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Abstract: A modified rate equation model was presented to theoretically investigate the nonlinear
dynamics of solitary two-state quantum dot lasers (TSQDLs) under optical feedback. The simulated
results showed that, for a TSQDL biased at a relatively high current, the ground-state (GS) and
excited-state (ES) lasing of the TSQDL can be stimulated simultaneously. After introducing optical
feedback, both GS lasing and ES lasing can exhibit rich nonlinear dynamic states including steady
state (S), period one (P1), period two (P2), multi-period (MP), and chaotic (C) state under different
feedback strength and phase offset, respectively, and the dynamic states for the two lasing types
are always identical. Furthermore, the influences of the linewidth enhancement factor (LEF) on the
nonlinear dynamical state distribution of TSQDLs in the parameter space of feedback strength and
phase offset were also analyzed. For a TSQDL with a larger LEF, much more dynamical states can be
observed, and the parameter regions for two lasing types operating at chaotic state are widened after
introducing optical feedback.

Keywords: nonlinear dynamics; quantum dot lasers; optical feedback; chaotic; linewidth enhance-
ment factor (LEF)

1. Introduction

After introducing external perturbations, semiconductor lasers (SLs) can exhibit rich
nonlinear dynamics [1,2], which can be applied in many fields such as random number
generation, secure communication, photonic microwave signal generation, all-optical logic
gates, and reservoir computing [3–7].

Quantum dot (QD) lasers are self-assembled nanostructured SLs. Compared with tra-
ditional quantum well (QW) SLs, QD lasers have many advantages such as low threshold
current density [8], high temperature stability [9], low chirp [10], and large modulation
bandwidth [11]. Such unique characteristics make QD lasers become excellent candidate
light sources in optical communication, optical interconnection, silicon photonic integrated
circuits, and photonic microwave generation, etc. [12–16]. Due to strong three-dimension
quantum confinement of the carriers, QD lasers have discrete energy levels and state densi-
ties, which lead to their unique emission performances. Related studies have shown that
there exist two current thresholds in ordinary QD lasers. When the bias current is increased
to the first threshold, QD lasers can emit on the ground-state (GS). Continuously increasing
the bias current, the number of carriers at the excited-state (ES) increases rapidly. Once the
bias current exceeds a certain value (the second threshold), QD lasers can simultaneously
emit on GS and ES. Correspondingly, such QD lasers are named as two-state QD lasers
(TSQDLs) [17,18]. Via some technologies, QD lasers can emit solely on GS or ES, and the
corresponding QD lasers are named as GS-QD lasers and ES-QD lasers, respectively [19,20].
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Previous studies have shown that different types of QD lasers can exhibit different
performances. GS-QD lasers possess a low threshold current and low sensitivity to op-
tical feedback owing to relatively low energy levels and strong damping of relaxation
oscillation [21,22]. Compared with GS-QD lasers, ES-QD lasers possess larger modulation
bandwidths and richer nonlinear dynamics under external perturbations owing to faster
carrier capture rates [23–26]. Different from GS-QD lasers and ES-QD lasers, TSQDLs can
lase at two wavelengths separated by several tens of nanometers [27] and exhibit lower
intensity noise [28], which can be applied in many fields such as terahertz (THz) signal
generation, two-color light sources, two color mode-locking, all-optical processing, and
artificial optical neurons, etc. [29–32]. In recent years, the investigations on the nonlinear dy-
namics of TSQDLs under external perturbations have attracted special attention. Through
introducing optical injection into GS, the ES emission in TSQDLs can be suppressed and
the mode switching from ES to GS is triggered [33,34]. Through scanning the optical
power of injection light along different varying routes, a bistable phenomenon can be
observed [35,36]. After introducing optical feedback to TSQDLs, many interesting phenom-
ena can be observed such as mode switching and mode competition between the GS and
ES [37,38], energy exchanging among longitudinal modes [39], two-color oscillating [40],
and anti-phase low frequency fluctuating [41]. However, to our knowledge, the nonlinear
dynamical state evolution of TSQDLs under optical feedback has not been reported.

In this work, based on three-level model of QD lasers [42,43], a modified theoretical
model for TSQDLs under optical feedback was presented to numerically investigate the
nonlinear dynamical characteristics of TSQDLs under optical feedback. Moreover, the
influences of the linewidth enhancement factor (LEF) on the nonlinear dynamical state
distribution of TSQDLs in the parameter space of feedback strength and phase offset were
also analyzed.

2. Rate Equation Model

The theoretical model in this work was based on the three-level model of QD lasers,
which has been adopted to analyze the static and dynamic behaviors, noise characteristics
of QD lasers operating at free-running [42,43], and the small-signal modulation response
and relative intensity noise of QD lasers under optical injection-locking conditions [44].
Figure 1 shows the simplified schematic diagram of the carrier dynamics for two-state
QD lasers (TSQDLs) based on the three-level model [45]. In this system, two relatively
low energy levels involving ground state (GS) and the first excited state (ES) were taken
into account. The electrons and holes were treated as neutral excitons (electron-hole pairs),
and the stimulated emission can occur in GS and ES. It was assumed that all QDs had
the same size and the active region consisted of only one QD ensemble. Therefore, the
inhomogeneous broadening effect was ignored. As shown in the figure, the carriers were
injected directly into the wetting layer (WL) from the electrodes. In the WL, owing to
Auger recombination and phonon-assisted scattering processes [46,47], some carriers were
captured into ES with a captured time τWL

ES . Some carriers relaxed directly into GS with a
relaxation time τWL

GS . The rest of the carriers recombined spontaneously with a time τ
spon
WL .

For the carriers in ES, some of them relaxed into GS with a relaxation time τES
GS and the

other carriers recombined spontaneously with an emission time τ
spon
ES . On the other hand,

owing to the thermal excitation effect, some carriers were excited into WL with an escape
time τES

WL. Similarly, the carriers in GS were excited into ES with an escape time τGS
ES , and

some carriers also recombined spontaneously with an emission time τ
spon
GS . Based on the

three-level model, after referring to the optical feedback processing methods in Ref. [48],
we propose modified rate equations for describing the nonlinear dynamics of TSQDLs
under optical feedback as follows:

dNWL
dt

=
η I
q

+
NES

τES
WL

− NWL

τWL
ES

(1 − ρES)−
NWL

τWL
GS

(1 − ρGS)−
NWL

τ
spon
WL

(1)
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dNES
dt

=
NWL

τWL
ES

(1 − ρES) +
NGS

τGS
ES

(1 − ρES)−
NES

τES
WL

− NES

τES
GS

(1 − ρGS)−
NES

τ
spon
ES

− ΓPvggESSES (2)

dNGS
dt

=
NWL

τWL
GS

(1 − ρGS) +
NES

τES
GS

(1 − ρGS)−
NGS

τGS
ES

(1 − ρES)−
NGS

τ
spon
GS

− ΓPvggGSSGS (3)

dSGS
dt

=

(
ΓPvggGS −

1
τp

)
SGS + βsp

NGS

τ
spon
GS

+ 2
k

τin

√
SGS(t)SGS(t − τ) cos(∆φGS) (4)

dSES
dt

=

(
ΓPvggES −

1
τp

)
SES + βsp

NES

τ
spon
ES

+ 2
k

τin

√
SES(t)SES(t − τ) cos(∆φES) (5)

dφGS
dt

=
α

2

(
ΓPvggGS −

1
τp

)
− k

τin

√
SGS(t − τ)

SGS(t)
sin(∆φGS) (6)

dφES
dt

=
α

2

(
ΓPvggES −

1
τp

)
− k

τin

√
SES(t − τ)

SES(t)
sin(∆φES) (7)

where WL, ES, GS are the wetting layer, excited-state, and ground-state, respectively, and
the superscript spon represents the spontaneous emission. N, S, φ are the carrier number,
photon number, and phase, respectively. I is the injection current, η is the current injection
efficiency, and q is the electron charge. Γp is the optical confinement factor, υg (= c/nr, where
c is the light speed in vacuum and nr the refractive index) is the group velocity. τp is the
photon lifetime, τin is the round-trip time in the laser cavity, and τ (= 2 lex/c, where lex the
external cavity length) is the round-trip time of external cavity. k is the feedback strength,
and α is the linewidth enhancement factor. Considering that GS and ES have twofold
degeneration and fourfold degeneration, respectively, the carrier occupation probabilities
and the gains of GS and ES can be expressed as [42]:

ρGS =
NGS
2NB

; ρES =
NES
4NB

(8)

gGS =
aGS

1 + ξGS
SGS
VS

NB
VB

(2ρGS − 1) (9)

gES =
aES

1 + ξES
SES
VS

NB
VB

(2ρES − 1) (10)

where NB is the number of quantum dots. aGS and aES are the differential gain, ξGS and ξES
are the gain compression factor, vs. is the volume of the laser field inside the cavity, and VB
is the volume of the active region. The feedback phase variation can be described as:

∆φGS = φGS(t)− φGS(t − τ) + ωGSτ (11)

∆φES = φES(t)− φES(t − τ) + ωESτ (12)

where ωGS and ωES are the angular frequencies for GS and ES lasing, respectively.
The rate equations can be numerically solved by the fourth-order Runge-Kutta method

via MATLAB software. During the calculations, the used parameters and their values are
given in Table 1 [42]:
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Figure 1. Schematic diagram of the carrier dynamics for QD lasers based on the three-level model. 
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3. Results and Discussion 

Figure 2 shows the normalized output power of the GS and ES lasing as a function of 

the injection current for a TSQDL under free-running (solid lines) or optical feedback with 

a feedback strength of k = 0.11 (dotted lines). For the TSQDL operating at free-running, 

Figure 1. Schematic diagram of the carrier dynamics for QD lasers based on the three-level model.
WL: wetting layer; GS: ground state; ES: excited state.

Table 1. Simulation parameters of the QD lasers.

Symbol Parameter Value

τWL
ES

Capture time from WL to ES 12.6 ps

τES
GS

Capture time from ES to GS 8 ps

τWL
GS

Relaxation time from WL to GS 15 ps

τGS
ES

Escape time from GS to ES 10.4 ps

τES
WL

Escape time from ES to WL 5.4 ns

τ
spon
WL

Spontaneous emission time from WL 0.5 ns

τ
spon
ES

Spontaneous emission time from ES 0.5 ns

τ
spon
GS

Spontaneous emission time from GS 1.2 ps

τP
Photon lifetime 4.1 ps

NB
Total number of QD 1.0 × 107

Γp
Optical confinement factor 0.06

nr
Refractive index 3.5

τin
Round-trip time 10 ps

aGS
Differential gain from GS 5.0 × 10−15 cm2

aES
Differential gain from ES 10.0 × 10−15 cm2

ξGS
Gain compression factor from GS 1.0 × 10−16 cm3

ξES
Gain compression factor from ES 8.0 × 10−16 cm3

βsp
Spontaneous emission factor 5.0 × 10−6

ωGS
Angular frequency from GS 1.446 × 1015 rad/s

ωES
Angular frequency from ES 1.529 × 1015 rad/s

VB
Active region volume 5.0 × 10−11 cm3

VS
Resonant cavity volume 0.833 × 10−15 cm3

η Injection efficiency 0.25

q Elementary charge 1.6 × 10−19 C

τ Feedback delay time 100 ps

α Linewidth enhancement factor 3.5

3. Results and Discussion

Figure 2 shows the normalized output power of the GS and ES lasing as a function of
the injection current for a TSQDL under free-running (solid lines) or optical feedback with
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a feedback strength of k = 0.11 (dotted lines). For the TSQDL operating at free-running, the
threshold currents of the GS and ES lasing were 36 mA (IGS

th ) and 88 mA (IES
th ), respectively.

With the increase of the current from 36 mA to 88 mA, the power of GS lasing gradually
increased while the ES lasing was always in a suppressed state. However, once the injection
current was exceeded 88 mA, the ES lasing could be observed. Further increasing the
current, the power of the ES lasing rapidly increased while the power of the GS lasing
increased slowly. Above results are in agreement with those reported in Ref. [43]. After
introducing an optical feedback of k = 0.11, the threshold current for GS slightly decreased,
which is similar with that observed in a single-mode distributed feedback semiconductor
laser under optical feedback. However, optical feedback raises the threshold of ES. The
reason is that the predominant component in the feedback light is originating from GS
lasing, and therefore the optical feedback enhances the competitiveness of the GS lasing.
Correspondingly, a higher current is needed for ES to start oscillation. In the following, we
fixed the current of the TSQDL at 120 mA, at which the power of GS lasing was more than
that of ES lasing.
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Figure 2. Normalized output power as a function of the injection current for a TSQDL under
free-running (solid lines) or optical feedback with a feedback strength of k = 0.11 (dotted lines).

Figure 3 displays the time series, power spectra, and phase portraits of typical dy-
namic state output from GS lasing and ES lasing of a TSQDL biased at 120 mA under
optical feedback with τ = 100 ps and different k. For k = 0.03, the output intensity of GS
lasing (Figure 3(a1)) was nearly a constant, the power spectrum was relatively smooth
(Figure 3(a2)), and the phase portrait was a dot (Figure 3(a3)). Obviously, under this case,
the dynamical state of GS lasing is a stable (S) state. For k = 0.07, the time series of GS
lasing (Figure 3(b1)) exhibited a stable periodic oscillation with a fundamental frequency
of about 6.3 GHz obtained from the power spectrum (Figure 3(b2)), and the phase por-
trait is a dense dot (Figure 3(b3)). Based on these characteristics, the dynamic state of
GS lasing can be judged as a period-one (P1) state. For k = 0.092, the time series of GS
lasing (Figure 3(c1)) behaves periodic oscillation with two peak intensities, both the sub-
harmonic frequency (about 3.1 GHz) and the fundamental frequency (about 6.3 GHz)
present clearly in the power spectrum (Figure 3(c2)), and the corresponding phase portrait
(Figure 3(c3)) is two closed circles, which are typical characteristics of period-two (P2) state.
For k = 0.097, the time series of GS lasing (Figure 3(d1)) exhibited multiple different peaks,
a quarter-harmonic frequency component appeared in the power spectrum (Figure 3(d2)),
and the phase portrait (Figure 3(d3)) showed multiple loops. These features mean that
the dynamical state of GS lasing is a multi-period (MP) state. For k = 0.154, the time series
of GS lasing (Figure 3(e1)) showed a disordered oscillation, and the power spectra were
broadened (Figure 3(e2)). In addition, the corresponding phase portrait (Figure 3(e3))
showed a strange attractor. Therefore, the dynamic state of GS lasing can be determined to
be the chaotic (C) state. Through comparing the characteristics of ES lasing with those of
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GS lasing, it can be seen that the dynamical states of ES lasing are always the same as those
of GS lasing.
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at 120 mA under optical feedback with τ = 100 ps and k = 0.03 (a), 0.07 (b), 0.092 (c), 0.097 (d), and 0.154 (e), respectively.

Above results show that, through setting feedback parameters at different values,
some typical dynamical states can be observed for both ES and GS lasing. In order to
inspect the evolution route of dynamical state with the feedback strength, Figure 4 presents
the bifurcation diagrams of the power extreme and largest Lyapunov exponent (LLE) of the
GS lasing and ES lasing as a function of feedback strength. LLE is an important indicator
to measure the stability of a laser nonlinear dynamical system [49]. A positive LLE value
means that the laser operates at a chaotic state while a negative LLE value corresponds to a
steady state. For a laser operating at periodic states, the LLE value tends to approach zero.
From this diagram, it can be seen that, with the increase of k from 0 to 0.043, the output
of GS lasing and ES lasing remains in a stable state due to the relatively low feedback
strength. Further increasing the feedback strength, the external cavity modes compete with
the intrinsic oscillation frequency of the laser, and the dynamic states of GS lasing and ES
lasing transform into periodic states including P1, P2, and MP. When the feedback strength
exceeds 0.11, the TSQDL enters into the C state due to coherent collapse. As a result, the
dynamics evolution routes of S-P1-P2-MP-C of the GS lasing and ES lasing are presented.
Continuously increasing the feedback strength, the laser enters into the chaos state through
period-doubling bifurcation, and such an evolution process repeats continuously.
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Figure 4. Bifurcation diagrams of power extreme and largest Lyapunov exponent (LLE) as a function of feedback strength
of the GS lasing (a) and ES lasing (b) in a TSQDL biased at 120 mA under optical feedback with τ = 100 ps.

Next, we discuss the influences of the round-trip time (τ) of the external cavity under
a given feedback strength of k = 0.1. Here, we only consider the case that τ is varied
around τ0 = 100 ps within a very small range, in which the offset (∆τ) of τ from τ0 = 100
ps satisfies –π/ωGS ≤ ∆τ ≤ π/ωGS. Under this case, the phase offset ϕ(=∆τωGS) of GS
lasing is varied within (−π, π), and the corresponding phase offset of ES lasing is varied
within (−1.06π, 1.06π). Figure 5 presents the bifurcation diagrams of the power extreme
and LLE of the GS lasing and ES lasing as a function of phase offset under k = 0.1. With the
increase of phase offset ϕ from −π to π, the dynamics evolution routes are more diverse.
There exist multiple chaotic evolution routes for GS lasing and ES lasing including P1-S-C,
P2-P1-P2-C, and C -MP-P2-C.
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The above results demonstrate that the feedback strength and the round-trip time
τ (equivalent to phase offset) of the external cavity are two crucial parameters affecting
the nonlinear dynamics of TSQDLs. Therefore, it is essential to investigate the overall
dynamical evolution in the parameter space of feedback strength and phase offset. Figure 6
presents the mapping of the dynamical states for GS lasing (a) and ES lasing (b) in the
parameter space of feedback strength and phase offset. There are rich dynamic states
including S, P1, P2, MP, and C in the parameter space. With the increase of feedback
strength, the phase offset required for achieving a chaotic state is gradually widened.
Although the dynamic state distributions of GS lasing and ES lasing are similar, there exist
subtle differences at the boundary between two modes. Through observing this diagram
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carefully, it can be found that there are multiple evolution routes for driving the laser into
the chaotic state such as S-P1-P2-MP-C, P1-P2-MP-C, and P1-MP-C.
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parameter space of feedback strength and phase offset. S: stable, P1: period-one, P2: period-two, MP:
multi-period, and C: chaos.

Relevant research shows that the linewidth enhancement factor (LEF) α plays an
important role for the nonlinear dynamics of SLs under external perturbations [50,51]. The
above results were obtained under a fixed α taken as 3.5. Finally, we discuss the influences
of LEF on the dynamical state distribution of a TSQDL under optical feedback. Figure 7
depicts mappings of dynamic states of GS lasing and ES lasing under different α. For
α = 0.5 (Figure 7(a1,a2), the dynamical states of GS and ES are relatively simple, which
include S, P1, and C. In the whole parameter space, most of the region is in a stable state,
and only a small region is in the chaotic state. For α = 2.5, as shown in Figure 7(b1,b2),
there are much richer dynamic states involving P2 and MP. For a larger α of 4.5 as shown
in Figure 7(c1,c2), the chaotic state occupies a large area. Therefore, a large α is helpful for
achieving chaotic state output.
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Additionally, it should be pointed out that above results were obtained under the
condition that the spontaneous emission noises were ignored. In fact, after considering
the influence of spontaneous emission noise, the boundary of dynamical states may be
changed slightly.

4. Conclusions

In summary, via a rate equation model used to characterize TSQDLs with optical
feedback, the nonlinear dynamics of TSQDLs subject to optical feedback were investigated
theoretically. For a TSQDL biased at 120 mA, both GS and ES lasing could be stimulated
simultaneously, and the output power of GS emission was slightly larger than that of
ES emission. After introducing optical feedback, multiple nonlinear dynamical states
including S, P1, P2, MP, and C were observed for GS lasing and ES lasing under suitable
feedback strengths and phase offset. Through mapping the evolution of dynamics state in
the parameter space of feedback strength and phase offset, different evolution routes were
revealed. In addition, the influences of the linewidth enhanced factor (LEF) on the dynamic
state distribution of TSQDLs in the space parameter of feedback strength and phase shift
were also presented. For a larger LEF, the parameter regions for GS lasing and ES lasing
operating at chaotic state were wider. Although the dynamical behaviors of TSQDLs
under optical feedback were similar to those observed in quantum well lasers under
optical feedback, TSQDLs under optical feedback have the ability to provide two-channel
chaotic signals with different lasing wavelengths, which are more promising for high-speed
random number generation, wavelength-division multiplexing secure communication, and
parallel-reservoir computing.
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