equal to zero. Substituting α = 0
(there is no phase) gives an expression that coincides with the solution obtained in
Reference [18] for the amplitude cos(2ϕ). Then an inverse flux was observed on rays
corresponding to γ = ±π/4. At α 6= 0, the phase g(ϕ) = –αcos(ϕ) plays a role similar to the
linear phase with a spatial carrier (analogue of a prism): it shifts the center of the distribu-
tion from the radius r = 0 to the radius r0 = α/(ksinθ0). Figure 3 shows the corresponding
simulation results. An analytical calculation for integer m shows that Pz is real, but Pγ is
purely imaginary.

The results for integer m are similar to those obtained in Reference [18] for the ampli-
tude cos(mϕ) up to rotation. However, the introduction of an additional phase was not
considered in Reference [18]. Such a phase does not change the main characteristics of the
Poynting vector, but allows the center of the distribution to be shifted from the optical axis
in accordance with Equation (35). This is important because the maximum negative value
has so far been observed only at the origin of coordinates [17–19].

It can be seen that Im[Pz] and Re[Pγ] are nonzero only for fractional values of m in
the amplitude; however, the average value also remains zero. Note also that, in examples
with a half-integer frequency, the distribution Re[Pz] has two axes of symmetry and two
positive maxima. Perhaps this is because half-integer frequencies retain some properties of
integers, in particular, equality sin(m2π) = 0. Therefore, some features may appear, as was
observed in parabolic beams [44].



Photonics 2021, 8, 283 11 of 17
Photonics 2021, 8, 283 11 of 17 
 

 

 
Figure 3. Simulation results for amplitude spiral plates (red color—for x-components, green color—
for y-components, and blue color—for z-components). The distributions in the focal plane with a 
size of 4λ × 4λ are shown. 

The results for integer m are similar to those obtained in Reference [18] for the ampli-
tude cos(mφ) up to rotation. However, the introduction of an additional phase was not 
considered in Reference [18]. Such a phase does not change the main characteristics of the 

Figure 3. Simulation results for amplitude spiral plates (red color—for x-components, green color—
for y-components, and blue color—for z-components). The distributions in the focal plane with a size
of 4λ × 4λ are shown.



Photonics 2021, 8, 283 12 of 17

3.4.3. Example 3: Power-Exponent Phase Plate

A PEPP [40,41] has the following phase profile:

g(ϕ) = mϕs, (36)

where m is an arbitrary real number and s is a positive real number.
The light field formed by the plate with phase defined by Equation (36) can be rep-

resented by an infinite sum of fields formed by classic integer-order SPPs. Therefore,
analytical formulas do not give a visual representation of the properties of the generated
field, but References [9,10] showed that the line of maximum intensity has the shape of a
spiral. In the paraxial mode, Re[Pz] is proportional to the field intensity.

Figure 4 shows the modeling results for PEPP defined by Equation (36).
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Our analysis of the results shown in Figure 4 reveals that, as in Example 1 (classic
SPP), the lines of the level of the real parts of Pz and Pγ are approximately parallel to the
mentioned spiral: for the imaginary part of Pz, this is expressed less clearly, since sector
dependence is imposed, although not as explicitly as in Example 1. Moreover, Im[Pz] no
longer has symmetry of negative and positive values; however, the zero mean value of the
imaginary part may remain.

3.4.4. Example 4: Light Fields Resulting from the Stationary Phase Method

In Section 3.1, we considered the problem of the formation of an inverse flow on
the optical axis within the framework of the stationary phase method. The conditions for
maximizing the negative value of Re[Pz] on the optical axis, imposed on the phase function,
were formulated at the end of Section 3.2. These conditions, for example, are satisfied by a
function of the following form (see Figure 1):

g1(ϕ) =
3π

4
sin
[

2
3

(
ϕ+

π

2

)]
. (37)
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Figure 5 shows the simulation results for the input field, which is a narrow ring with
a phase function g1(ϕ) from Equation (37).
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Figure 5. Simulation results for the input field with phase g1(ϕ) defined from Equation (37): ampli-
tude (a) and phase (b) distribution of the input field; |E|2 (c) and |H|2 (d) distributions in the focal
plane, as well as the distributions of Re[Pz] (e), Im[Pz] (f), and Re[Pγ] (g).

The two functions defined by the following polynomials have similar properties:

g2(ϕ) =
2

27
(ϕ− π)3 − π2

8
(ϕ− π). (38)

g3(ϕ) =
8

9π2 (ϕ− π)3 − 3
2
(ϕ− π). (39)

All three functions have a maximum value at a point ϕ1 = π/4 and a minimum value
at a point ϕ2 = 7π/4. The first and second functions have the same values of the second
derivatives at these points, but the difference, gmax − gmin = π3/8, is less than the value
of 3π/2 mentioned in Section 3.2, which is in the first function. The third function has a
difference of 3π/2, but the second derivatives at the extrema are slightly larger in absolute
value than those of the first and second functions. Figure 6 shows graphs of all three
functions. The figured shows they are very close and, therefore, will give similar results.
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As follows from the calculation results shown in Figure 5, predictions based on the
stationary phase method did not give the expected effect: negative values of the energy
flux are small and, moreover, are mainly observed off-axis. Obviously, this is due to the
approximation of the stationary phase method and, possibly, not the full legitimacy of
its use.

Significant changes can be expected if the amplitude is made to equal zero outside
the vicinity of the extremum points, but this entails a loss of the incident beam energy.
Therefore, it is more efficient to make the second derivative equal zero (although the
stationary phase method is no longer directly applicable here), i.e., to use the binary
version of the considered phase functions, as shown in the following example.



Photonics 2021, 8, 283 14 of 17

3.4.5. Example 5: Binary Phase

Reference [18] showed that the distribution of the Poynting vector changes little if the
incident beam with amplitude cos(mϕ) is replaced by a beam with unit amplitude and
binary phase.

Therefore, consider a phase function of the following form:

gb(ϕ) = πsgn[sin(mϕ+ϕ0)]/2 + h. (40)

where sgn(·) is the sign function and h is a real constant. In contrast to Reference [18],
m can be a non-integer. Obviously, parameters ϕ0 and h do not qualitatively affect the
distribution pattern: ϕ0 determines its rotation, and h should not change it at all, but
h 6= 0 may be more convenient when carrying out an experiment. The simulation results
for binary phase functions defined by Equation (40) for various values of m are shown
in Figure 7.
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Comparing Figures 3 and 7 reveals that the distributions in the focal plane for the
binary phases strongly correlate with distributions for the amplitude in the form of a sine,
as it is actually supposed to be. There are two main differences: the spots have slightly
changed their shape and the energy efficiency is increased.
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4. Discussion

The obtained analytical and numerical results allow us to draw some conclusions
about the preferred variants of the input field for amplifying the reverse energy flow in
different areas of the focal plane.

Obviously, to ensure the reverse energy flow, Equation (5) must take negative values
in a certain area. However, if the specific form of the fields participating in Equation (5)
is unknown, it is impossible to make any assumptions. Note that Equation (5) includes
the field distributions in the focal region; therefore, it is difficult to guess what the initial
field (in the input plane) should be to achieve this goal. To do this, it would be necessary
to solve the inverse problem for vector fields taking into account Maxwell’s equations,
which is difficult in general form. Therefore, we have limited the consideration to a certain
class of input fields. In particular, the field was assumed to be linearly polarized. This
made it possible to reduce the general Equation (5) to a particular Equation (12), which
is more illustrative for the search for possible solutions. Moreover, to perform analytical
calculations, we considered the input field in the form defined by Equation (7), imposing a
narrow annular aperture, and thus obtained a dependence on only one variable.

The imposition of such restrictions allowed us to apply the stationary phase method
to calculate the integrals and obtain condition defined by Equation (22) for inverse energy
flow on the optical axis for a purely phase input field (the amplitude is constant). However,
due to the approximation of the stationary phase method, which is especially manifested
on the optical axis, the obtained analytical functions for the input field did not give a large
value of the inverse energy flow. However, the analysis based on the stationary phase
method suggested that the inverse energy flow out of the optical axis may be greater than
at the axis.

Due to the limitations of the stationary phase method, we proceeded to the analysis of
exact expressions for several types of the input field. Among the considered fields, two
types are special: (1) the classical spiral phase plate of the second order g(ϕ) = 2ϕ, which
provides the maximum inverse energy flow on the optical axis; and (2) a generalized spiral
phase plate g(ϕ) = −αcos(ϕ + ϕ1) with the amplitude sin[2(ϕ + ϕ2)], which forms regions
of the inverse energy flow with a larger size and allows this region to be displaced.

5. Conclusions

Structured laser beams with the predetermined amplitude, phase, and polarization
distributions play an important role in the field of laser manipulation. The possibility
to form light fields with the desired distribution of the Poynting vector representing the
directional energy flux of an electromagnetic field allows one to affect optically trapped
particles in a controlled manner. In this paper, we demonstrated the possibility to form light
fields with an inverse energy flux and control the distributions of the real and imaginary
parts of the Poynting vector, using conventional and GSPPs illuminated with linearly
polarized laser radiation. Our theoretical analysis based on the stationary phase method
provides the conditions for generating inverse energy flux on the optical axis in the case of
conventional and generalized SPPs. We also obtained the conditions for maximizing the
negative value of the real part of the longitudinal component of the Poynting vector.

We showed that, for a classic SPP exp(imϕ), the maximum relative negative value for
the real part of the longitudinal component of the Poynting vector is observed when m = 2
and it is located at the origin. In addition, for integer m, the real part of the longitudinal
component has radial symmetry, and the imaginary part of the longitudinal component
has a structure corresponding to sin(2ϕ). The use of a special phase allows us to shift the
center of the Poynting vector distribution from the optical axis, so the maximum negative
value of the inverse energy flux will be out of the origin of coordinates. The use of PEPPs
allows us to break the symmetry of negative and positive values of the imaginary part
of the longitudinal component of the Poynting vector; however, the zero mean value of
the imaginary part may remain. Currently, laser sources with a linearly polarized output
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radiation are the most readily available, which makes the results obtained in this work
attractive for use in the field of laser manipulation.
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